Supplementary Table 1 Primers for site-directed mutagenesis in this study

~				
Primers	Sequence 5'-3'	Substitution	Codon change	
E2A_F	CCTGCAGCCATG <u>GCA</u> TTCCGGCAGC	Glu2Ala	$GAA \rightarrow GCA$	
E2A_Rev	None	S1u2/ 11u	UAA → UCA	
R4A_F	CTGCAGCCATGGAATTC <u>GCG</u> CAGCTCAAG	Aro4Ala	$CGG \rightarrow GCG$	
R4A_Rev	None	1 11 5 TI 11 a		
K7A_F	CCGGCAGCTC <u>GCG</u> TATTTCATCGC	Lys7Ala	$AAG \rightarrow GCG$	
K7A_Rev	GCGATGAAATA <u>CGC</u> GAGCTGCCGG	Lystria		
N17A_F	CGGAAGCAGGG <u>GCG</u> ATGGCTGCAGC	Asn17Ala	$AAC \rightarrow GCG$	
N17A_Rev	GCTGCAGCCAT <u>CGC</u> CCCTGCTTCCG	Asiii/Aia		
K23A_F	CTGCAGCAGCCGCGCGCCTGCACG	Lvc23A12	$AAG \rightarrow GCG$	
K23A_Rev	GACGTGCAGGCG <u>CGC</u> GGCTGCTGCAGC	LyszJAla		
K23G_F	GCTGCAGCAGCC <u>GGG</u> CGCCTGCACG		$AAG \rightarrow GGG$	
K23G_Rev	CGTGCAGGCG <u>CCC</u> GGCTGCTGCAGC	Lysz50fy		
K23Q_F	GCTGCAGCAGCC <u>CAG</u> CGCCTGCACG	Lyo22Cln		
K23Q_Rev	CGTGCAGGCG <u>CTG</u> GGCTGCTGCAGC	Lysz50ill	AAU → CAU	
K23R_F	GCTGCAGCAGCCAGGCGCCTGCACG	$L_{\rm MO}$		
K23R_Rev	CGTGCAGGCG <u>CCT</u> GGCTGCTGCAGC	Lys25Afg	AAU → AUU	
K23V_F	GCTGCAGCAGCC <u>GTG</u> CGCCTGCACG	L vo 22 Vol	$AAG \rightarrow GTG$	
K23V_Rev	CGTGCAGGCG <u>CAC</u> GGCTGCTGCAGC	Lys25 val		
H26A_F	GCCAAGCGCCTG <u>GCC</u> GTCTCACAGCCC		$CAC \rightarrow GCC$	
H26A_Rev	GGGCTGTGAGAC <u>GGC</u> CAGGCGCTTGGC	HISZOAIa		
V27A_F	AGCGCCTGCACGCCTCACAGCCCCC	Va127 A La	$GTC \rightarrow GCC$	
V27A_Rev	GGGGGCTGTGA <u>GGC</u> GTGCAGGCGCT	val2/Ala		
S28A_F	CTGCACGTC <u>GCA</u> CAGCCCCCATC	S ar 29 A 1a	$TCA \rightarrow GCA$	
S28A_Rev	ATGGGGGGCTG <u>TGC</u> GACGTGCAGGCG	SerzoAla		
Q29A_F	ACGTCTCAGCGCCCCCCATCACG	C^{1}	$CAG \rightarrow GCG$	
Q29A_Rev	GATGGGGGG <u>CGC</u> TGAGACGTGC	GIII29Ala		
Q29C_F	TGCACGTCTCA <u>TGT</u> CCCCCCATCAC	C1		
Q29C_Rev	GTGATGGGGGGG <u>ACA</u> TGAGACGTGCA	GIn29Cys	$CAG \rightarrow 1GI$	
Q29D_F	TGCACGTCTCAGACCCCCCATCAC	C_{1}	$CAG \rightarrow GAC$	
Q29D_Rev	GTGATGGGGGGG <u>GTC</u> TGAGACGTGCA	Gin29Asp		
Q29E_F	GCACGTCTCAGAGCCCCCCATCACG	ClapOClas	$CAG \rightarrow GAG$	
Q29E_Rev	CGTGATGGGGGGG <u>CTC</u> TGAGACGTGC	GIn29Glu		
Q29F_F	GCACGTCTCA <u>TTT</u> CCCCCCATCACG		$CAG \rightarrow TTT$	
Q29F_Rev	CGTGATGGGGGGG <u>AAA</u> TGAGACGTGC	Gin29Phe		
Q29G_F	TGCACGTCTCAGGACCCCCCATCAC	Cla20Clas		
Q29G_Rev	GTGATGGGGGGG <u>TCC</u> TGAGACGTGCA	GIn29GIy	UAU → UUA	
Q29H_F	GCACGTCTCA <u>CAC</u> CCCCCCATCACG	C_{1}	$CAG \rightarrow CAC$	
Q29H_Rev	CGCGTGATGGGGGGG <u>GTG</u> TGAGACGTGC	GIII29H1S		
Q29I_F	TGCACGTCTCAATACCCCCCATCAC	C_{1}^{1}	$CAG \rightarrow ATA$	
Q29I_Rev	GTGATGGGGGGG <u>TAT</u> TGAGACGTGCA	GIN29IIe		

Primers	Sequence 5'-3'	Substitution	Codon change	
Q29K_F	GCACGTCTCAAAGCCCCCCATCACGCG	Cla20Lus	$CAG \rightarrow AAG$	
Q29K_Rev	CGCGTGATGGGGGGG <u>CTT</u> TGAGACGTGC	GIn29Lys		
Q29L_F	GCACGTCTCACTGCCCCCATCACGCG	Cla20L au		
Q29L_Rev	CGCGTGATGGGGGGG <u>CAG</u> TGAGACGTGC	GIn29Leu	$CAU \rightarrow CIU$	
Q29M_F	TGCACGTCTCAATGCCCCCCATCAC	Cla20Mat	$CAG \rightarrow ATG$	
Q29M_Rev	GTGATGGGGGGG <u>CAT</u> TGAGACGTGCA	Gin29Met		
Q29N_F	GCACGTCTCAAACCCCCCCATCACG		$CAG \rightarrow AAC$	
Q29N_Rev	CGTGATGGGGGGG <u>GTT</u> TGAGACGTGC	GIn29Asn		
Q29P_F	GCACGTCTCACCGCCCCCATCACGCG	Cla20Das	$CAG \rightarrow CCG$	
Q29P_Rev	CGCGTGATGGGGGGG <u>CGG</u> TGAGACGTGC	GIII29P10		
Q29R_F	TGCACGTCTCA <u>CGA</u> CCCCCCATCAC	$C_{1n}^{1n} \rightarrow 0$ A n_{n}^{n}		
Q29R_Rev	GTGATGGGGGGG <u>TCG</u> TGAGACGTGCA	GIII29AIg	$CAU \rightarrow CUA$	
Q29S_F	GCACGTCTCA <u>TCG</u> CCCCCCATCACG	C_{1n}^{1n}		
Q29S_Rev	CGTGATGGGGGGG <u>CGA</u> TGAGACGTGC	Gin29Ser	$CAG \rightarrow ICG$	
Q29T_F	TGCACGTCTCAACGCCCCCATCAC	Cla 20Th a		
Q29T_Rev	GTGATGGGGGGG <u>CGT</u> TGAGACGTGCA	Gin291nr	$CAG \rightarrow ACG$	
Q29V_F	TGCACGTCTCAGTGCCCCCCATCAC			
Q29V_Rev	GTGATGGGGGGG <u>CAC</u> TGAGACGTGCA	Gin29 val	$CAG \rightarrow GIG$	
Q29W_F	TGCACGTCTCA <u>TGG</u> CCCCCATCAC	Cl. 20T	$CAG \rightarrow TGG$	
Q29W_Rev	GTGATGGGGGGG <u>CCA</u> TGAGACGTGCA	Gin291rp		
Q29Y_F	TGCACGTCTCA <u>TAC</u> CCCCCATCAC	C1 20T	$CAG \rightarrow TAC$	
Q29Y_Rev	GTGATGGGGGGG <u>GTA</u> TGAGACGTGCA	Gln29Tyr		
P30A_F	CGTCTCACAG <u>GCC</u> CCCATCACGC	D 2041	$CCC \rightarrow GCC$	
P30A_Rev	GCGTGATGGG <u>GGC</u> CTGTGAGACG	Pro30Ala		
T33A_F	AGCCCCCATC <u>GCG</u> CGGCAGATGC	TI 22 A I	$ACG \rightarrow GCG$	
T33A_Rev	GCATCTGCCG <u>CGC</u> GATGGGGGGC	Inr33Ala		
R34A_F	CCATCACG <u>GCG</u> CAGATGCAAGCC		$CGG \rightarrow GCG$	
R34A_Rev	GCTTGCATCTG <u>CGC</u> CGTGATGGG	Arg34Ala		
Q37A_F	GCGGCAGATG <u>GCA</u> GCCCTGGAAGC	C1 27 A1	$CAA \rightarrow GCA$	
Q37A_Rev	GCTTCCAGGGC <u>TGC</u> CATCTGCCGC	GIn3/Ala		
E40A_F	GCAAGCCCTG <u>GCA</u> GCGGACTTGG	C1 40 A1	$GAA \rightarrow GCA$	
E40A_Rev	CCAAGTCCGC <u>TGC</u> CAGGGCTTGC	Glu40Ala		
D42A_F	CCTGGAAGCG <u>GCC</u> TTGGGCGTCG	A 40 A L	$GAC \rightarrow GCC$	
D42A_Rev	CGACGCCCAA <u>GGC</u> CGCTTCCAGG	Asp42Ala		
R50A_F	GCTTCTGGAG <u>GCA</u> AGCCACCGCG	A	$CGA \rightarrow GCA$	
R50A_Rev	CGCGGTGGCT <u>TGC</u> CTCCAGAAGC	Argouala		
H52A_F	GGAGCGAAGC <u>GCC</u> CGCGGGATCG		$CAC \rightarrow GCC$	
H52A_Rev	CGATCCCGCG <u>GGC</u> GCTTCGCTCC	ΠΙSJZAIA		
F98A_F	AGCGTGGCGTATGCCGGAACGCCCATC	Dha09A1a	$TTC \rightarrow GCC$	
F98A_Rev	GATGGGCGTTCC <u>GGC</u> ATACGCCACGCT	гнеубАја		

Primers	Sequence 5'-3'	Substitution	Codon change
T100A_F	GCGTATTTCGGA <u>GCG</u> CCCATCTACCGC	$Th_{\pi}100Al_{0}$	$ACG \rightarrow GCG$
T100A_Rev	GCGGTAGATGGG <u>CGC</u> TCCGAAATACGC	InfituAla	
K129A_F	ACGCACATGACC <u>GCG</u> GACGAGCAGGTG	L via 1 20 A la	$AAG \rightarrow GCG$
K129A_Rev	CACCTGCTCGT <u>CCG</u> CGGTCATGTGCGT	Lysi 29Ala	
R147A_F	GTGGGCTTCAGC <u>GCC</u> TTCTTTCCCCGG	$\Lambda = 147 \Lambda l_0$	$CGC \rightarrow GCC$
R147A_Rev	CCGGGGAAAGAAGGCGCTGAAGCCCAC	Alg14/Ala	
R199A_F	CCGCGCGGCGGC <u>GCG</u> CCGAGCTTCGCC	A ma 100 A la	$CGG \rightarrow GCG$
R199A_Rev	GGCGAAGCTCGG <u>CGC</u> GCCGCCGCGCGG	Alg199Ala	
F202A_F	GGCCGGCCGAGC <u>GCC</u> GCCGATGAGGTG	Dha202 A la	$TTC \rightarrow GCC$
F202A_Rev	CACCTCATCGGC <u>GGC</u> GCTCGGCCGGCC	Plie202Ala	
V246A_F	GTCCCTGCGTCT <u>GCC</u> GCAGCGATCCGT		$GTC \rightarrow GCC$
V246A_Rev	ACGGATCGCTGC <u>GGC</u> AGACGCAGGGAC	val240Ala	
P267A_F	CGGGTCAAGGTG <u>GCC</u> ATCAGCTGCATC	Dr. 267 A 1-	$CCC \rightarrow GCC$
P267A_Rev	GATGCAGCTGAT <u>GGC</u> CACCTTGACCCG	rio20/Ala	

Notes: The replaced codon was underlined.

Substitution -	Concentration of CbnR protein (nM)				
Substitution	0	39.0	97.5	195	390
Wild type	0	0	4.77 ± 1.9	34.2 ± 6.9	100
Gln29Ala	0	20.5 ± 7.2	59.2 ± 2.4	100	100
Gln29Gly	0	14.0 ± 1.7	38.6 ± 6.7	100	100
Gln29Ser	0	6.37 ± 2.4	26.1 ± 2.4	80.8 ± 5.6	100
Gln29Thr	0	8.20 ± 1.3	24.4 ± 3.5	87.7 ± 11.1	100

Supplementary Table 2 Binding ratios of wild-type CbnR and Gln29 mutants to the cbnA promoter

Notes: See Materials and Methods for details.