August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

Submitted to Mathematical and Computer Modelling of Dynamical Systems
Vol. 00, No. 00, Month 20XX, 1-21

Mathematical and Computer Modelling of Dynamical Systems
Supplemental online material for the paper “Automated
generation of hybrid automata for multi-rigid-body mechanical
systems and its application to the falsification of safety properties”

E.M. Navarro-Lépez®* and M.D. O’TooleP

@School of Computer Science, The University of Manchester, Ozford Road, Kilburn
Building, Manchester M13 9PL, UK; ®School of Electrical and Electronic Engineering,
The University of Manchester, Sackville Street Building, Manchester M13 9PL, UK

(August 2017)

In this document, we provide details of the tool DyverseBMC which uses the mod-
elling framework proposed in our paper for the falsification of safety properties of
multi-rigid-body systems with multiple contacts, impacts and discontinuous friction.
We also make a summary of the main limitations of the implemented methodology and
explore some of these limitations for a multiple contact problem.

Keywords: hybrid systems; hybrid automata models; design automation;
computational methods; computer simulation

AMS Subject Classification: 93C30; 68Q60; 68U20; 93B40; 70E55

Contents
1 Dyverse bounded model checker and the MRB hybrid automaton 2
2 Overview of the bounded model checking approach 2
3 Exploring the dynamical discrete locations 4
4 Creating the ‘root’ formulas 8
5 Exploring the computation nodes 10
6 Lazy SMT solver 11
6.1 Integration of ODEs 14
6.2 Constraint solutions with maximal feasibleset 14
6.3 Conflicting constraints L Lo 14
6.4 Convex and concave constraints oL Lo 16
7 Implementation 16
8 Limitations 16
9 A multiple contact problem 18
A Computation of new contact forces 20

*Corresponding author. Email: eva.navarro@manchester.ac.uk. This work was supported by the Engineering
and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/I001689/1 (‘DYVERSE: A
New Kind of Control for Hybrid Systems’); and the Research Councils UK under Grant EP/E50048/1.

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

1. Dyverse bounded model checker and the MRB hybrid automaton

In this document, we describe DyverseBMC: a procedure for falsifying a safety
property over finite time-intervals for a rigid body system against our multi-rigid-
body (MRB) hybrid automaton abstraction. DyverseBMC has to be understood as a
wider modelling, simulation and bounded-model-checking framework which includes
the specification of the computational semantics for a multi-rigid-body system. This
specification is given by the MRB hybrid automaton formalism and is explained in
the main paper. The automatic generation of the MRB hybrid automaton and its
simulation are implemented through the tool DyverseRBT. The main elements of
our framework were given in Figure 1 of the main paper.

2. Overview of the bounded model checking approach

The falsification method presented as an application of our modelling framework is
based on the concept of bounded model checking (BMC), and the observation that
a designer or engineer will manually check a system’s property by repetitive simula-
tions, using their own reasoning processes to guide the parameters of the simulation
towards a desired, or in this case, unsafe result. A mix of new and well-established
methods for the simulation of non-smooth mechanical systems are used to discre-
tise the system. The discretised system is then posed as a formula consisting of a
Boolean combination of interval-based arithmetic constraints. Automated reason-
ing tools such as interval constraint solvers [1, 2] can be used to efficiently find
solutions to the formula which violates our specified safety property. If no unsafe
solutions are found, we extend the length of the discretisation in time by adding
new time-steps. The procedure is thus akin to the BMC approach, which has been
used with considerable success as a pragmatic approach to the formal verification
of software and embedded systems. In brief, we translate the mechanical system
dynamical evolution into SMT (Satisfiability Modulo Theory) formulas to apply an
SMT-type solver which has been especially tailored for the type of systems we are
dealing with. We point out that under this framework, the continuous dynamics of
the system (ODEs) are interpreted as arithmetic constraints over real-valued vari-
ables, which are nonlinear in our case. Additional constraints are the guards and
the domains of each discrete location. Due to the geometry of the bodies considered
(spheres), the guards are considered to be convex and the domains are concave.

To put it in a nutshell, we present a method of using the multi-rigid-body (MRB)
hybrid automaton to generate a succession of mixed Boolean/arithmetic constraint
satisfaction problems which can be used with a lazy-SMT solver to find unsafe
trajectories over progressively lengthening time-scales. The custom translation to
the MRB hybrid automata is a necessary part of this process. In fact, we find
natural synergies between the different elements of the automaton and posing con-
straint satisfaction problems associated with trajectories of the state-space. For
example, the guard conditions of the hybrid automaton are already examples of
mixed Boolean/arithmetic constraints which define whether the trajectory has left
the location.

To solve the SAT (Boolean satisfiability) problem, we use optimisation techniques.
Inspired by [3], we perform a depth-first search through the space of possible vari-
able assignments. The optimisation problem we solve is the sum-of-slacks feasibilit
problem [4]. The implementation is done using the NAG Toolbox for MATLAB

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

[5] for the optimisation, and the SAT-solver of MATLAB®.

Our falsification approach is based on a methodology akin to bounded model
checking briefly described in the Introduction and Section 4 of the main paper.

A logical formula is constructed consisting of Boolean variables and constraints
on real variables. This formula is satisfied only by a certain set of trajectories across
the continuous state-space over finite time-intervals.

A lazy SMT solver [2, 6] is used to find a solution to this formula which falsifies
the safety property. If no falsifying solution exists, then we can conclude that there
are no trajectories amongst that set which are unsafe over the time interval. We then
move to a different set of trajectories, and repeat the search for unsafe trajectories.

The logical formulas which we will construct are in conjunctive normal form
(CNF) and consist of mixed Boolean variables and constraints on real variables,
that is,

Y= /\ \/ pij(a,b,...,c(x1,22,...)00,...) | ,

el \jeJ;
where p; j(a,b,...,c(z1,22,...) 00,...) is either a Boolean variable a,b, ..., or a con-
straint c(x1, x2,...) 00 on the real variables z1, x9, ..., where o := {=, <}. For exam-

ple, we might have,
p:=(aVb)A(x1=0Vaz2<0)

where z1,22 € R and a,b are Boolean variables. A solution to a formula ¢ is any
choice of variables (real and Boolean) such that ¢ evaluates to true.

The relational operator o of the constraint is restricted in this manner o := {=, <}.
We deliberately do not allow the operator <. This restriction is imposed by the
standard numerical optimisation tools which we use to assist in finding solutions to
the formula. This will be described in more detail in Section 6.

To verify a safety property is to prove that it holds for a given system. We have
already defined what we mean by a safety property and its restrictions in the intro-
duction. To reiterate, we have the following components,

¢: A CNF formula as defined above.

Hyrrp: A multi-rigid body mechanical system with continuous states x(t).
T: A finite time interval.

I(x(0)): A set of initial conditions of the state variables.

P: A range of possible values for the physical parameters in the system (mass,
dimensions, coefficients of friction or restitution, etc).

For the safety property to hold, ¢ must be satisfied for all z(¢), such that t € T,
x(0) € I, and for all physical parameters across P. Our procedure will find solutions
which falsify the safety property.

The overall procedure is shown in Algorithm 1. The algorithm uses a depth-
first-search method to build possible discrete evolutions, which are then checked
for safety. More specifically, the discrete evolution is checked for the existence of
a continuous trajectory that starts in the initial conditions, visits each discrete
location in order, and at some point, violates the safety property.

For instance, the discrete evolution s; — s9 — sz is unsafe, if there exists a
continuous trajectory which starts from a set of initial conditions in the domain of

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

the discrete location s1, then enters the domain of ss, followed by the domain of s3,
and at some stage enters a region of the state space specified as unsafe.

If the discrete evolution is determined to be safe, then a new location is added to
the evolution following the depth-first-search method. This new and longer discrete
evolution is then checked for safety, and so on, until an unsafe solution is found, or
until some chosen maximum depth is reached.

The safety verification task is conducted wusing the function
FExplore Dynamical Location. The functions CreateRoot and ExploreCompN ode
are used to aid in constructing formulas for trajectories that traverse between
discrete locations and domains. The purpose and details of these functions will be
made clear in subsequent sections.

Algorithm 1 DepthFirstSearch (Falsification of a safety property)

Input: s, root
if s is a dynamical location then

(safe,roots) < Explore Dynamical Location(root, fs(x), Doms, ¢)
else

ExploreCompN ode(root, s)
end if
for all ¢ € roots (for all formula in roots) do

s = root formula for location s

safe < DepthFirstSearch(s', ps)

if safe = false then

return

end if
end for
Output: variable safe (if safe = false, the system is unsafe)

3. Exploring the dynamical discrete locations

The purpose of the function ExzploreDynamical Location is to construct formulas
which are true for sets of trajectories that cross the domain of some dynamical
discrete location. Thus, by finding intersection with the complement of the safety
property — the unsafe region — we can verify whether the system is safe up until
some moment in time. Algorithm 2 shows the procedure used by this function.

To explain this procedure, we must first consider the following preliminaries. We
denote the dynamical location we are attempting to verify as s and FE; is the set
of all edges leaving this location. We also define the following CNF formulas, which
parallel the elements of the MRB hybrid automaton (defined in Section 3 of the
main paper):

e Domg(z™) is a CNF formula which is true if z(?) in the state space belongs
to the domain of location s, that is, z(*) € Dom(s).

G.(z%) is a CNF formula which is true if z(Y) in the state space belongs to
the guard set associated with edge e, that is, z(9) € G(s,s') if transition e is
s— s, e=(s5).

(™) is a CNF formula which is true if () satisfies the safety property.
root is a CNF formula which is true for all trajectories that start from a set

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

of initial conditions and have a common discrete evolution, that is, they all
traverse the same ordered set of edges, s — s’ — s” — ... etc.

Further, we introduce a function ODE(f,xzo, AT), representing the solution
z(AT) of the initial value problem #(t) = f(z(t)), #(0) = xo. Let 2() be the
sequence z("t1) = ODE(f,z®, AT), starting from a given initial value ().

We describe the falsification procedure using the example shown in Figure 1. The
example assumes that only five trajectories (A, B, C, D and E) are possible and that
they evolve from the set of initial conditions indicated in the figure. Clearly, this
is not valid generally, as a dynamical system can have possibly infinite trajectories
evolving from a bounded region. However, this simplification serves clarity, and this
assumption is only for illustrative purposes.

The example contains two guard sets, which we designate G; = G(s,s’) and
G2 = G(s,5"), and two accompanying guard formulas G; and Gg, such that any
point belonging to a guard set is also a solution to the respective guard formula.
The domain Dom(s) is the region bounded by the guards on the top and right
hand-side. The accompanying formula is Domg. Clearly, any state 2’ in this space
is a solution to the formula Domg(z’).

We further introduce an unsafe region. This is determined from the complement
of the safety property. A state 2’ inside the unsafe region is a solution of the formula

—¢().

">~y Previous two
i\ time-steps

Lengthened | Gz
- time-step

Initial Conditions

Figure 1. Exploring the dynamical discrete location s.

All the trajectories starting from the initial conditions up to the first and second
dashed line in Figure 1(a) are solutions to the formulas oM and @, respectively.
For our explanation, we shall assume that the first two steps have been verified
safe, that is, all trajectories up to the second dashed line do not intersect the unsafe
region. We are observing the falsification procedure mid-way through its evaluation
of this location.

We add a new step to the length of our trajectories 23, and create a new formula
©®) by appending the equality constraint z(3) = ODE(fs, z?), dt) to the previous
formula, where f; is the vector field governing the dynamics at location s (see the
hybrid automaton definition in the previous section) and dt is some small time-step.

3)

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

Add new
time-step Grow last
time-:

Note guard
crossed. Add
constraint so no
solution can
cross this guard.

Is there a
solution that
crosses a
guard?

Is the step-size
No within error
bounds?

Is there a solution
inside the domain?

Is there an
unsafe solution?

Increase
Step-size

Return Unsafe!

Figure 2. Flow diagram: how a new time-step affects the trajectories.

All trajectories starting from the initial conditons and going to the end points on
the third dashed line in Figure (1(a)) are satisfiable solutions of ¢3). Our task is
to analyse how this new time-step affects the trajectories (up to 1:(3)) by applying
a series of tests:

(1) Do any of the possible trajectories enter a guard set? In other words: is there
a solution of ¢ such that one or more of of the guard formulas are also true?

(2) Are there any trajectories still evolving within the domain of s ? That is: is there
a solution ¢ such that Doms(ac(3)) is also true? If no solution is possible
then we have ‘exhausted the domain’, and we can reason that all trajectories
must have left the domain, and that no further exploration of this location is
necessary. Figure 1(f) is an example of this, which we will discuss later on.

(3) Are there any trajectories which violate the safety property by entering the
unsafe region? In other words: are there any solutions to @(3) and where the
safety property does not hold?

These tests are summed up in Figure 2. From Figure 1(a), it is clear that, for
all trajectories up to 3, none of the guard sets are entered, the domain is not
exhausted, and the safety region is not violated. The new time-step has been un-
eventful.

The addition of each new time-step increases the number of clauses contained in
our formula. Larger formulas increase the solving time. It is thus desirable to min-
imise the number of time-steps, and maximise the length in time of our trajectories
without drastically impinging on the accuracy.

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

We implement a variable-step scheme, which grows the step-length whenever a
new time-step proves uneventful. The new time-step is temporarily discarded, and
the previous time-step has the step-size increased so that the trajectory has the
same length in time for fewer time-steps. In Figure 1(b), for example, we see that
each of the trajectories reach the same point as they did in Figure 1(a), but with
only two time-steps rather than three.

A new formula ¢(?) is created using the adjusted step-sizes, such that all trajec-
tories in Figure 1(b) are solutions of ©@). The integration errors for the possible
solutions of ¢ are examined. If there is no solution to p which results in an
integration error above a given tolerance, then the new formula p(?) and the new
lengthened time-step is accepted. If a solution is found with an error above the
tolerance, then the lengthened time-step is discarded and we revert back to having
two separate time-steps as in Figure 1(a).

From Figure 1(b), we advance the trajectories by two time-steps to produce the
result in Figure 1(c). The new time-step causes the trajectories A, B, and C to enter
the guard set GG1. We take note of the following;:

e The edge e that is associated with the guard set that has been entered, in this
case eq;

e the formula before the addition of the new time-step, in this case g0(3);

e an over-approximation of the time between the first trajectory and the last
trajectory enters the guard set.

In the case of Figure 1(c), we know that all trajectories that are going to enter G
enter during the period of a single time-step. Thus, our over-approximation is the
length of the time-step.

This information is recorded in the set Qf. This set will be used in Section 4 to
create formulas for successive locations in the discrete evolution of the system.

We check if any other guard region is entered by temporarily including the con-
straint ~G1(z®*) so that any solution which enters G is excluded. The search for
solutions is then repeated. In Figure 1(c), no other guard sets are entered during
this time-step so the formula ¢®* with the additional guard constraint =G1(z(%)
is unsatisfiable. The guard constraint is discarded and the process continues.

We are no longer interested in the trajectories that have entered the guard set as
these have left the domain which we are exploring. To exclude these trajectories,
an additional set of clauses is added to the formula ¢®,

oD = 6@ A Domy(z®),

such that the solutions of ¢(*) become only those where the fourth point 2% is inside
the domain of s. The fourth points are those points along the trajectories that lie
on the dashed line marked ¢ in Figure 1(c). Consequently, the trajectories A, B,
and C are excluded from ¢(*). We are not interested in these trajectories for the
present as they have exited the location and have not been found to be unsafe.

A new time-step is added, and a new formula ¢®) is created from o) — recall (4
still includes the domain condition on). The solutions of ¢ are the lengthened
trajectories D and E in Figure 1(e), but not A, B, and C as they are excluded by
the domain condition.

The new step does not result in any of the remaining trajectories entering a guard
set, and both trajectories exist in the domain of s. However, as shown in Figure
1(e), the distal point of trajectory E has entered the unsafe region. Thus, a solution

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

exists to the formula,
0B A —p(z).

The conclusion is that the system is unsafe and the algorithm returns this result.

Figure 1(f) shows a different circumstance. In this case, the trajectories avoid
the unsafe region, and eventually enter the guard set Go. There are no trajectories
which continue to evolve in the domain of s. Thus, as discussed previously, we
have exhausted the domain, and the exploration for this location is terminated. The
evolution of the system so far is judged ‘safe’.

4. Creating the ‘root’ formulas

Consider a transition evolution, from one location to another, of an execution of the
MRB hybrid automaton as s — s’ — s”. If we wish to verify a property while the
system is in the last of these locations we must create a formula which has as its
solutions, all trajectories that start from the initial conditions and follow the same
path of transitions until reaching the last location. We call this formula the ‘root’
of location s”.

The root is used in the same ways as the initial condition set in Figure 1. That is,
there is a region in the domain of s” which consists entirely of solutions to the root
formula, and from which all trajectories of interest evolve. By replacing the initial
condition region in Figure 1 with ‘root’, the procedure is the same.

The method for constructing root formulas is described following the example in
Figure 1(c). We found that the trajectories A, B, and C, were able to enter the
guard set G7 within one time-step. Recall that we recorded Qf = {1, o) AT },
where 1 is the edge label, g0(3) is the formula prior to the addition of the ‘guard-
entering’ time-step, and AT is an over-approximation of the time between the first
and last trajectory entering the guard set G1. We call the over-approximation AT
the ‘crossing-period’.

Let us say that edge 1 is the transition between locations s — s’. Algorithm 3 of
‘CreateRoots’ is used to create the root of location s’. We add a new time-step to
our formula using the ODFE function. However, in contrast to our previous method,
we add a time-step with a symbolic variable to represent the size of the time-step
and add constraints to allow this variable to take any value over the range [0, AT].

The new time-step creates a new point z(* which we constrain to the boundary
of (G using a modified version of Gl(:n(4)) with inequalities replaced by equalities.
The result is shown in Figure 3(a). The point (¥ sits on the boundary of G;. The
step between 2(3) and ¥ has a variable step-size and can ‘stretch’ so that the small
time-step will always enter the guard.

The resulting formula, designated ¢q 1 in Algorithm 3, is the root of location s
for the transition s — s’. A trajectory is a solution of ¢q if it starts from the
initial conditions and enters the guard set (G; without entering any other guard set
or visiting any other locations.

An alternate scenario is shown in Figure 3(b). In this case, all trajectories that are
going to enter the guard set G9, do so over a period of three time-steps, rather than
a single step as before. This procedure is the same, except that we allow the time
variable in the new time-step to range over [0, 3AT], and point 29 is constrained
to the boundary of Gbs.

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

Algorithm 2 FExploreDynamical Location
Inputs: root, s (location)
dty <+ Time-step increment size
i <— maximum number of time-steps in root (i.e. highest superscript of x)
E, + index of edges leaving location s
go(i_Q) — go(i_l) < root
0F {Qf - {0)},...} Vj € E,
tarp < 0, 1< i+ 1dt < 0, safe < true
while the minimum length trajectory (in time) is less than the upper-bound of
the interval T' of the safety property do
) (<p(i_1) Azl = ODE(fs,m(i),dtd))
e [s there a solution such that the new time step crosses any of the guards?
I+ FE;
J « {0}, sat < true
while sat do
sat < Satisfy (go(i) A (\/WE[Gj> Avies ﬁGk)
if sat then
(Denote e as the edge that is crossed)
if Qf = {0} then
Qg A {6, , @(i_1)7 tclk}
end if
QF « QF U (tax + dt)
I+ 1\e
J+—JUe
event < true
end if
end while
e Is there a solution such that the new time step is inside the domain?
if Satisfy (np(i) A Doms(:ﬁ(i)) then
e Is there a solution such that the new time-step is unsafe?
if Satisfy (go(i) A ﬂqﬁ(a:(i))) then
return safe + false
end if
else
e Exit the while loop (there are no more time-steps in this domain)
end if
if —event then
dt « dt + dtg
=D =2 A 20) = ODE(f,, 20—, dt)
else
Lk = tar +dt —dtg, dt <—dtg, i <1+ 1, event < false
(i=2) (p(i-1)
01« o A Domg(z™)
end if
end while
roots < CreateRoots(2¥)
Output: safe roots

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

Figure 3. Creating root formulas.

Algorithm 3 CreateRoots
Inputs: Q¥
Q7= {0, .
roots < {0}, I « {0}
for all {j: OF € 0%, 0f £ {0}} do

o . +
Q] = {QOQ] » 10 tclk:,j’ tClk:j}
T+ 0

N _
ATty =tk

pq, (gagj A 2T = ODE(f,, 20V o, AT]))

¢, + (pa, A boundary of Gj(x(i)))
g, < ig, +1
roots <— roots U yq,
I+ 11U 0,
end for
return roots, I

5. Exploring the computation nodes

We now consider the case of transitions from a dynamical location s to the entrance
location of an impact or contact computation nodes, s — Z., or s — Cep, and
the return transition, from an exit location to a dynamical location, Z., — s’
or Cey — 8. The objective is to find a formula which is satisfied by any valid
combination of contact forces given the possible trajectories which could trigger an
impact or contact situation. This is relatively straightforward for the single contact
case. However, for multiple contacts, the mutual interdependence of the contact
forces between different contact sites makes the problem much more difficult. There
is no general closed-form solution to computing forces in multiple contact cases. We
must instead resort to iterative numerical procedures.

When simulating rigid-body contacts, the successive over-relaxation proximal
point method — SORPROX, [7] — has been found to efficiently compute contact
forces for rigid-bodies with multiple contacts. This method is briely reviewed in the
appendix. We wish to follow this method, but with the iterative equations designed
to compute contact forces for a single trajectory replaced by a formula satisfied by
sets of trajectories. The formula equivalent for a single iteration of the SORPROX

10

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

method is,
(CI)NJ‘ <0V f](\?)] = ‘I’N,j) A (f](\?J =0V by, > 0) A

i i i Pry
A (H@mu < 1A VAT = N ,,) 7

where the subscript j is the contact index, the superscript (7) is the current iteration,
the terms @y ;, &7 ; are ‘guesses’ for the contact forces and are defined by equations
(A1)-(A2) for computation node Z (impact computation node), or equations (A3)-
(A4) for computation node C (contact computation node). The terms Ay ;, A ; are
the normal and tangential contact forces, respectively.

The formula is constructed using Algorithm 4 of ‘ExploreCompNode’. The al-
gorithm appends the above clauses to ¢ for each contact j associated with the
computation node. Next, the algorithm adds a set of convergent conditions. If these
conditions are satisfied then the contact forces have converged to within a tolerance
(tol) and no further iterations are necessary. First, a copy of ¢ is made and is called
¢, so we can remove the convergent conditions if we require more iterations. Then, a
new set of clauses are appended to ¢’ for each contact j. These clauses are equivalent
to the complement of the convergence criteria in the SORPROX algorithm,

]f}vifj—@N,j] > tol A S #0 A H “’)._cpTJ-H >

> tol A (HCPT,J'H < Njfz(\?,)g H il) ‘

If there exists a solution to ¢/, i.e. it is satisfiable, then there exists a trajectory
where the contact forces have not converged to a solution and the while-loop repeats
to find the next iteration of the contact forces. Alternatively, if ¢’ is unsatisfiable,
then we have sufficient iterations to guarantee all trajectories which entered the
computation node have correct contact forces. Finally, when convergence is com-
pleted, the algorithm adds new clauses that assign the resets to the state variables,
as defined in our hybrid automata specification, and test the new assignment for
unsafe solutions and guard crossings, as previously in Explore DynamicLocation.

6. Lazy SMT solver

In this section, we describe our implementation of a ‘Lazy SMT solver’ designed
specifically to solve the mixed Boolean and real non-linear arithmetic formulas con-
structed in the previous sections. We use a basic method termed the off-line approach
by [6], which is used by existing packages such as Absolver [2], among others. We
include a number of additional heuristics and features on top of this basic method
to increase efficiency and reduce solving times.

Algorithm 5 of ‘Satisfy’ shows the Lazy SMT method. Broadly, it works by first
generating a Boolean abstraction of the formula to be solved. For example, consider
the formula,

c1(z) <OA (ea(z) <0Veg(z) =0) A(er(z) <0Veg(z) =0).

11

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

Algorithm 4 EzploreCompN ode

Inputs: root, Z or C (computation node)
p 4 root
sat < true
i < maximum number of time-steps in root (i.e. highest superscript of x)
while sat do

t1+1

for j =1 — Number of contacts do

P A ((I)N’j <0V fj(\?)] = CI)NJ')

e n (=0 o 20
Q< 1Pl < Ay VAT = —HiAN; Tor]

@ A (”(I)TJH > Mj)‘g\z/),j v)\% = ‘I’T,j>
end for
e Does there exist a solution that does not converge?

o
for j =1 — Number of contacts do

o ¢ A ‘f](\?j—@]v,j‘ > tol A f](\;?j#o
o ¢ A Hf:(FZ)J _(I)T’jH > tol

¢ ' A (HCDTJH < pify v Hfg)a

< /‘jf}\?j)

end for
sat < Satisfy(¢')
end while
0@ A 20D = R(..,Top, z) (or R(...,Cop, x))
e Does the reset create an unsafe solution?
if Satisfy (go(i) A ﬁgb(:n(i))) then
return safe = false
end if
e Does the reset result in solutions that cross guards?
roots < {0}
I + index of edges leaving the computation node Z or C
J « {0}, sat < true
while sat do
sat < Satisfy (go(i) A (VVjeI Gj) Avies —\Gk)
if sat then
(Denote e as the edge that is crossed)
T00tS < To0ts U @
I+ 1I\e
J—JUe
end if
end while
Output: safe, roots

12

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

A Boolean abstraction of this would be,
al(bVe)A(aVe),

where a, b, c are Boolean variables which are true when their corresponding con-
straints are true, e.g. a = true <= c¢i(z) < 0. The Boolean abstraction is then
given to a SAT solver to generate a solution. For instance, a, b true and ¢ indeter-
minate would be a solution which satisfies our example formula.

So far, the solution to our formula is provisional, and only satisfies the Boolean
abstraction. We must now determine whether the collection of constraints, corre-
sponding to the Boolean variables with assignments, have real solutions. A set of
constraints 7 is created from the Boolean abstraction,

7={c1(z) 00, co(x)00,...},

where o = {=, <}. Continuing with our example, if the SAT solver has given us
the solution a,b true and ¢ indeterminate, then 7 consists of the corresponding
constraints for a, b,

7 ={c1(z) <0, co(x) <0}.

The set of constraints is passed to a constraint solver which determines whether a
real solution x exists for the set of constraints in 7, and if it does, returns true.
If not, then we can state that the Boolean abstraction does not hold for the real
constraints. Thus, we determine that the Boolean solution v and certain variations
of it (the variations are discussed in Section 6.3) are not feasible, and we adapt
our original formula accordingly to prevent these combinations from being chosen
again.

Algorithm 5 Satisfy (Lazy SMT method adapted from [2])
Inputs: ¢
¢’ = BooleanAbstraction(¢)
while true do
(sat,v) <= SAT Solver(¢’)
if sat = false then
return (sat,v < 0)
end if
7 < CreateConstraints(v, ¢)
sat <— ConstraintSolver(r)
if sat = true then
return (sat,v)
end if
¢ < ¢' N Conflicts(v)
end while
Output: sat,v

13

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

6.1. Integration of ODEs

The Lazy SMT solver is required to address CNF formulas with ODE problems as
literals. For example, from Algorithm 2 we can have CNF formulas of the form,

AT = ODE(f,, D dty) A ..

where f, is the vector field of a dynamical location, z(*) is some initial state, and dtg
is some time interval. There may be several such literals within the CNF formula,
with different vector fields, initial conditions and time intervals. The exact solution
for such ODEs can be a difficult problem. Therefore, we include a numerical inte-
gration component to the Lazy SMT solver as a pragmatic expedient to resolving
these literals.

6.2. Constraint solutions with maximal feasible set

The constraint solver (ConstraintSolver(r)) in Algorithm 5 attempts to find a
feasible solution x to the set of constraints in 7. This is an example of a feasibility
problem, and can be solved using standard optimisation methods by posing the
problem in the following way:

&1 (l’) o 07
0

min 0, s.t. ca(x) 00,

However, as it will be discussed in the following section, it is advantageous to estab-
lish not only whether it is feasible or infeasible, but also the maximal feasible set.
That is, what is the most number of possible constraints that can be simultaneously
satisfied. This allows us to consider more sophisticated methods of conflict analysis
for when the solution is infeasible, and reduce significantly the size of the problem.

The maximal feasible set can be determined by posing the problem above in the
following amended form [3, 4],

al ci(z) —s;00
min Zsi, st " 5 >6 " i=1,...,N.

(2
When the above problem is infeasible, the optimal point x will satisfy the largest
possible number of constraints, and by complement, violate the smallest number
of constraints. Thus, we are able to not only establish the feasibility of the set of
constraints, but also, the largest possible subset of constraints, or maximal feasible
set, when the problem is deemed infeasible.

6.3. Conflicting constraints

Algorithm 5 of the Lazy SMT method has a learning component in the sense that
each logical combination of literals v that is found infeasible — because no set of
real variables satisfies the constraints — is appended to the formula ¢, so that this
combination is never repeated in the search for a solution. In the simplest case, the

14

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

conflict function appends the formula ¢ each time with the unsuccesful v,
¢ — ¢ AN

This approach is inefficient and does not take account of the information that we
have at hand. We discussed in the previous section how, by posing the minimisation
problem in a certain way, we can maximise the feasible set or minimise the infeasible
set. Thus, we can use a more elegant approach which maximises the information re-
turned to the algorithm, and by consequence reduces the search space for a solution
to the formula.

Designate It.qs as the set of indices of all literals in v which are feasible, and
Iipfeas as its complement. We know that, if all the constraints with index i € Ifeqs
are true, then all of the constraints in I, f.qs must not be satisfiable. This is only
because If.,s contains the indices of the maximal feasible set. If any constraint
i € Iinfeas wWere satisfiable, then by definition [t.,s would not be maximal. The
following algorithm incorporates this observation:

for all i € I;;,feqs do

¢ = &' N NVvjeronim. ViV Vi)
end for

where v; is the " literal in v. For example, consider the formula,
¢ =a NbAcAd.

We find that ¢ and b are feasible and ¢ and d are not. We thus append our formula
with the following:

¢ & N(—ma Vb V-e)d @ A(ma Vb Vd).

We can further refine the information returned by the conflict function be consid-
ering the dependencies between the infeasible and feasible literals. Designate C,, as
the set of all literals in v which share at least one real variable in their constraint
functions with v;. For instance, if v1 is the constraint x1 + z9 + x3 <= 0, then 14
consists of the real variables x1, x9, x3, which we express as vi(x1, x2,x3). Cy, is the
set of all literals in v which contains the variables x1, x2, x3. This could be,

CV1(JJ1,LB2,ZL‘3) = {1/2(£L‘1,), V3($1, ...1'3), I/lo(..., T,), } .

Designate I¢, as the indices of all the literals in C,, Then, we can modify the above
algorithm in the following way:
for all i € I;;,feqs do
ICVi — {j : VI/]' S Cl,l}
¢ &' NVyjer,, iV 1)
end for '

This produces much shorter clauses than the previous algorithm, and thus reduces
the difficulty of the problem.

15

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

6.4. Convex and concave constraints

The constraints which appear in the clauses of the formula are not restricted to be
convex. In the case of our case study in the next section, both convex and concave
constraint surfaces appear regularly in the formulas the Lazy SMT solver is required
to solve. This represents a problem. If the Lazy SMT solver returns that the formula
is infeasible, how are we to know that this truly is the case? It is possible that the
minimisation may have become trapped in a local but infeasible minimum, where
a feasible minimum also exists. In which case, our determination of infeasibility is
dependent on the initial conditions and the result is unsound. Global optimisation
methods are often statistically based, and thus can only assert probable infeasibility.

To solve this problem, we are fortunate in the definition of our MRB hybrid au-
tomaton. In Section 2 of the main paper where we described the mechanical prop-
erties of the systems treated, we imposed the restriction that the contact surfaces
are convex. Consequently, as the constraint surfaces in our formula are derived from
these contact surfaces, we limit the types of constraint surfaces to either a convex
surface or a concave surface — not both in different regions.

For convex surfaces, infeasibility can be known, and the result is sound. For con-
cave surfaces, it follows that the minimal points are on the edge of the allowable
range of the variables in our minimisation problem. Thus, we in effect know how
many local minima exist, and approximately where they are, and can cycle through
each one by choosing appropriate initial conditions until one becomes feasible. If
none are feasible, then we can return the result infeasible — with the minimum
number of infeasible constraints — which we now know to be sound.

7. Implementation

DyverseBMC is implemented in Matlab (Mathsworks Inc, USA). Boolean satisfi-
ability problems are solved using Matlab’s on-board SAT solver. Numerical inte-
gration of ordinary differential equation problems (i.e. z(t1) = ODE(f,, %, T) in
algorithm 2) is performed by Matlab’s ode45 function. Optimisation problems are
solved using the NAG toolbox nag_opt_nlp2_solve function for minimising arbitrary
smooth objective functions subject to smooth linear or nonlinear constraints [5].
The programs that form DyverseBMC and the input
files for the examples used in this paper are available at
http://staff.cs.manchester.ac.uk/ navarroe/research/dyverse/DyverseRBT_BMC.zip.

8. Limitations

One of the most significant limitations of this approach is the need to use numerical
integration in the Lazy-SMT solver to compute ODE functions — that is, the ODE
functions added to the CNF formula by algorithm 2. The use of numerical inte-
gration forces us to discretise the continuous trajectories into smaller time steps,
hidden from us by the ODE solver, to compute each successive step in the procedure
outlined in Algorithm 2.

This has two direct consequences. Firstly, it introduces an integration error to our
trajectories. This is already a well-established problem in the numerical simulation
of rigid-body systems. It leaves us with some doubt about the exact position within

16

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

the state-space of each time-step. This integration-error increases as our trajectories
grow in time.

The problem becomes particularly significant where a trajectory runs close to
violating the safety property. It is possible for instance, that a trajectory will only
appear to maintain the property because of the integration-error, whereas if the
error was suppressed, it would be found to violate the property. The opposite could
also be true: an otherwise safe trajectory could be found to contravene the safety
property due to the integration error. A similar argument can be applied for the
domain or guard sets. A discrete evolution of the system could be missed because
the integration error prevents it from entering a guard set, and vice versa. Our
certainty is challenged, and the longer the time interval over which our trajectory
evolves, the less certain we become.

The heuristic solution to this problem is to combine the computational demands
of using higher-order numerical integrators with a suitably conservative over-bound
on the safety property that is larger than the upper-bound of the possible integration
error. We know the integration error has an upper-bound as we are only considering
trajectories over finite time intervals — we are using bounded model checking. In this
case, we can at least eliminate the possibility of an unsafe system being declared
safe, even if we are unsure of the result.

The second problem is caused by the need to provide a minimum time-step interval
in Algorithm 2. It is difficult to decide how coarse this minimum time step can be.
Too fine will add to the computational burden of the problem. On the other hand,
too coarse can cause other problems. Consider the case where the unsafe region,
defined by the complement of the safety property in the state-space, contains a
thin strip or appendage. If the minimum step size is too coarse, the discretised
trajectory may result in steps on either side of the region but not in the region.
The consequence is that that the invasion of the unsafe region — and thus violation
of the safety property — will not be registered. A similar occurrence may happen
with a guard set. If the trajectory skirts the guard set such that it enters and then
exits the guard set over the period of a single time step, then the entering of the
guard set will not be registered. This will result in a missed discrete transition of
the hybrid automaton.

The composition of the complete hybrid automaton prior to the start of the process
throws an additional potential problem. Rigid-body problems can contain a large
number of possible contact-combinations. This is true even with relatively small
rigid-body examples with only a few entities, since each contact-combination merits
its own set of locations — each representing the different possible friction and impact
states at each contact point — the total number of locations and transitions. This
combinatorial explosion means that the size of the hybrid automaton can become
substantial even in relatively small models.

Finally, we must consider the complexity of the bounded model checking method.
As already described, the method works by building mixed Boolean/arithmetic for-
mulas in CNF formulas which are then solved by the Lazy SMT solver. The formulas
broadly correspond to sets of trajectories across the state-space, for instance, a set
of trajectories entering a certain guard set will satisfy the corresponding formulas
for that guard set. The longer the length of a formula, in terms of the number of
clauses and literals, the more difficult it is to find a solution with the consequent
longer solving times.

The complexity of solving the formula while exploring dynamical locations (i.e.
the procedure outlined in Algorithm 2) increases linearly with the length (in time)

17

August

16,

2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

of the trajectories. The number of clauses in the formula does not increase overall
while exploring these locations. The only increase in complexity is in the numerical
integration of ODEs over longer time intervals. However, the number of clauses in
the formula increases significantly when the trajectories include location transitions,
particularly transitions to computation nodes. The computation nodes add at least
six additional clauses for each entity-to-entity contact and several additional clauses
for the computation node guard and domain sets, safety sets, exit conditions, etc.
Location transitions also add new clauses to constrain the trajectory hits (or is close
to) the boundary of the guard sets. This process is shown in Section 4 and Algorithm
3. This function also adds a new variable, in the form of an elastic time-step, to
solve when performing constraint satisfaction in the Lazy SMT solver. This further
adds the difficulty of the problem. The increase in number of clauses, and inclusion
of new variables makes obtaining satisfiability more difficult and implies that the
method is best suited to problems with only a small number of location transitions.

9. A multiple contact problem

We will explore the limitations of DyverseBMC in an example with multiple con-
tacts. Consider an example with three balls spaced as shown in Figure 4. Balls 2 and
3 are attached to the origin by a spring of stiffness k and start off with zero velocity.
Ball 1 is in free motion with a velocity of —3 m/sec, that is, it is moving towards
the origin. There is no gravity acting on the balls. When released, balls 2 and 3
accelerate towards the centre, while ball 1 moves towards the centre at constant
velocity. A multi-impact situation occurs with contact between ball 1 and ball 2,
and a second contact between ball 1 and ball 3. We choose a coefficient of restitution
of 0.8 for this model. For each ball 7, with ¢ = 1,2, 3, we consider the state vector
x; = (4, i, 2i, Bi,'yi)T, where x;, y; and z; are positions along their respective
axes, and «;, 5; and ~y; are rotations about the x, y and z axes respectively.

We wish to prove that, for spring stiffness k& = [1, 1.5], ball 1 will not gain energy.
We determine a gain in energy by observing whether the absolute velocity of ball 1
after impact is greater than before the impact. We can pose the problem formally
as,

gi(t) >3, (k€ [1,1.5)),V ({x1(0),x2(0), x3(0), %1(0), %2(0), %3(0)} € I),
Y (t € [0,0.75)),

where t is time in seconds, 71 is the velocity of ball 1 in the y-direction, I a set of
initial conditions, and the dot denotes derivative with respect to time.

The DyverseRBT tool is used to construct the MRB hybrid automaton for the
model and DyverseBMC used to find a counterexample.

First the location where none of the balls are in contact is explored. The process
starts by searching over a small time interval, then progressively lengthens the time
interval until an event (guard crossing, for example) is triggered. The processing time
increases linearly as the time-interval length increases, proportional to the number
of discrete steps in the numerical ODE solver. A set of trajectories are found which
enter the guard set associated with the edge to an impact node representing a two
contact situation. The model checker then explores the impact node, adding new
Lagrange multiplier terms until a convergent solution is found. The guard set for the
impact node is checked and resets are applied. All trajectories are found to return

18

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

3 m/sec 2.66m

“15m 1.5m

Figure 4. Initial conditions for the three ball problem of Section 9.

k

to the free-location, which is then explored as before.

The formula for exploring the first dynamical location contains around five clauses
with three clauses containing more than one literal. The complexity dramatically
increases on a transition. The root formula, which constrains trajectories to the
boundary of the guard set, adds five clauses to the formula, of which three have
more than one literal. Exploring the computation node adds 22 clauses per loop
iteration, 16 with more than two literals. If it does not converge then a second loop
iteration occurs adding a further 22 clauses, and so on. The result is a significantly
more difficult formula for the Lazy SMT to solve.

The analysis of this system took many hours to complete despite the relative trivi-
ality of the system, with almost all of this time caused by trying to find trajectories
after impact. The length of time involved in finding a counterexample using the
approach outlined herein suggests that the DyverseBMC tool in its current form is
only suitable for limited multi-contact problems.

References

[1] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure, Journal
on Satisfiability, Boolean Modeling and Computation 1 (2007), pp. 209-236.

[2] A. Bauer, M. Leucker, C. Schallhart, and M. Tautschnig, Don’t care in SMT: building
flexible yet efficient abstraction/refinement solvers, International Journal on Software
Tools for Technology Transfer 12 (2010), pp. 23-37.

[3] P. Nuzzo, A. Puggelli, S. Seshia, and A. Sangiovanni-Vincentelli, CalCS: SMT Solving
for Non-linear Convexr Constraints, in Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, 2010, pp. 71—
80.

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New
York, USA, 2004.

[6] The NAG Library, The Numerical Algorithms Group (NAG), Oxzford, United Kingdom,
www.nag.com (2013).

[6] R. Sebastiani, Lazy satisfiability modulo theories, Journal on Satisfiability, Boolean Mod-
eling and Computation 3 (2007), pp. 141-224.

[7] C. Studer, Numerics of Unilateral Contacts and Friction, Springer-Verlag Heidelberg,
2009.

19

August

16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

[8] C. Studer and C. Glocker, Solving normal cone inclusion problems in contact mechanics
by iterative methods, Journal of System Design and Dynamics 1 (2007), pp. 458-467.

Appendix A. Computation of new contact forces

We briefly review how to compute new contact forces using an iterative Gauss-Seidel
relaxation method with proximal point projection, termed the SORPROX method
[7, 8]. We will not show the derivation of this method, considering only how to
implement it using the notation applied in this paper. The interested reader should
consult the reference [7] for the derivation of this procedure.

Consider a system of multiple rigid bodies with P points of contact between
them. Designate j as the index of the contact, and ®y ;, 7 ; as new estimates of
the normal and tangential contact forces (or impulses) respectively, at contact j.
The remaining notation in this appendix follows the conventions already established
in Sections 2 and 3 of the main paper. By direct comparison with the SORPROX
method, we can derive the following for impact (impulse) and contact computation
nodes:

For an impact computation node 7, (impact situation), the elements ®y ;7 ; are:

j—1] Ny,)
(I)NJ' = —A;jl Z A],nAg\Z])’n + Z Aj,n)\g\l[;})
n=1

n=j+1
Ny
i—1 .
+ > Bj,nA%n)—(lJrGN,j)gN,j ; (A1)
n=1,n#j
j-1 Ny
_) 1—1
o7, :=-C;] chm/\%)ﬁr > Cj,n/\gz,n)
n=1 n=j+1
Ny)
+ > Bn,jA%),n—(lJreT,j)QT,j ; (A2)
n=1,n#j

where the superscript (i) indicates the iteration, i.e. the i’® iteration, and A, B,
and C are obtained from,

A B _ Wﬁkafle’k W%JCM*lWT’k
B" C)\ W, M "Wy, W[, M 'Wrg;)’

and,

WNk = (...,WN’J',), WT,k = (, WTJ,), V] S Ik.

20

August 16, 2017 Mathematical and Computer Modelling of Dynamical Systems
MCMDS navarro'otoole'supplemental material

For a contact computation node C, (sustained contact situation), ®x ;, &7 ; are,

Jj—1] Ny,)
(I>N,j = —A;]l ZAjm)\g\Z{nl) + Z Aj,n)‘g\lf)ﬂ
n=1

n=j+1
Z B] n)\ G-1) + g.N,j 3 (A3)
n=1,n#j
Nk .
(I)TJ = Z CJ n)\TTL Z CLnA%)n
n=j+1
Ny,)
ST B A, i |- (A4)
n=1,n#j

Note that we assume here that j is incremented from 1 to P, and that the normal
forces are computed before the tangential ones.

The contact forces and impulses must be part of the feasible set implied by the
complementarity conditions defined in Section 2. A proximal point projection func-
tion is used to enforce this. The function returns the closest point in the feasible
set and assigns it to our current iteration of the contact forces. Using the specific
contact laws in this paper, we have:

@ . | ®ng; if ®n; >0,

ANy = { 0 if ¥y, <O0. (A3)
(i+1) . | PNy if Pn,; >0,

Arj o= { 0 if ®n,;<O0. (A6)

Equations (A1), (A5) and (A6) for an impact computation node, or (A3), (A5)
and (A6) for a contact computation node, are iterated until the forces converge:

](\;)] - f](;;l)‘ < tol and Hf:(r (Z 2 H < tol, (AT)

for all P contacts.

21

