This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

setwd("/Users/Carly/Documents/LipsLab/Gabe_project/")
#setwd("/Volumes/Carly/Documents/LipsLab/Gabe_project/")

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.4
library(lme4)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.2.4
library(gplots)
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
library(lsmeans)
## Loading required package: estimability
library(car)
library(plyr)
library(pvclust)

Bd_scores <- read.csv("Final_plate_reads/Inhibition_scores_final.csv")

Bd_scores_samples <- Bd_scores[Bd_scores$Bacteria %in% c("B1", "B2", "B3", "B4", "B5"),]

str(Bd_scores_samples)
## 'data.frame':    867 obs. of  16 variables:
##  $ OD                      : num  0.00025 -0.00075 -0.00075 -0.00075 0.00225 0.00625 0.00825 -0.00075 -0.00175 -0.00075 ...
##  $ Isolate                 : Factor w/ 6 levels "Bsal","JEL404",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ Genotype                : Factor w/ 6 levels "BdBrazil-JEL649",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Bacteria                : Factor w/ 8 levels "B1","B2","B3",..: 4 4 4 4 5 5 5 2 2 2 ...
##  $ Temp                    : int  12 12 12 12 12 12 12 12 12 12 ...
##  $ Incubator               : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Plate                   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Column                  : int  1 1 1 1 1 1 1 2 2 2 ...
##  $ Row                     : Factor w/ 8 levels "A","B","C","D",..: 1 2 3 4 5 6 8 2 3 4 ...
##  $ Day                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ T_OD                    : num  0.00025 -0.00075 -0.00075 -0.00075 0.00225 ...
##  $ Well                    : Factor w/ 96 levels "A1","A10","A11",..: 1 13 25 37 49 61 85 17 29 41 ...
##  $ Inhibit_slope           : num  0.000331 0.000274 0.000275 0.000064 0.000322 ...
##  $ final_inhibition        : num  0.112 0.265 0.263 0.829 0.137 ...
##  $ R_squared               : num  0.69 0.653 0.868 0.658 0.959 ...
##  $ final_inhibition_percent: num  11.2 26.5 26.3 82.9 13.7 ...
## Temp must be a factor in our analyses
Bd_scores_samples$Temp <- as.factor(Bd_scores_samples$Temp)

### This will be for making the heatmap later on, see code below for explanation
averages <- read.csv("stats_code/Final_code_from_Gabe/heatmap_averages_final.csv", header = T, row.names = 1)

Basic data exploration

ggplot(Bd_scores_samples, aes(x = Bacteria, y = final_inhibition_percent)) + geom_boxplot(aes(color = Isolate)) + facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) + scale_x_discrete(labels = c("Ac", "Ps1", "Ps2", "Ch", "St"))

BACTERIA #1, Acinetobacter

B1_Ac <- Bd_scores_samples[Bd_scores_samples$Bacteria == "B1",]

## ~normal
hist(B1_Ac$final_inhibition)

qqp((B1_Ac$final_inhibition), "norm")

## This is what we are analyzing
ggplot(B1_Ac, aes(x = Isolate, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## make sure temp is a factor, after subsetting
class(B1_Ac$Temp)
## [1] "factor"
## MODEL
## See if temperature treatment or Bd isolate affects Inhibition, while correcting for noise from Incubator or Plate
m1_Ac <- lmer(final_inhibition_percent ~ Temp*Genotype + (1 | Incubator/Plate), data = B1_Ac, REML = F)
summary(m1_Ac)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##    Data: B1_Ac
## 
##      AIC      BIC   logLik deviance df.resid 
##   1740.0   1787.3   -855.0   1710.0      158 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1839 -0.4808  0.0308  0.6239  2.2883 
## 
## Random effects:
##  Groups          Name        Variance Std.Dev.
##  Plate:Incubator (Intercept) 428.6    20.70   
##  Incubator       (Intercept)   0.0     0.00   
##  Residual                    978.1    31.27   
## Number of obs: 173, groups:  Plate:Incubator, 16; Incubator, 4
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                  -34.1871    14.6610  -2.332
## Temp18                        -0.9948    19.6863  -0.051
## GenotypeBdGPL1-JEL404         -2.5005    19.5763  -0.128
## GenotypeBdGPL1-JEL647        -17.9798    12.9968  -1.383
## GenotypeBdGPL2-JEL423        -32.4674    19.9422  -1.628
## GenotypeBdGPL2-SRS810        -45.9142    12.9968  -3.533
## GenotypeBsal                  79.8033    20.1454   3.961
## Temp18:GenotypeBdGPL1-JEL404 -39.9040    27.0936  -1.473
## Temp18:GenotypeBdGPL1-JEL647  -9.4755    17.1899  -0.551
## Temp18:GenotypeBdGPL2-JEL423  35.1410    27.1768   1.293
## Temp18:GenotypeBdGPL2-SRS810  21.7433    17.3200   1.255
## Temp18:GenotypeBsal            3.7862    27.5077   0.138
## 
## Correlation of Fixed Effects:
##                 (Intr) Temp18 GBGPL1-JEL4 GBGPL1-JEL6 GBGPL2-J GBGPL2-S
## Temp18          -0.745                                                 
## GBGPL1-JEL4     -0.749  0.558                                          
## GBGPL1-JEL6     -0.566  0.421  0.424                                   
## GBGPL2-JEL4     -0.735  0.548  0.825       0.416                       
## GBGPL2-SRS8     -0.566  0.421  0.424       0.638       0.416           
## GenotypeBsl     -0.728  0.542  0.817       0.412       0.801    0.412  
## T18:GBGPL1-JEL4  0.541 -0.727 -0.723      -0.306      -0.596   -0.306  
## T18:GBGPL1-JEL6  0.428 -0.512 -0.320      -0.756      -0.314   -0.482  
## T18:GBGPL2-J     0.539 -0.724 -0.605      -0.305      -0.734   -0.305  
## T18:GBGPL2-S     0.424 -0.508 -0.318      -0.479      -0.312   -0.750  
## Tmp18:GntyB      0.533 -0.716 -0.598      -0.301      -0.586   -0.301  
##                 GntypB T18:GBGPL1-JEL4 T18:GBGPL1-JEL6 T18:GBGPL2-J
## Temp18                                                             
## GBGPL1-JEL4                                                        
## GBGPL1-JEL6                                                        
## GBGPL2-JEL4                                                        
## GBGPL2-SRS8                                                        
## GenotypeBsl                                                        
## T18:GBGPL1-JEL4 -0.590                                             
## T18:GBGPL1-JEL6 -0.311  0.372                                      
## T18:GBGPL2-J    -0.587  0.817           0.371                      
## T18:GBGPL2-S    -0.309  0.369           0.582           0.368      
## Tmp18:GntyB     -0.732  0.807           0.366           0.804      
##                 T18:GBGPL2-S
## Temp18                      
## GBGPL1-JEL4                 
## GBGPL1-JEL6                 
## GBGPL2-JEL4                 
## GBGPL2-SRS8                 
## GenotypeBsl                 
## T18:GBGPL1-JEL4             
## T18:GBGPL1-JEL6             
## T18:GBGPL2-J                
## T18:GBGPL2-S                
## Tmp18:GntyB      0.364
## not skewed
plot(m1_Ac)

## helpful site for evaluating which way to test you model
## http://glmm.wikidot.com/faq

## Easiest to use AND intrepret
Anova(m1_Ac, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition_percent
##                  Chisq Df Pr(>Chisq)    
## Temp            0.0037  1  0.9513856    
## Genotype      202.7352  5  < 2.2e-16 ***
## Temp:Genotype  25.2654  5  0.0001238 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## model reduction also indicates interaction
m1_Ac_r <- lmer(final_inhibition_percent ~ Temp+Genotype + (1 | Incubator/Plate), data = B1_Ac, REML = F)

## The p-value is less than 0.05 so this suggests that there is a significant interaction
anova(m1_Ac, m1_Ac_r)
## Data: B1_Ac
## Models:
## m1_Ac_r: final_inhibition_percent ~ Temp + Genotype + (1 | Incubator/Plate)
## m1_Ac: final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## m1_Ac_r 10 1753.4 1785.0 -866.71   1733.4                             
## m1_Ac   15 1740.0 1787.3 -855.02   1710.0 23.376      5   0.000286 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## use lsmeans to look at what the interaction
p1_Ac <- lsmeans(m1_Ac, pairwise~Temp|Genotype, adjust = "tukey")
pairs(p1_Ac)
## Genotype = BdBrazil-JEL649:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18    0.9947926 22.00544 26.16   0.045  0.9643
## 
## Genotype = BdGPL1-JEL404:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18   40.8987575 20.96398 21.12   1.951  0.0645
## 
## Genotype = BdGPL1-JEL647:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18   10.4703107 20.70731 20.06   0.506  0.6186
## 
## Genotype = BdGPL2-JEL423:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18  -34.1462570 21.07348 21.67  -1.620  0.1196
## 
## Genotype = BdGPL2-SRS810:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18  -20.7484839 20.81783 20.56  -0.997  0.3305
## 
## Genotype = Bsal:
##  contrast    estimate       SE    df t.ratio p.value
##  12 - 18   -2.7914538 21.53128 23.83  -0.130  0.8979
p1_Ac_2 <- lsmeans(m1_Ac, pairwise~Genotype|Temp, adjust = "tukey")
pairs(p1_Ac_2)
## Temp = 12:
##  contrast                           estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404    2.500487 21.90091  37.20   0.114
##  BdBrazil-JEL649 - BdGPL1-JEL647   17.979820 13.40267 170.21   1.342
##  BdBrazil-JEL649 - BdGPL2-JEL423   32.467374 22.25032  39.84   1.459
##  BdBrazil-JEL649 - BdGPL2-SRS810   45.914186 13.40267 170.21   3.426
##  BdBrazil-JEL649 - Bsal           -79.803307 22.44480  41.23  -3.556
##  BdGPL1-JEL404 - BdGPL1-JEL647     15.479334 20.70731  29.52   0.748
##  BdGPL1-JEL404 - BdGPL2-JEL423     29.966888 12.00306 165.51   2.497
##  BdGPL1-JEL404 - BdGPL2-SRS810     43.413699 20.70731  29.52   2.097
##  BdGPL1-JEL404 - Bsal             -82.303794 12.36455 166.47  -6.656
##  BdGPL1-JEL647 - BdGPL2-JEL423     14.487554 21.07348  31.97   0.687
##  BdGPL1-JEL647 - BdGPL2-SRS810     27.934366 11.34789 165.31   2.462
##  BdGPL1-JEL647 - Bsal             -97.783127 21.28146  33.31  -4.595
##  BdGPL2-JEL423 - BdGPL2-SRS810     13.446812 21.07348  31.97   0.638
##  BdGPL2-JEL423 - Bsal            -112.270681 13.01327 166.96  -8.627
##  BdGPL2-SRS810 - Bsal            -125.717493 21.28146  33.31  -5.907
##  p.value
##   1.0000
##   0.7614
##   0.6913
##   0.0098
##   0.0116
##   0.9740
##   0.1311
##   0.3164
##   <.0001
##   0.9821
##   0.1418
##   0.0008
##   0.9872
##   <.0001
##   <.0001
## 
## Temp = 18:
##  contrast                           estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404   42.404452 21.07188  32.31   2.012
##  BdBrazil-JEL649 - BdGPL1-JEL647   27.455338 11.54833 165.45   2.377
##  BdBrazil-JEL649 - BdGPL2-JEL423   -2.673675 20.81783  30.64  -0.128
##  BdBrazil-JEL649 - BdGPL2-SRS810   24.170910 11.75489 165.66   2.056
##  BdBrazil-JEL649 - Bsal           -83.589554 21.07443  32.33  -3.966
##  BdGPL1-JEL404 - BdGPL1-JEL647    -14.949113 20.96398  31.58  -0.713
##  BdGPL1-JEL404 - BdGPL2-JEL423    -45.078127 11.80975 165.99  -3.817
##  BdGPL1-JEL404 - BdGPL2-SRS810    -18.233542 21.07443  32.33  -0.865
##  BdGPL1-JEL404 - Bsal            -125.994005 12.30347 167.08 -10.241
##  BdGPL1-JEL647 - BdGPL2-JEL423    -30.129014 20.70731  29.91  -1.455
##  BdGPL1-JEL647 - BdGPL2-SRS810     -3.284429 11.54833 165.45  -0.284
##  BdGPL1-JEL647 - Bsal            -111.044892 20.96398  31.58  -5.297
##  BdGPL2-JEL423 - BdGPL2-SRS810     26.844585 20.81783  30.64   1.289
##  BdGPL2-JEL423 - Bsal             -80.915878 11.80975 165.99  -6.852
##  BdGPL2-SRS810 - Bsal            -107.760463 21.07188  32.31  -5.114
##  p.value
##   0.3577
##   0.1703
##   1.0000
##   0.3156
##   0.0047
##   0.9789
##   0.0026
##   0.9521
##   <.0001
##   0.6942
##   0.9997
##   0.0001
##   0.7883
##   <.0001
##   0.0002
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
#### IF you don't have an interaction, but have an isolate effect
#p_x <- lsmeans(m_x, "Isolate", method = "pairwise", adjust = "tukey")
#pairs(p)

d <- lsmip(m1_Ac, Genotype ~ Temp, xlab="Temperature", ylab="Percent inhibition",cex = 3, ylim = c(-90,70),  lwd = 3)

BACTERIA #2, Pseudomonas sp. 1

B2_Ps1 <- Bd_scores_samples[Bd_scores_samples$Bacteria == "B2",]

## normal enough
hist(B2_Ps1$final_inhibition)

qqp((B2_Ps1$final_inhibition), "norm")

## This is what we are analyzing
ggplot(B2_Ps1, aes(x = Isolate, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## make sure temp is a factor, after subsetting
class(B2_Ps1$Temp)
## [1] "factor"
## MODEL 
m2_Ps1 <- lmer(final_inhibition_percent ~ Temp*Genotype + (1 | Incubator/Plate), data = B2_Ps1, REML = F)
summary(m2_Ps1)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##    Data: B2_Ps1
## 
##      AIC      BIC   logLik deviance df.resid 
##   1679.0   1726.9   -824.5   1649.0      166 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5482 -0.5161  0.0030  0.5251  1.9707 
## 
## Random effects:
##  Groups          Name        Variance Std.Dev.
##  Plate:Incubator (Intercept) 128.7    11.34   
##  Incubator       (Intercept)   0.0     0.00   
##  Residual                    467.6    21.62   
## Number of obs: 181, groups:  Plate:Incubator, 16; Incubator, 4
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                   122.997      9.082  13.543
## Temp18                        -21.491     12.566  -1.710
## GenotypeBdGPL1-JEL404         -86.267     11.995  -7.192
## GenotypeBdGPL1-JEL647         -81.155      8.919  -9.099
## GenotypeBdGPL2-JEL423        -112.445     11.995  -9.374
## GenotypeBdGPL2-SRS810         -93.602      8.919 -10.495
## GenotypeBsal                  -58.323     11.995  -4.862
## Temp18:GenotypeBdGPL1-JEL404  -14.958     16.754  -0.893
## Temp18:GenotypeBdGPL1-JEL647  -15.237     12.329  -1.236
## Temp18:GenotypeBdGPL2-JEL423   35.444     16.754   2.116
## Temp18:GenotypeBdGPL2-SRS810  -58.850     12.329  -4.773
## Temp18:GenotypeBsal             4.305     16.754   0.257
## 
## Correlation of Fixed Effects:
##                 (Intr) Temp18 GBGPL1-JEL4 GBGPL1-JEL6 GBGPL2-J GBGPL2-S
## Temp18          -0.723                                                 
## GBGPL1-JEL4     -0.757  0.547                                          
## GBGPL1-JEL6     -0.621  0.449  0.470                                   
## GBGPL2-JEL4     -0.757  0.547  0.797       0.470                       
## GBGPL2-SRS8     -0.621  0.449  0.470       0.633       0.470           
## GenotypeBsl     -0.757  0.547  0.797       0.470       0.797    0.470  
## T18:GBGPL1-JEL4  0.542 -0.750 -0.716      -0.337      -0.571   -0.337  
## T18:GBGPL1-JEL6  0.449 -0.604 -0.340      -0.723      -0.340   -0.458  
## T18:GBGPL2-J     0.542 -0.750 -0.571      -0.337      -0.716   -0.337  
## T18:GBGPL2-S     0.449 -0.604 -0.340      -0.458      -0.340   -0.723  
## Tmp18:GntyB      0.542 -0.750 -0.571      -0.337      -0.571   -0.337  
##                 GntypB T18:GBGPL1-JEL4 T18:GBGPL1-JEL6 T18:GBGPL2-J
## Temp18                                                             
## GBGPL1-JEL4                                                        
## GBGPL1-JEL6                                                        
## GBGPL2-JEL4                                                        
## GBGPL2-SRS8                                                        
## GenotypeBsl                                                        
## T18:GBGPL1-JEL4 -0.571                                             
## T18:GBGPL1-JEL6 -0.340  0.453                                      
## T18:GBGPL2-J    -0.571  0.792           0.453                      
## T18:GBGPL2-S    -0.340  0.453           0.615           0.453      
## Tmp18:GntyB     -0.716  0.792           0.453           0.792      
##                 T18:GBGPL2-S
## Temp18                      
## GBGPL1-JEL4                 
## GBGPL1-JEL6                 
## GBGPL2-JEL4                 
## GBGPL2-SRS8                 
## GenotypeBsl                 
## T18:GBGPL1-JEL4             
## T18:GBGPL1-JEL6             
## T18:GBGPL2-J                
## T18:GBGPL2-S                
## Tmp18:GntyB      0.453
# want random distribution of data pts
plot(m2_Ps1)

Anova(m2_Ps1, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition_percent
##                 Chisq Df Pr(>Chisq)    
## Temp           22.813  1  1.785e-06 ***
## Genotype      479.078  5  < 2.2e-16 ***
## Temp:Genotype  57.389  5  4.203e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

m2_Ps1_r <- lmer(final_inhibition_percent ~ Temp+Genotype + (1 | Incubator/Plate), data = B2_Ps1, REML = F)

anova(m2_Ps1, m2_Ps1_r)
## Data: B2_Ps1
## Models:
## m2_Ps1_r: final_inhibition_percent ~ Temp + Genotype + (1 | Incubator/Plate)
## m2_Ps1: final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## m2_Ps1_r 10 1718.5 1750.5 -849.25   1698.5                             
## m2_Ps1   15 1679.0 1726.9 -824.48   1649.0 49.528      5  1.731e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#p-value less than 0.05, suggesting there is a significant interaction


## use lsmeans to look at what the interaction
p2_Ps1 <- lsmeans(m2_Ps1, pairwise~Temp|Genotype, adjust = "tukey")
pairs(p2_Ps1)
## Genotype = BdBrazil-JEL649:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18   21.49059 13.88681 38.79   1.548  0.1299
## 
## Genotype = BdGPL1-JEL404:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18   36.44900 12.43315 25.36   2.932  0.0070
## 
## Genotype = BdGPL1-JEL647:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18   36.72744 12.43315 24.66   2.954  0.0068
## 
## Genotype = BdGPL2-JEL423:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18  -13.95330 12.43315 25.36  -1.122  0.2723
## 
## Genotype = BdGPL2-SRS810:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18   80.34032 12.43315 24.66   6.462  <.0001
## 
## Genotype = Bsal:
##  contrast  estimate       SE    df t.ratio p.value
##  12 - 18   17.18586 12.43315 25.36   1.382  0.1789
p2_Ps1_2 <- lsmeans(m2_Ps1, pairwise~Genotype|Temp, adjust = "tukey")
pairs(p2_Ps1_2)
## Temp = 12:
##  contrast                          estimate        SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404  86.266568 13.340777  48.55   6.466
##  BdBrazil-JEL649 - BdGPL1-JEL647  81.154537  9.206304 179.16   8.815
##  BdBrazil-JEL649 - BdGPL2-JEL423 112.444561 13.340777  48.55   8.429
##  BdBrazil-JEL649 - BdGPL2-SRS810  93.602177  9.206304 179.16  10.167
##  BdBrazil-JEL649 - Bsal           58.322635 13.340777  48.55   4.372
##  BdGPL1-JEL404 - BdGPL1-JEL647    -5.112031 12.433151  37.06  -0.411
##  BdGPL1-JEL404 - BdGPL2-JEL423    26.177993  7.833449 173.02   3.342
##  BdGPL1-JEL404 - BdGPL2-SRS810     7.335609 12.433151  37.06   0.590
##  BdGPL1-JEL404 - Bsal            -27.943933  7.833449 173.02  -3.567
##  BdGPL1-JEL647 - BdGPL2-JEL423    31.290024 12.433151  37.06   2.517
##  BdGPL1-JEL647 - BdGPL2-SRS810    12.447640  7.833449 173.02   1.589
##  BdGPL1-JEL647 - Bsal            -22.831902 12.433151  37.06  -1.836
##  BdGPL2-JEL423 - BdGPL2-SRS810   -18.842385 12.433151  37.06  -1.515
##  BdGPL2-JEL423 - Bsal            -54.121926  7.833449 173.02  -6.909
##  BdGPL2-SRS810 - Bsal            -35.279541 12.433151  37.06  -2.838
##  p.value
##   <.0001
##   <.0001
##   <.0001
##   <.0001
##   0.0009
##   0.9984
##   0.0129
##   0.9911
##   0.0061
##   0.1454
##   0.6069
##   0.4560
##   0.6568
##   <.0001
##   0.0734
## 
## Temp = 18:
##  contrast                          estimate        SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404 101.224978 13.017315  45.21   7.776
##  BdBrazil-JEL649 - BdGPL1-JEL647  96.391392  8.730991 174.17  11.040
##  BdBrazil-JEL649 - BdGPL2-JEL423  77.000668 13.017315  45.21   5.915
##  BdBrazil-JEL649 - BdGPL2-SRS810 152.451909  8.730991 174.17  17.461
##  BdBrazil-JEL649 - Bsal           54.017907 13.017315  45.21   4.150
##  BdGPL1-JEL404 - BdGPL1-JEL647    -4.833586 12.433151  37.21  -0.389
##  BdGPL1-JEL404 - BdGPL2-JEL423   -24.224309  7.833449 173.02  -3.092
##  BdGPL1-JEL404 - BdGPL2-SRS810    51.226932 12.433151  37.21   4.120
##  BdGPL1-JEL404 - Bsal            -47.207071  7.833449 173.02  -6.026
##  BdGPL1-JEL647 - BdGPL2-JEL423   -19.390724 12.433151  37.21  -1.560
##  BdGPL1-JEL647 - BdGPL2-SRS810    56.060517  7.833449 173.02   7.157
##  BdGPL1-JEL647 - Bsal            -42.373485 12.433151  37.21  -3.408
##  BdGPL2-JEL423 - BdGPL2-SRS810    75.451241 12.433151  37.21   6.069
##  BdGPL2-JEL423 - Bsal            -22.982761  7.833449 173.02  -2.934
##  BdGPL2-SRS810 - Bsal            -98.434002 12.433151  37.21  -7.917
##  p.value
##   <.0001
##   <.0001
##   <.0001
##   <.0001
##   0.0019
##   0.9988
##   0.0276
##   0.0026
##   <.0001
##   0.6292
##   <.0001
##   0.0183
##   <.0001
##   0.0434
##   <.0001
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
lsmip(m2_Ps1, Genotype ~ Temp, xlab="Temperature", ylab="Percent inhibition",cex = 3, ylim = c(-120, 130),  lwd = 3)

BACTERIA #4, Chryseobacterium sp.

B4_Ch <- Bd_scores_samples[Bd_scores_samples$Bacteria == "B4",]

## normal 
hist(B4_Ch$final_inhibition)

qqp((B4_Ch$final_inhibition), "norm")

## This is what we are analyzing
ggplot(B4_Ch, aes(x = Isolate, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## make sure temp is a factor, after subsetting
class(B4_Ch$Temp)
## [1] "factor"
## MODEL
m4_Ch <- lmer(final_inhibition_percent ~ Temp*Genotype + (1 | Incubator/Plate), data = B4_Ch, REML = F)
summary(m4_Ch)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##    Data: B4_Ch
## 
##      AIC      BIC   logLik deviance df.resid 
##   1784.2   1832.7   -877.1   1754.2      172 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5174 -0.5491  0.0328  0.5997  2.3110 
## 
## Random effects:
##  Groups          Name        Variance Std.Dev.
##  Plate:Incubator (Intercept) 452.8    21.28   
##  Incubator       (Intercept)   0.0     0.00   
##  Residual                    568.8    23.85   
## Number of obs: 187, groups:  Plate:Incubator, 16; Incubator, 4
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                    48.030     13.050   3.681
## Temp18                         -5.306     17.862  -0.297
## GenotypeBdGPL1-JEL404         -43.875     17.862  -2.456
## GenotypeBdGPL1-JEL647         -80.530      9.625  -8.367
## GenotypeBdGPL2-JEL423        -135.351     17.862  -7.578
## GenotypeBdGPL2-SRS810        -132.131      9.625 -13.728
## GenotypeBsal                   23.269     17.862   1.303
## Temp18:GenotypeBdGPL1-JEL404  -54.916     24.831  -2.212
## Temp18:GenotypeBdGPL1-JEL647   42.712     12.796   3.338
## Temp18:GenotypeBdGPL2-JEL423   56.828     24.831   2.289
## Temp18:GenotypeBdGPL2-SRS810  -19.728     12.796  -1.542
## Temp18:GenotypeBsal           -22.792     24.831  -0.918
## 
## Correlation of Fixed Effects:
##                 (Intr) Temp18 GBGPL1-JEL4 GBGPL1-JEL6 GBGPL2-J GBGPL2-S
## Temp18          -0.731                                                 
## GBGPL1-JEL4     -0.731  0.534                                          
## GBGPL1-JEL6     -0.454  0.332  0.332                                   
## GBGPL2-JEL4     -0.731  0.534  0.889       0.332                       
## GBGPL2-SRS8     -0.454  0.332  0.332       0.616       0.332           
## GenotypeBsl     -0.731  0.534  0.889       0.332       0.889    0.332  
## T18:GBGPL1-JEL4  0.526 -0.719 -0.719      -0.239      -0.639   -0.239  
## T18:GBGPL1-JEL6  0.342 -0.405 -0.250      -0.752      -0.250   -0.463  
## T18:GBGPL2-J     0.526 -0.719 -0.639      -0.239      -0.719   -0.239  
## T18:GBGPL2-S     0.342 -0.405 -0.250      -0.463      -0.250   -0.752  
## Tmp18:GntyB      0.526 -0.719 -0.639      -0.239      -0.639   -0.239  
##                 GntypB T18:GBGPL1-JEL4 T18:GBGPL1-JEL6 T18:GBGPL2-J
## Temp18                                                             
## GBGPL1-JEL4                                                        
## GBGPL1-JEL6                                                        
## GBGPL2-JEL4                                                        
## GBGPL2-SRS8                                                        
## GenotypeBsl                                                        
## T18:GBGPL1-JEL4 -0.639                                             
## T18:GBGPL1-JEL6 -0.250  0.292                                      
## T18:GBGPL2-J    -0.639  0.885           0.292                      
## T18:GBGPL2-S    -0.250  0.292           0.566           0.292      
## Tmp18:GntyB     -0.719  0.885           0.292           0.885      
##                 T18:GBGPL2-S
## Temp18                      
## GBGPL1-JEL4                 
## GBGPL1-JEL6                 
## GBGPL2-JEL4                 
## GBGPL2-SRS8                 
## GenotypeBsl                 
## T18:GBGPL1-JEL4             
## T18:GBGPL1-JEL6             
## T18:GBGPL2-J                
## T18:GBGPL2-S                
## Tmp18:GntyB      0.292
plot(m4_Ch)

Anova(m4_Ch, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition_percent
##                  Chisq Df Pr(>Chisq)    
## Temp            0.1733  1     0.6772    
## Genotype      932.8795  5     <2e-16 ***
## Temp:Genotype 122.0062  5     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

m4_Ch_r <- lmer(final_inhibition_percent ~ Temp+Genotype + (1 | Incubator/Plate), data = B4_Ch, REML = F)

anova(m4_Ch, m4_Ch_r)
## Data: B4_Ch
## Models:
## m4_Ch_r: final_inhibition_percent ~ Temp + Genotype + (1 | Incubator/Plate)
## m4_Ch: final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## m4_Ch_r 10 1866.4 1898.7 -923.19   1846.4                             
## m4_Ch   15 1784.2 1832.7 -877.10   1754.2 92.194      5  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## use lsmeans to look at what the interaction

p4_Ch <- lsmeans(m4_Ch, pairwise~Temp|Genotype, adjust = "tukey")
pairs(p4_Ch)
## Genotype = BdBrazil-JEL649:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18    5.306101 20.17808 19.14   0.263  0.7954
## 
## Genotype = BdGPL1-JEL404:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18   60.222052 19.59554 16.82   3.073  0.0070
## 
## Genotype = BdGPL1-JEL647:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18  -37.405649 19.59554 16.72  -1.909  0.0736
## 
## Genotype = BdGPL2-JEL423:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18  -51.521665 19.59554 16.82  -2.629  0.0177
## 
## Genotype = BdGPL2-SRS810:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18   25.034062 19.59554 16.72   1.278  0.2189
## 
## Genotype = Bsal:
##  contrast   estimate       SE    df t.ratio p.value
##  12 - 18   28.098247 19.59554 16.82   1.434  0.1699
p4_Ch_2 <- lsmeans(m4_Ch, pairwise~Genotype|Temp, adjust = "tukey")
pairs(p4_Ch_2)
## Temp = 12:
##  contrast                            estimate        SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404   43.8745490 20.178081  28.44   2.174
##  BdBrazil-JEL649 - BdGPL1-JEL647   80.5301049  9.886986 182.40   8.145
##  BdBrazil-JEL649 - BdGPL2-JEL423  135.3510636 20.178081  28.44   6.708
##  BdBrazil-JEL649 - BdGPL2-SRS810  132.1306039  9.886986 182.40  13.364
##  BdBrazil-JEL649 - Bsal           -23.2685031 20.178081  28.44  -1.153
##  BdGPL1-JEL404 - BdGPL1-JEL647     36.6555559 19.595536  24.94   1.871
##  BdGPL1-JEL404 - BdGPL2-JEL423     91.4765146  8.636121 179.35  10.592
##  BdGPL1-JEL404 - BdGPL2-SRS810     88.2560549 19.595536  24.94   4.504
##  BdGPL1-JEL404 - Bsal             -67.1430521  8.636121 179.35  -7.775
##  BdGPL1-JEL647 - BdGPL2-JEL423     54.8209587 19.595536  24.94   2.798
##  BdGPL1-JEL647 - BdGPL2-SRS810     51.6004990  8.636121 179.35   5.975
##  BdGPL1-JEL647 - Bsal            -103.7986080 19.595536  24.94  -5.297
##  BdGPL2-JEL423 - BdGPL2-SRS810     -3.2204598 19.595536  24.94  -0.164
##  BdGPL2-JEL423 - Bsal            -158.6195667  8.636121 179.35 -18.367
##  BdGPL2-SRS810 - Bsal            -155.3991069 19.595536  24.94  -7.930
##  p.value
##   0.2804
##   <.0001
##   <.0001
##   <.0001
##   0.8547
##   0.4421
##   <.0001
##   0.0017
##   <.0001
##   0.0911
##   <.0001
##   0.0002
##   1.0000
##   <.0001
##   <.0001
## 
## Temp = 18:
##  contrast                            estimate        SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404   98.7904995 19.595536  25.08   5.041
##  BdBrazil-JEL649 - BdGPL1-JEL647   37.8183541  8.636121 179.35   4.379
##  BdBrazil-JEL649 - BdGPL2-JEL423   78.5232973 19.595536  25.08   4.007
##  BdBrazil-JEL649 - BdGPL2-SRS810  151.8585649  8.636121 179.35  17.584
##  BdBrazil-JEL649 - Bsal            -0.4763574 19.595536  25.08  -0.024
##  BdGPL1-JEL404 - BdGPL1-JEL647    -60.9721454 19.595536  25.08  -3.112
##  BdGPL1-JEL404 - BdGPL2-JEL423    -20.2672022  8.636121 179.35  -2.347
##  BdGPL1-JEL404 - BdGPL2-SRS810     53.0680654 19.595536  25.08   2.708
##  BdGPL1-JEL404 - Bsal             -99.2668569  8.636121 179.35 -11.494
##  BdGPL1-JEL647 - BdGPL2-JEL423     40.7049432 19.595536  25.08   2.077
##  BdGPL1-JEL647 - BdGPL2-SRS810    114.0402108  8.636121 179.35  13.205
##  BdGPL1-JEL647 - Bsal             -38.2947115 19.595536  25.08  -1.954
##  BdGPL2-JEL423 - BdGPL2-SRS810     73.3352676 19.595536  25.08   3.742
##  BdGPL2-JEL423 - Bsal             -78.9996546  8.636121 179.35  -9.148
##  BdGPL2-SRS810 - Bsal            -152.3349222 19.595536  25.08  -7.774
##  p.value
##   0.0004
##   0.0003
##   0.0057
##   <.0001
##   1.0000
##   0.0468
##   0.1811
##   0.1088
##   <.0001
##   0.3304
##   <.0001
##   0.3948
##   0.0109
##   <.0001
##   <.0001
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
lsmip(m4_Ch, Genotype ~ Temp, xlab="Temperature", ylab="percent inhibition",cex = 3, ylim = c(-120,130),  lwd = 3)

BACTERIA #3, Pseudomonas sp. 2

B3_Ps2 <- Bd_scores_samples[Bd_scores_samples$Bacteria == "B3",]

## least normal, but all other bacteria were fine as is, so to keep consistent use data as is
hist((B3_Ps2$final_inhibition))

qqp((B3_Ps2$final_inhibition), "norm")

## This is what we are analyzing
ggplot(B3_Ps2, aes(x = Isolate, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## make sure temp is a factor, after subsetting
class(B3_Ps2$Temp)
## [1] "factor"
## MODEL
m3_Ps2 <- lmer(final_inhibition_percent ~ Temp*Genotype + (1 | Incubator/Plate), data = B3_Ps2, REML = F)
summary(m3_Ps2)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##    Data: B3_Ps2
## 
##      AIC      BIC   logLik deviance df.resid 
##   1217.9   1265.2   -594.0   1187.9      158 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.6487 -0.3921  0.0504  0.4697  3.1066 
## 
## Random effects:
##  Groups          Name        Variance Std.Dev.
##  Plate:Incubator (Intercept) 29.75    5.455   
##  Incubator       (Intercept)  0.00    0.000   
##  Residual                    46.44    6.815   
## Number of obs: 173, groups:  Plate:Incubator, 16; Incubator, 4
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                    58.137      3.428  16.958
## Temp18                         34.253      4.790   7.151
## GenotypeBdGPL1-JEL404          39.589      4.778   8.286
## GenotypeBdGPL1-JEL647           4.193      2.686   1.561
## GenotypeBdGPL2-JEL423          28.472      4.722   6.029
## GenotypeBdGPL2-SRS810          38.027      2.744  13.859
## GenotypeBsal                   33.843      4.722   7.167
## Temp18:GenotypeBdGPL1-JEL404  -39.068      6.660  -5.866
## Temp18:GenotypeBdGPL1-JEL647  -13.316      3.802  -3.502
## Temp18:GenotypeBdGPL2-JEL423  -26.772      6.621  -4.044
## Temp18:GenotypeBdGPL2-SRS810  -34.259      3.882  -8.825
## Temp18:GenotypeBsal           -33.917      6.621  -5.123
## 
## Correlation of Fixed Effects:
##                 (Intr) Temp18 GBGPL1-JEL4 GBGPL1-JEL6 GBGPL2-J GBGPL2-S
## Temp18          -0.716                                                 
## GBGPL1-JEL4     -0.718  0.514                                          
## GBGPL1-JEL6     -0.468  0.335  0.336                                   
## GBGPL2-JEL4     -0.726  0.520  0.850       0.340                       
## GBGPL2-SRS8     -0.452  0.324  0.324       0.577       0.328           
## GenotypeBsl     -0.726  0.520  0.850       0.340       0.860    0.328  
## T18:GBGPL1-JEL4  0.515 -0.719 -0.717      -0.241      -0.610   -0.233  
## T18:GBGPL1-JEL6  0.331 -0.446 -0.238      -0.707      -0.240   -0.408  
## T18:GBGPL2-J     0.518 -0.724 -0.606      -0.243      -0.713   -0.234  
## T18:GBGPL2-S     0.320 -0.434 -0.229      -0.408      -0.232   -0.707  
## Tmp18:GntyB      0.518 -0.724 -0.606      -0.243      -0.614   -0.234  
##                 GntypB T18:GBGPL1-JEL4 T18:GBGPL1-JEL6 T18:GBGPL2-J
## Temp18                                                             
## GBGPL1-JEL4                                                        
## GBGPL1-JEL6                                                        
## GBGPL2-JEL4                                                        
## GBGPL2-SRS8                                                        
## GenotypeBsl                                                        
## T18:GBGPL1-JEL4 -0.610                                             
## T18:GBGPL1-JEL6 -0.240  0.320                                      
## T18:GBGPL2-J    -0.614  0.857           0.322                      
## T18:GBGPL2-S    -0.232  0.312           0.555           0.314      
## Tmp18:GntyB     -0.713  0.857           0.322           0.863      
##                 T18:GBGPL2-S
## Temp18                      
## GBGPL1-JEL4                 
## GBGPL1-JEL6                 
## GBGPL2-JEL4                 
## GBGPL2-SRS8                 
## GenotypeBsl                 
## T18:GBGPL1-JEL4             
## T18:GBGPL1-JEL6             
## T18:GBGPL2-J                
## T18:GBGPL2-S                
## Tmp18:GntyB      0.314
plot(m3_Ps2)

Anova(m3_Ps2, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition_percent
##                 Chisq Df Pr(>Chisq)    
## Temp           10.436  1   0.001236 ** 
## Genotype      219.211  5  < 2.2e-16 ***
## Temp:Genotype 101.067  5  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

m3_Ps2_r <- lmer(final_inhibition_percent ~ Temp+Genotype + (1 | Incubator/Plate), data = B3_Ps2, REML = F)

anova(m3_Ps2, m3_Ps2_r)
## Data: B3_Ps2
## Models:
## m3_Ps2_r: final_inhibition_percent ~ Temp + Genotype + (1 | Incubator/Plate)
## m3_Ps2: final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## m3_Ps2_r 10 1287.5 1319.1 -633.76   1267.5                             
## m3_Ps2   15 1217.9 1265.2 -593.97   1187.9 79.586      5  1.025e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## use lsmeans to look at what the interaction
p3_Ps2 <- lsmeans(m3_Ps2, pairwise~Temp|Genotype, adjust = "tukey")
pairs(p3_Ps2)
## Genotype = BdBrazil-JEL649:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18  -34.253260568 5.387546 21.19  -6.358  <.0001
## 
## Genotype = BdGPL1-JEL404:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18    4.814246744 5.227136 18.89   0.921  0.3687
## 
## Genotype = BdGPL1-JEL647:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18  -20.936959714 5.202597 18.20  -4.024  0.0008
## 
## Genotype = BdGPL2-JEL423:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18   -7.481650655 5.173162 17.99  -1.446  0.1653
## 
## Genotype = BdGPL2-SRS810:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18    0.006083404 5.272429 19.39   0.001  0.9991
## 
## Genotype = Bsal:
##  contrast      estimate       SE    df t.ratio p.value
##  12 - 18   -0.336358372 5.173158 17.99  -0.065  0.9489
p3_Ps2_2 <- lsmeans(m3_Ps2, pairwise~Genotype|Temp, adjust = "tukey")
pairs(p3_Ps2_2)
## Temp = 12:
##  contrast                            estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404 -39.58938906 5.373739  31.09  -7.367
##  BdBrazil-JEL649 - BdGPL1-JEL647  -4.19251339 2.771020 169.61  -1.513
##  BdBrazil-JEL649 - BdGPL2-JEL423 -28.47171453 5.322487  29.78  -5.349
##  BdBrazil-JEL649 - BdGPL2-SRS810 -38.02720338 2.827075 168.52 -13.451
##  BdBrazil-JEL649 - Bsal          -33.84278309 5.321423  29.76  -6.360
##  BdGPL1-JEL404 - BdGPL1-JEL647    35.39687567 5.227136  27.69   6.772
##  BdGPL1-JEL404 - BdGPL2-JEL423    11.11767453 2.674105 166.26   4.158
##  BdGPL1-JEL404 - BdGPL2-SRS810     1.56218567 5.271022  28.79   0.296
##  BdGPL1-JEL404 - Bsal              5.74660597 2.673729 166.26   2.149
##  BdGPL1-JEL647 - BdGPL2-JEL423   -24.27920114 5.173162  26.40  -4.693
##  BdGPL1-JEL647 - BdGPL2-SRS810   -33.83468999 2.564791 165.66 -13.192
##  BdGPL1-JEL647 - Bsal            -29.65026969 5.173158  26.40  -5.732
##  BdGPL2-JEL423 - BdGPL2-SRS810    -9.55548885 5.217560  27.48  -1.831
##  BdGPL2-JEL423 - Bsal             -5.37106855 2.562023 165.72  -2.096
##  BdGPL2-SRS810 - Bsal              4.18442030 5.217506  27.48   0.802
##  p.value
##   <.0001
##   0.6564
##   0.0001
##   <.0001
##   <.0001
##   <.0001
##   0.0007
##   0.9997
##   0.2675
##   0.0009
##   <.0001
##   0.0001
##   0.4633
##   0.2943
##   0.9647
## 
## Temp = 18:
##  contrast                            estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404  -0.52188175 5.240629  28.03  -0.100
##  BdBrazil-JEL649 - BdGPL1-JEL647   9.12378746 2.768863 168.43   3.295
##  BdBrazil-JEL649 - BdGPL2-JEL423  -1.70010462 5.240629  28.03  -0.324
##  BdBrazil-JEL649 - BdGPL2-SRS810  -3.76785941 2.826839 168.64  -1.333
##  BdBrazil-JEL649 - Bsal            0.07411911 5.240629  28.03   0.014
##  BdGPL1-JEL404 - BdGPL1-JEL647     9.64566921 5.202597  27.18   1.854
##  BdGPL1-JEL404 - BdGPL2-JEL423    -1.17822287 2.473276 165.47  -0.476
##  BdGPL1-JEL404 - BdGPL2-SRS810    -3.24597767 5.228523  27.82  -0.621
##  BdGPL1-JEL404 - Bsal              0.59600086 2.473276 165.47   0.241
##  BdGPL1-JEL647 - BdGPL2-JEL423   -10.82389208 5.202597  27.18  -2.080
##  BdGPL1-JEL647 - BdGPL2-SRS810   -12.89164688 2.697811 165.58  -4.779
##  BdGPL1-JEL647 - Bsal             -9.04966835 5.202597  27.18  -1.739
##  BdGPL2-JEL423 - BdGPL2-SRS810    -2.06775479 5.228523  27.82  -0.395
##  BdGPL2-JEL423 - Bsal              1.77422373 2.473276 165.47   0.717
##  BdGPL2-SRS810 - Bsal              3.84197852 5.228523  27.82   0.735
##  p.value
##   1.0000
##   0.0150
##   0.9995
##   0.7663
##   1.0000
##   0.4502
##   0.9969
##   0.9885
##   0.9999
##   0.3266
##   0.0001
##   0.5191
##   0.9986
##   0.9796
##   0.9758
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
lsmip(m3_Ps2, Genotype ~ Temp, xlab="Temperature", ylab="Percent inhibition", cex = 3, ylim = c(55,105), lwd = 3)

BACTERIA #5, Stenotrophomonas sp.

B5_St <- Bd_scores_samples[Bd_scores_samples$Bacteria == "B5",]

## normal enough
hist(B5_St$final_inhibition)

qqp((B5_St$final_inhibition), "norm")

## This is what we are analyzing
ggplot(B5_St, aes(x = Isolate, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## make sure temp is a factor, after subsetting
class(B5_St$Temp)
## [1] "factor"
## MODEL
m5_St <- lmer(final_inhibition_percent ~ Temp*Genotype + (1 | Incubator/Plate), data = B5_St, REML = F)
summary(m5_St)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: 
## final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##    Data: B5_St
## 
##      AIC      BIC   logLik deviance df.resid 
##   1169.3   1214.8   -569.7   1139.3      138 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8560 -0.4115  0.0792  0.4232  2.4415 
## 
## Random effects:
##  Groups          Name        Variance Std.Dev.
##  Plate:Incubator (Intercept) 44.84    6.696   
##  Incubator       (Intercept)  0.00    0.000   
##  Residual                    83.18    9.120   
## Number of obs: 153, groups:  Plate:Incubator, 16; Incubator, 4
## 
## Fixed effects:
##                              Estimate Std. Error t value
## (Intercept)                   73.2163     4.6665  15.690
## Temp18                        27.0734     6.2092   4.360
## GenotypeBdGPL1-JEL404         27.0347     6.2093   4.354
## GenotypeBdGPL1-JEL647          0.5087     4.3324   0.117
## GenotypeBdGPL2-JEL423         15.3419     6.2848   2.441
## GenotypeBdGPL2-SRS810         24.6954     4.0450   6.105
## GenotypeBsal                  19.1339     6.1793   3.096
## Temp18:GenotypeBdGPL1-JEL404 -30.7496     8.6182  -3.568
## Temp18:GenotypeBdGPL1-JEL647  -4.4296     5.6092  -0.790
## Temp18:GenotypeBdGPL2-JEL423 -19.7257     8.5713  -2.301
## Temp18:GenotypeBdGPL2-SRS810 -23.6801     5.3332  -4.440
## Temp18:GenotypeBsal          -27.1122     8.5628  -3.166
## 
## Correlation of Fixed Effects:
##                 (Intr) Temp18 GBGPL1-JEL4 GBGPL1-JEL6 GBGPL2-J GBGPL2-S
## Temp18          -0.752                                                 
## GBGPL1-JEL4     -0.752  0.565                                          
## GBGPL1-JEL6     -0.487  0.366  0.366                                   
## GBGPL2-JEL4     -0.743  0.558  0.846       0.361                       
## GBGPL2-SRS8     -0.555  0.417  0.417       0.560       0.412           
## GenotypeBsl     -0.755  0.568  0.860       0.368       0.849    0.419  
## T18:GBGPL1-JEL4  0.541 -0.720 -0.720      -0.264      -0.610   -0.300  
## T18:GBGPL1-JEL6  0.376 -0.444 -0.283      -0.772      -0.279   -0.432  
## T18:GBGPL2-J     0.544 -0.724 -0.621      -0.265      -0.733   -0.302  
## T18:GBGPL2-S     0.421 -0.484 -0.316      -0.425      -0.312   -0.758  
## Tmp18:GntyB      0.545 -0.725 -0.620      -0.265      -0.613   -0.302  
##                 GntypB T18:GBGPL1-JEL4 T18:GBGPL1-JEL6 T18:GBGPL2-J
## Temp18                                                             
## GBGPL1-JEL4                                                        
## GBGPL1-JEL6                                                        
## GBGPL2-JEL4                                                        
## GBGPL2-SRS8                                                        
## GenotypeBsl                                                        
## T18:GBGPL1-JEL4 -0.619                                             
## T18:GBGPL1-JEL6 -0.284  0.320                                      
## T18:GBGPL2-J    -0.623  0.827           0.321                      
## T18:GBGPL2-S    -0.318  0.349           0.517           0.351      
## Tmp18:GntyB     -0.722  0.829           0.322           0.832      
##                 T18:GBGPL2-S
## Temp18                      
## GBGPL1-JEL4                 
## GBGPL1-JEL6                 
## GBGPL2-JEL4                 
## GBGPL2-SRS8                 
## GenotypeBsl                 
## T18:GBGPL1-JEL4             
## T18:GBGPL1-JEL6             
## T18:GBGPL2-J                
## T18:GBGPL2-S                
## Tmp18:GntyB      0.351
plot(m5_St)

Anova(m5_St, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition_percent
##                 Chisq Df Pr(>Chisq)    
## Temp           5.5081  1    0.01893 *  
## Genotype      40.5992  5  1.131e-07 ***
## Temp:Genotype 31.8633  5  6.323e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

m5_St_r <- lmer(final_inhibition_percent ~ Temp+Genotype + (1 | Incubator/Plate), data = B5_St, REML = F)

anova(m5_St, m5_St_r)
## Data: B5_St
## Models:
## m5_St_r: final_inhibition_percent ~ Temp + Genotype + (1 | Incubator/Plate)
## m5_St: final_inhibition_percent ~ Temp * Genotype + (1 | Incubator/Plate)
##         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## m5_St_r 10 1188.0 1218.3 -584.02   1168.0                             
## m5_St   15 1169.3 1214.8 -569.66   1139.3 28.708      5  2.646e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## use lsmeans to look at what the interaction
p5_St <- lsmeans(m5_St, pairwise~Temp|Genotype, adjust = "tukey")
pairs(p5_St)
## Genotype = BdBrazil-JEL649:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18  -27.07341681 6.980869 24.59  -3.878  0.0007
## 
## Genotype = BdGPL1-JEL404:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18    3.67620852 6.741920 21.83   0.545  0.5911
## 
## Genotype = BdGPL1-JEL647:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18  -22.64384258 7.009935 25.41  -3.230  0.0034
## 
## Genotype = BdGPL2-JEL423:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18   -7.34768898 6.677615 20.88  -1.100  0.2837
## 
## Genotype = BdGPL2-SRS810:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18   -3.39331422 6.680693 20.45  -0.508  0.6169
## 
## Genotype = Bsal:
##  contrast     estimate       SE    df t.ratio p.value
##  12 - 18    0.03882977 6.666744 20.72   0.006  0.9954
p5_St_2 <- lsmeans(m5_St, pairwise~Genotype|Temp, adjust = "tukey")
pairs(p5_St_2)
## Temp = 12:
##  contrast                           estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404 -27.0346801 6.980091  35.20  -3.873
##  BdBrazil-JEL649 - BdGPL1-JEL647  -0.5087322 4.470214 146.91  -0.114
##  BdBrazil-JEL649 - BdGPL2-JEL423 -15.3419148 7.051956  36.77  -2.176
##  BdBrazil-JEL649 - BdGPL2-SRS810 -24.6954401 4.194408 151.92  -5.888
##  BdBrazil-JEL649 - Bsal          -19.1338961 6.952405  34.59  -2.752
##  BdGPL1-JEL404 - BdGPL1-JEL647    26.5259480 6.896368  34.22   3.846
##  BdGPL1-JEL404 - BdGPL2-JEL423    11.6927653 3.568094 145.59   3.277
##  BdGPL1-JEL404 - BdGPL2-SRS810     2.3392401 6.602318  28.29   0.354
##  BdGPL1-JEL404 - Bsal              7.9007840 3.381520 145.53   2.336
##  BdGPL1-JEL647 - BdGPL2-JEL423   -14.8331826 6.969172  35.80  -2.128
##  BdGPL1-JEL647 - BdGPL2-SRS810   -24.1867079 4.065040 147.30  -5.950
##  BdGPL1-JEL647 - Bsal            -18.6251639 6.868050  33.61  -2.712
##  BdGPL2-JEL423 - BdGPL2-SRS810    -9.3535253 6.678377  29.79  -1.401
##  BdGPL2-JEL423 - Bsal             -3.7919813 3.527918 145.93  -1.075
##  BdGPL2-SRS810 - Bsal              5.5615440 6.572542  27.70   0.846
##  p.value
##   0.0055
##   1.0000
##   0.2734
##   <.0001
##   0.0904
##   0.0061
##   0.0162
##   0.9992
##   0.1864
##   0.2963
##   <.0001
##   0.0992
##   0.7264
##   0.8906
##   0.9559
## 
## Temp = 18:
##  contrast                           estimate       SE     df t.ratio
##  BdBrazil-JEL649 - BdGPL1-JEL404   3.7149452 6.741702  31.36   0.551
##  BdBrazil-JEL649 - BdGPL1-JEL647   3.9208421 3.674307 146.41   1.067
##  BdBrazil-JEL649 - BdGPL2-JEL423   4.3838130 6.601360  28.52   0.664
##  BdBrazil-JEL649 - BdGPL2-SRS810  -1.0153375 3.584545 146.12  -0.283
##  BdBrazil-JEL649 - Bsal            7.9783505 6.696433  30.38   1.191
##  BdGPL1-JEL404 - BdGPL1-JEL647     0.2058969 6.857425  33.82   0.030
##  BdGPL1-JEL404 - BdGPL2-JEL423     0.6688678 3.795111 145.63   0.176
##  BdGPL1-JEL404 - BdGPL2-SRS810    -4.7302827 6.817752  32.95  -0.694
##  BdGPL1-JEL404 - Bsal              4.2634053 3.927533 145.52   1.086
##  BdGPL1-JEL647 - BdGPL2-JEL423     0.4629710 6.719404  30.90   0.069
##  BdGPL1-JEL647 - BdGPL2-SRS810    -4.9361796 3.781514 145.87  -1.305
##  BdGPL1-JEL647 - Bsal              4.0575084 6.812825  32.81   0.596
##  BdGPL2-JEL423 - BdGPL2-SRS810    -5.3991505 6.679437  30.07  -0.808
##  BdGPL2-JEL423 - Bsal              3.5945375 3.708102 145.74   0.969
##  BdGPL2-SRS810 - Bsal              8.9936880 6.773431  31.96   1.328
##  p.value
##   0.9934
##   0.8936
##   0.9845
##   0.9997
##   0.8375
##   1.0000
##   1.0000
##   0.9814
##   0.8865
##   1.0000
##   0.7817
##   0.9906
##   0.9638
##   0.9269
##   0.7677
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
lsmip(m5_St, Genotype ~ Temp, xlab="Temperature", ylab="Percent inhibition", cex = 3, lwd = 3, ylim = c(55,105))

CLUSTER ANALYSIS

### generate table of average inhibition values

## Table of values
Inh_avg <- ddply(Bd_scores_samples, .(Bacteria, Temp, Genotype), summarize, N=length(Bacteria), mean=mean(final_inhibition_percent))

Inh_avg <- Inh_avg[,c(3,5)] 


## Probably better way to do this, but this works
df_Inh <- cbind(Inh_avg[1:6,1:2], Inh_avg[7:12,2], Inh_avg[13:18,2], Inh_avg[19:24,2], Inh_avg[25:30,2], Inh_avg[31:36,2], Inh_avg[37:42,2], Inh_avg[43:48,2], Inh_avg[49:54,2], Inh_avg[55:60,2])

rownames(df_Inh) <- df_Inh[,1]

df_Inh <- df_Inh[,-1]

dm_Inh <- as.matrix(df_Inh)


## Ward Hierarchical Clustering
#### make a distance matrix using euclidean distances
dist <- dist(dm_Inh, method = "euclidean") 
clust <- hclust(dist, method="ward.D2") 
plot(clust, hang = -1, las = 1, cex =0.8)


groups_Inh <- cutree(clust , k=2) 
##### cut tree into 2 clusters
#### draw dendogram with red borders around the 2 clusters 
rect.hclust(clust, k=2, border="red")

## Use pvclust to get p-values

dm_Inh_t <- t(dm_Inh)
fit_Inh <- pvclust(dm_Inh_t, method.hclust="ward.D2",method.dist="euclidean")
## Bootstrap (r = 0.5)... Done.
## Bootstrap (r = 0.6)... Done.
## Bootstrap (r = 0.7)... Done.
## Bootstrap (r = 0.8)... Done.
## Bootstrap (r = 0.9)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.1)... Done.
## Bootstrap (r = 1.2)... Done.
## Bootstrap (r = 1.3)... Done.
## Bootstrap (r = 1.4)... Done.
### Can read about this: http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/

plot(fit_Inh, las = 1, cex = 0.8, hang = -1)

## Want to get rid of info on 
plot(fit_Inh, las = 1, cex = 0.8, hang = -1, print.num = F, col.pv = c("red", "white")) # dendogram with p values
# add rectangles around groups highly supported by the data
pvrect(fit_Inh, alpha=.95, cex = 0.5)

## Also use k-means clustering

### Determine number of clusters
### 'Scree plot' indicates 2 clusters
wss_Inh <- (nrow(dm_Inh)-1)*sum(apply(dm_Inh,2,var))
for (i in 2:5) wss_Inh[i] <- sum(kmeans(dm_Inh, centers=i)$withinss)
plot(1:5, wss_Inh, type="b", xlab="Number of Clusters",
     ylab="Within groups sum of squares")

## Make 2 clusters, based on scree plot
## p-values also support 2 clusters
cl2_Inh <- kmeans(dm_Inh,2)

# append cluster assignment
dm_Inh <- data.frame(dm_Inh, cl2_Inh$cluster)

## Same groups k-means as ward's D
cbind(rownames(dm_Inh), dm_Inh[,11])
##      [,1]              [,2]
## [1,] "BdBrazil-JEL649" "1" 
## [2,] "BdGPL1-JEL404"   "2" 
## [3,] "BdGPL1-JEL647"   "2" 
## [4,] "BdGPL2-JEL423"   "2" 
## [5,] "BdGPL2-SRS810"   "2" 
## [6,] "Bsal"            "1"
groups_Inh
## BdBrazil-JEL649   BdGPL1-JEL404   BdGPL1-JEL647   BdGPL2-JEL423 
##               1               2               2               2 
##   BdGPL2-SRS810            Bsal 
##               2               1

Heatmap figure for clustering analysis

## I could probably make this file somehow with code, but just created and editted it in excel
### Used the df_Inh and table of values "S" to edit and make a table (averages) in Excel 

## Table of values
S <- ddply(Bd_scores_samples, .(Bacteria, Temp, Isolate), summarize, N=length(Bacteria), mean=mean(final_inhibition), sd = sd(final_inhibition), min = min(final_inhibition), max = max(final_inhibition), se = sd/sqrt(N))

S
##    Bacteria Temp Isolate  N         mean          sd         min
## 1        B1   12    Bsal 12  0.462266512 0.333258081 -0.23213605
## 2        B1   12  JEL404 16 -0.366876144 0.107116751 -0.56862794
## 3        B1   12  JEL423 13 -0.668362275 0.261885544 -1.06654635
## 4        B1   12  JEL647 16 -0.521669479 0.340568903 -1.17003623
## 5        B1   12  JEL649 10 -0.479361894 0.550638999 -1.35421622
## 6        B1   12  SRS810 16 -0.801013138 0.360875036 -1.36117345
## 7        B1   18    Bsal 14  0.529327061 0.246559881 -0.01209231
## 8        B1   18  JEL404 14 -0.752547075 0.717179267 -2.01291316
## 9        B1   18  JEL423 16 -0.325082451 0.204891349 -0.75530290
## 10       B1   18  JEL647 16 -0.626372586 0.407569816 -1.53035781
## 11       B1   18  JEL649 15 -0.355133576 0.342895277 -1.19436694
## 12       B1   18  SRS810 15 -0.605081357 0.482501425 -1.70840624
## 13       B2   12    Bsal 16  0.646748471 0.125131112  0.38718365
## 14       B2   12  JEL404 16  0.367309143 0.120612213  0.12419636
## 15       B2   12  JEL423 16  0.105529211 0.195713116 -0.20862548
## 16       B2   12  JEL647 16  0.418429455 0.123111136  0.14331911
## 17       B2   12  JEL649 10  1.191009851 0.041153825  1.11590367
## 18       B2   12  SRS810 16  0.293953057 0.486844443 -0.66310713
## 19       B2   18    Bsal 16  0.474889867 0.312026860 -0.02211940
## 20       B2   18  JEL404 16  0.002819161 0.385951277 -0.47408996
## 21       B2   18  JEL423 16  0.245062255 0.086862895  0.05687141
## 22       B2   18  JEL647 16  0.051155016 0.153830309 -0.23627132
## 23       B2   18  JEL649 11  1.037419765 0.049472270  0.97055741
## 24       B2   18  SRS810 16 -0.509450158 0.328739178 -1.00142614
## 25       B3   12    Bsal 15  0.919445769 0.025617280  0.86777329
## 26       B3   12  JEL404 13  0.978617096 0.009286975  0.95793354
## 27       B3   12  JEL423 15  0.865513642 0.052984939  0.74468994
## 28       B3   12  JEL647 16  0.623290613 0.141726077  0.33507788
## 29       B3   12  JEL649 12  0.570738918 0.265303802  0.05154906
## 30       B3   12  SRS810 14  0.950102629 0.033471155  0.90136180
## 31       B3   18    Bsal 16  0.923156893 0.055646342  0.81565317
## 32       B3   18  JEL404 16  0.929116902 0.047454505  0.85050552
## 33       B3   18  JEL423 16  0.940899130 0.025810534  0.88620144
## 34       B3   18  JEL647 14  0.831066193 0.070483296  0.69024560
## 35       B3   18  JEL649 13  0.920243164 0.042464258  0.86829670
## 36       B3   18  SRS810 13  0.962728940 0.042562426  0.92415790
## 37       B4   12    Bsal 16  0.712984175 0.187608188  0.28516271
## 38       B4   12  JEL404 16  0.041553654 0.343663270 -0.76309651
## 39       B4   12  JEL423 16 -0.873211492 0.393015093 -1.32837746
## 40       B4   12  JEL647 16 -0.325001905 0.239342030 -0.92564734
## 41       B4   12  JEL649 11  0.383283348 0.400558052 -0.24850070
## 42       B4   12  SRS810 16 -0.841006894 0.369221599 -1.54488753
## 43       B4   18    Bsal 16  0.432001705 0.399427634 -0.42206164
## 44       B4   18  JEL404 16 -0.560666864 0.409472024 -1.19111684
## 45       B4   18  JEL423 16 -0.357994842 0.223907817 -0.73201822
## 46       B4   18  JEL647 16  0.049054590 0.208708051 -0.37847433
## 47       B4   18  JEL649 16  0.427238131 0.283139331 -0.17033747
## 48       B4   18  SRS810 16 -1.091347518 0.393867201 -1.62173057
## 49       B5   12    Bsal 16  0.923501937 0.039615091  0.85767646
## 50       B5   12  JEL404 15  1.001616384 0.026403157  0.95196880
## 51       B5   12  JEL423 13  0.880035717 0.120928142  0.70467851
## 52       B5   12  JEL647  9  0.713813213 0.255678466  0.22542953
## 53       B5   12  JEL649  9  0.702203834 0.308306419  0.13705715
## 54       B5   12  SRS810 14  0.978031761 0.058439103  0.88425887
## 55       B5   18    Bsal 12  0.913668974 0.061687373  0.77299584
## 56       B5   18  JEL404 11  0.957219207 0.012622955  0.93999577
## 57       B5   18  JEL423 14  0.955011300 0.069456411  0.84644825
## 58       B5   18  JEL647 12  0.961006689 0.126092236  0.65752800
## 59       B5   18  JEL649 15  1.001971857 0.053779384  0.91837609
## 60       B5   18  SRS810 13  1.004896155 0.072449711  0.89731858
##             max          se
## 1   0.807493330 0.096203321
## 2  -0.132265486 0.026779188
## 3  -0.175488304 0.072633981
## 4  -0.022992630 0.085142226
## 5   0.607682173 0.174127340
## 6  -0.199670967 0.090218759
## 7   0.801475376 0.065895900
## 8  -0.085138434 0.191674221
## 9   0.000923426 0.051222837
## 10  0.101671921 0.101892454
## 11  0.259958012 0.088535180
## 12 -0.065145222 0.124581332
## 13  0.870763802 0.031282778
## 14  0.560654690 0.030153053
## 15  0.380960075 0.048928279
## 16  0.603960318 0.030777784
## 17  1.264446563 0.013013982
## 18  0.841587957 0.121711111
## 19  0.841600789 0.078006715
## 20  0.494790089 0.096487819
## 21  0.381427620 0.021715724
## 22  0.262395991 0.038457577
## 23  1.100353217 0.014916451
## 24  0.062483109 0.082184795
## 25  0.967895038 0.006614353
## 26  0.987429313 0.002575743
## 27  0.940550720 0.013680652
## 28  0.875528175 0.035431519
## 29  0.922672193 0.076586611
## 30  1.011637535 0.008945542
## 31  0.986067143 0.013911585
## 32  0.983286110 0.011863626
## 33  0.975639647 0.006452634
## 34  0.930075931 0.018837453
## 35  0.982588079 0.011777466
## 36  1.094017473 0.011804693
## 37  0.898369341 0.046902047
## 38  0.491454649 0.085915818
## 39 -0.192884153 0.098253773
## 40  0.016657359 0.059835508
## 41  0.914123197 0.120772797
## 42 -0.391517801 0.092305400
## 43  0.816951006 0.099856909
## 44 -0.079061500 0.102368006
## 45 -0.031962182 0.055976954
## 46  0.273325811 0.052177013
## 47  0.709067762 0.070784833
## 48 -0.485187864 0.098466800
## 49  0.985893178 0.009903773
## 50  1.029244822 0.006817266
## 51  1.092662550 0.033539432
## 52  1.092179253 0.085226155
## 53  1.091868005 0.102768806
## 54  1.052775754 0.015618507
## 55  0.985934964 0.017807611
## 56  0.979093981 0.003805964
## 57  1.030265622 0.018563007
## 58  1.075188263 0.036399693
## 59  1.069673808 0.013885777
## 60  1.125437531 0.020093934
#write.csv(S, "stats_code//inhition_values_Bac_Bd_temp_meanmaxmin.csv")

## We brought this in in the first lines of code, I can't knit the .Rmd file if I bring it in here
## averages <- read.csv("stats_code/Final_code_from_Gabe/heatmap_averages_final.csv", header = T, row.names = 1)


# creates a own color palette from green to red
my_palette <- colorRampPalette(c("green", "yellow", "orange", "red"))(n = 399)

# (optional) defines the color breaks manually for a "skewed" color transition
col_breaks = c(seq(-110,0,length=100),  # for green
               seq(0.1,30, length = 100), # for yellow
               seq(30.1,70,length=100),           # for orange
               seq(70.1,110,length=100))             # for red

avg_matrix <- data.matrix(averages)

## Error here when knitting, have to run code instead

distance <- dist(avg_matrix, method = "euclidean")
cluster <- hclust(distance, method = "ward.D2")

## Knitting the .Rmd gets upset at the margins on this figure, so will just have to run without making this figure
## This is the final figure for the heatmap in the publication
## heatmap.2(avg_matrix, Colv = F, Rowv = as.dendrogram(cluster), dendrogram = "row",  margins = c(8,13), col = my_palette, breaks = col_breaks, trace = "none", density.info="none", lhei = c(1,4), cexRow = 1, cexCol = 1, key.xlab = "Percent inhibition", key.title = "", keysize = 1.6)


## Put in au scores from the pvclust analysis above

#text(locator(1),"98 *", cex = 0.9)
#text(locator(1),"95 *", cex =0.9)
#text(locator(1),"81", cex = 0.7)
#text(locator(1),"64", cex = 0.7)

bacteria facultative???

## Have to compare the inhibition score of PC vs inhibition score of the sample

#Bd_scores <- read.csv("Final_plate_reads/Inhibition_scores_final.csv")

Bd_scores2 <- Bd_scores[Bd_scores$Bacteria %in% c("B1", "B2", "B3", "B4", "B5", "PC", "ND"),]

Bd_scores2$Temp <- as.factor(Bd_scores2$Temp)

ggplot(Bd_scores2, aes(x = Bacteria, y = final_inhibition_percent)) + geom_boxplot(aes(color = Genotype)) + facet_grid(.~Temp) + ylab("Percent inhibition") + scale_x_discrete(labels=c("Ac", "Ps1", "Ps2", "Chy", "Sten", "NDPC", "PC"))

ggplot(Bd_scores2, aes(x = Bacteria, y = final_inhibition_percent)) + geom_boxplot(aes(color = Temp)) + facet_grid(.~Genotype) + ylab("Percent inhibition") 

Bd_scores3 <- Bd_scores2[Bd_scores2$Temp == "12",]
ggplot(Bd_scores3, aes(x = Genotype, y = final_inhibition_percent)) + geom_boxplot(aes(color = Bacteria)) + facet_grid(.~Genotype, scales = "free_x") + ylab("Percent inhibition\n") + xlab("\nGenotype") + scale_color_discrete(labels=c("Ac", "Ps1", "Ps2", "Chy", "Sten", "NDPC", "PC"), guide = guide_legend(title = "Well type")) + theme(strip.text.x = element_blank())

Bd_scores4 <- Bd_scores2[Bd_scores2$Temp == "18",]

ggplot(Bd_scores4, aes(x = Genotype, y = final_inhibition_percent)) + geom_boxplot(aes(color = Bacteria)) + facet_grid(.~Genotype, scales = "free_x") + ylab("Percent inhibition\n") + xlab("\nGenotype") + scale_color_discrete(labels=c("Ac", "Ps1", "Ps2", "Chy", "Sten", "NDPC", "PC"), guide = guide_legend(title = "Well type")) + theme(strip.text.x = element_blank())

## Test each pathogen genotype
Bsal <- Bd_scores2[Bd_scores2$Isolate == "Bsal",]
J649 <- Bd_scores2[Bd_scores2$Isolate == "JEL649",]
J647 <- Bd_scores2[Bd_scores2$Isolate == "JEL647",]
SRS <- Bd_scores2[Bd_scores2$Isolate == "SRS810",]
J423 <- Bd_scores2[Bd_scores2$Isolate == "JEL423",]
J404 <- Bd_scores2[Bd_scores2$Isolate == "JEL404",]


## Bacteria factor is bacteria and pathogen wells -- bacteria 1-5, NDPC and PC, looking for bacteria effect. If bacteria is significant, it may be that one of the bacteria are different from the PC

## Bsal ##

m1_Bsal <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = Bsal, REML = F)

Anova(m1_Bsal, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                  Chisq Df Pr(>Chisq)    
## Bacteria      704.4531  6    < 2e-16 ***
## Temp            0.7613  1    0.38292    
## Bacteria:Temp  13.7379  6    0.03271 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_Bsal <- lsmeans(m1_Bsal, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_Bsal)
## Temp = 12:
##  contrast     estimate         SE     df t.ratio p.value
##  B1 - B2  -0.192373500 0.09395458 201.60  -2.048  0.3883
##  B1 - B3  -0.459601923 0.09517695 201.35  -4.829  0.0001
##  B1 - B4  -0.258609205 0.09395458 201.60  -2.752  0.0909
##  B1 - B5  -0.469126966 0.09395458 201.60  -4.993  <.0001
##  B1 - ND   0.462266512 0.10003997 200.72   4.621  0.0001
##  B1 - PC   0.965993683 0.10003997 200.72   9.656  <.0001
##  B2 - B3  -0.267228423 0.08812534 200.86  -3.032  0.0430
##  B2 - B4  -0.066235705 0.08663716 200.72  -0.765  0.9880
##  B2 - B5  -0.276753466 0.08663716 200.72  -3.194  0.0267
##  B2 - ND   0.654640012 0.09395458 201.60   6.968  <.0001
##  B2 - PC   1.158367183 0.09395458 201.60  12.329  <.0001
##  B3 - B4   0.200992718 0.08812534 200.86   2.281  0.2585
##  B3 - B5  -0.009525043 0.08812534 200.86  -0.108  1.0000
##  B3 - ND   0.921868435 0.09517695 201.35   9.686  <.0001
##  B3 - PC   1.425595606 0.09517695 201.35  14.978  <.0001
##  B4 - B5  -0.210517761 0.08663716 200.72  -2.430  0.1917
##  B4 - ND   0.720875717 0.09395458 201.60   7.673  <.0001
##  B4 - PC   1.224602888 0.09395458 201.60  13.034  <.0001
##  B5 - ND   0.931393479 0.09395458 201.60   9.913  <.0001
##  B5 - PC   1.435120649 0.09395458 201.60  15.275  <.0001
##  ND - PC   0.503727171 0.10003997 200.72   5.035  <.0001
## 
## Temp = 18:
##  contrast     estimate         SE     df t.ratio p.value
##  B1 - B2   0.067360804 0.08994143 201.38   0.749  0.9892
##  B1 - B3  -0.380906222 0.08994143 201.38  -4.235  0.0007
##  B1 - B4   0.110248966 0.08994143 201.38   1.226  0.8834
##  B1 - B5  -0.393841077 0.09668113 201.35  -4.074  0.0013
##  B1 - ND   0.519827896 0.09668113 201.35   5.377  <.0001
##  B1 - PC   1.047686855 0.09901266 201.27  10.581  <.0001
##  B2 - B3  -0.448267026 0.08663716 200.72  -5.174  <.0001
##  B2 - B4   0.042888162 0.08663716 200.72   0.495  0.9989
##  B2 - B5  -0.461201881 0.09396112 201.63  -4.908  <.0001
##  B2 - ND   0.452467093 0.09396112 201.63   4.815  0.0001
##  B2 - PC   0.980326051 0.09627735 201.40  10.182  <.0001
##  B3 - B4   0.491155189 0.08663716 200.72   5.669  <.0001
##  B3 - B5  -0.012934855 0.09396112 201.63  -0.138  1.0000
##  B3 - ND   0.900734119 0.09396112 201.63   9.586  <.0001
##  B3 - PC   1.428593077 0.09627735 201.40  14.838  <.0001
##  B4 - B5  -0.504090044 0.09396112 201.63  -5.365  <.0001
##  B4 - ND   0.409578930 0.09396112 201.63   4.359  0.0004
##  B4 - PC   0.937437888 0.09627735 201.40   9.737  <.0001
##  B5 - ND   0.913668974 0.10003997 200.72   9.133  <.0001
##  B5 - PC   1.441527932 0.10234954 200.84  14.084  <.0001
##  ND - PC   0.527858958 0.10234954 200.84   5.157  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## NDPC and PC are different than all the bacteria, with greater inhibition than NDPC and PC

ggplot(Bsal, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## J649 ##

m1_J649 <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = J649, REML = F)

Anova(m1_J649, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                   Chisq Df Pr(>Chisq)    
## Bacteria      1435.7418  6  < 2.2e-16 ***
## Temp             7.9096  1   0.004917 ** 
## Bacteria:Temp   72.5828  6  1.206e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_J649 <- lsmeans(m1_J649, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_J649)
## Temp = 12:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -1.61858761 0.1632539 185.08  -9.915  <.0001
##  B1 - B3  -1.01557805 0.1557541 184.45  -6.520  <.0001
##  B1 - B4  -0.84381465 0.1585614 184.01  -5.322  <.0001
##  B1 - B5  -1.18242105 0.1666949 183.95  -7.093  <.0001
##  B1 - ND  -0.44483914 0.1557541 184.45  -2.856  0.0701
##  B1 - PC   2.24740066 0.1557541 184.45  14.429  <.0001
##  B2 - B3   0.60300955 0.1553649 183.99   3.881  0.0027
##  B2 - B4   0.77477296 0.1588734 184.38   4.877  <.0001
##  B2 - B5   0.43616656 0.1675374 184.89   2.603  0.1309
##  B2 - ND   1.17374847 0.1553649 183.99   7.555  <.0001
##  B2 - PC   3.86598827 0.1553649 183.99  24.883  <.0001
##  B3 - B4   0.17176341 0.1514474 183.96   1.134  0.9168
##  B3 - B5  -0.16684300 0.1603231 184.35  -1.041  0.9438
##  B3 - ND   0.57073892 0.1480108 183.83   3.856  0.0030
##  B3 - PC   3.26297871 0.1480108 183.83  22.046  <.0001
##  B4 - B5  -0.33860640 0.1631276 184.02  -2.076  0.3715
##  B4 - ND   0.39897551 0.1514474 183.96   2.634  0.1218
##  B4 - PC   3.09121530 0.1514474 183.96  20.411  <.0001
##  B5 - ND   0.73758191 0.1603231 184.35   4.601  0.0002
##  B5 - PC   3.42982171 0.1603231 184.35  21.393  <.0001
##  ND - PC   2.69223979 0.1480108 183.83  18.189  <.0001
## 
## Temp = 18:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -1.37687879 0.1444970 184.54  -9.529  <.0001
##  B1 - B3  -1.27680197 0.1385165 185.24  -9.218  <.0001
##  B1 - B4  -0.77775436 0.1303745 183.93  -5.966  <.0001
##  B1 - B5  -1.34658658 0.1325864 184.09 -10.156  <.0001
##  B1 - ND  -0.35051623 0.1303745 183.93  -2.689  0.1070
##  B1 - PC   1.07122033 0.1303745 183.93   8.216  <.0001
##  B2 - B3   0.10007681 0.1508450 186.37   0.663  0.9944
##  B2 - B4   0.59912443 0.1424729 184.42   4.205  0.0008
##  B2 - B5   0.03029221 0.1442735 184.26   0.210  1.0000
##  B2 - ND   1.02636256 0.1424729 184.42   7.204  <.0001
##  B2 - PC   2.44809911 0.1424729 184.42  17.183  <.0001
##  B3 - B4   0.49904761 0.1362715 184.98   3.662  0.0059
##  B3 - B5  -0.06978460 0.1384851 185.21  -0.504  0.9988
##  B3 - ND   0.92628574 0.1362715 184.98   6.797  <.0001
##  B3 - PC   2.34802230 0.1362715 184.98  17.230  <.0001
##  B4 - B5  -0.56883222 0.1303762 183.93  -4.363  0.0004
##  B4 - ND   0.42723813 0.1281811 183.83   3.333  0.0176
##  B4 - PC   1.84897468 0.1281811 183.83  14.425  <.0001
##  B5 - ND   0.99607035 0.1303762 183.93   7.640  <.0001
##  B5 - PC   2.41780690 0.1303762 183.93  18.545  <.0001
##  ND - PC   1.42173655 0.1281811 183.83  11.092  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## greater inhibition than  PC


ggplot(J649, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## J647 ##

m1_J647 <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = J647, REML = F)

Anova(m1_J647, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                   Chisq Df Pr(>Chisq)    
## Bacteria      2067.5726  6     <2e-16 ***
## Temp             0.5762  1     0.4478    
## Bacteria:Temp  107.6639  6     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_J647 <- lsmeans(m1_J647, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_J647)
## Temp = 12:
##  contrast     estimate         SE     df t.ratio p.value
##  B1 - B2  -0.940098935 0.07903079 215.73 -11.895  <.0001
##  B1 - B3  -1.144960092 0.07903079 215.73 -14.488  <.0001
##  B1 - B4  -0.196667575 0.07903079 215.73  -2.488  0.1687
##  B1 - B5  -1.260355949 0.09350261 216.55 -13.479  <.0001
##  B1 - ND  -0.521669479 0.07903079 215.73  -6.601  <.0001
##  B1 - PC   0.514000479 0.07903079 215.73   6.504  <.0001
##  B2 - B3  -0.204861157 0.07903079 215.73  -2.592  0.1335
##  B2 - B4   0.743431360 0.07903079 215.73   9.407  <.0001
##  B2 - B5  -0.320257014 0.09350261 216.55  -3.425  0.0128
##  B2 - ND   0.418429455 0.07903079 215.73   5.295  <.0001
##  B2 - PC   1.454099413 0.07903079 215.73  18.399  <.0001
##  B3 - B4   0.948292517 0.07903079 215.73  11.999  <.0001
##  B3 - B5  -0.115395857 0.09350261 216.55  -1.234  0.8801
##  B3 - ND   0.623290613 0.07903079 215.73   7.887  <.0001
##  B3 - PC   1.658960571 0.07903079 215.73  20.991  <.0001
##  B4 - B5  -1.063688375 0.09350261 216.55 -11.376  <.0001
##  B4 - ND  -0.325001905 0.07903079 215.73  -4.112  0.0011
##  B4 - PC   0.710668053 0.07903079 215.73   8.992  <.0001
##  B5 - ND   0.738686470 0.09350261 216.55   7.900  <.0001
##  B5 - PC   1.774356428 0.09350261 216.55  18.977  <.0001
##  ND - PC   1.035669958 0.07903079 215.73  13.105  <.0001
## 
## Temp = 18:
##  contrast     estimate         SE     df t.ratio p.value
##  B1 - B2  -0.677527602 0.07903079 215.73  -8.573  <.0001
##  B1 - B3  -1.460447705 0.08199765 216.21 -17.811  <.0001
##  B1 - B4  -0.675427176 0.07903079 215.73  -8.546  <.0001
##  B1 - B5  -1.583832895 0.08552149 216.13 -18.520  <.0001
##  B1 - ND  -0.626372586 0.07903079 215.73  -7.926  <.0001
##  B1 - PC   0.946416899 0.07903079 215.73  11.975  <.0001
##  B2 - B3  -0.782920103 0.08199765 216.21  -9.548  <.0001
##  B2 - B4   0.002100426 0.07903079 215.73   0.027  1.0000
##  B2 - B5  -0.906305293 0.08552149 216.13 -10.597  <.0001
##  B2 - ND   0.051155016 0.07903079 215.73   0.647  0.9951
##  B2 - PC   1.623944501 0.07903079 215.73  20.548  <.0001
##  B3 - B4   0.785020528 0.08199765 216.21   9.574  <.0001
##  B3 - B5  -0.123385190 0.08853384 217.12  -1.394  0.8048
##  B3 - ND   0.834075118 0.08199765 216.21  10.172  <.0001
##  B3 - PC   2.406864603 0.08199765 216.21  29.353  <.0001
##  B4 - B5  -0.908405719 0.08552149 216.13 -10.622  <.0001
##  B4 - ND   0.049054590 0.07903079 215.73   0.621  0.9961
##  B4 - PC   1.621844075 0.07903079 215.73  20.522  <.0001
##  B5 - ND   0.957460309 0.08552149 216.13  11.196  <.0001
##  B5 - PC   2.530249794 0.08552149 216.13  29.586  <.0001
##  ND - PC   1.572789485 0.07903079 215.73  19.901  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## greater inhibition than  PC

ggplot(J647, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## SRS ##

m1_SRS <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = SRS, REML = F)

Anova(m1_SRS, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                   Chisq Df Pr(>Chisq)    
## Bacteria      1660.4596  6  < 2.2e-16 ***
## Temp             0.8623  1     0.3531    
## Bacteria:Temp   42.4055  6  1.529e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_SRS <- lsmeans(m1_SRS, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_SRS)
## Temp = 12:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -1.09496619 0.1235889 217.75  -8.860  <.0001
##  B1 - B3  -1.77950866 0.1280173 217.79 -13.901  <.0001
##  B1 - B4   0.03999376 0.1235889 217.75   0.324  0.9999
##  B1 - B5  -1.76938152 0.1280224 217.79 -13.821  <.0001
##  B1 - ND  -0.80101314 0.1235889 217.75  -6.481  <.0001
##  B1 - PC   0.99870196 0.1235889 217.75   8.081  <.0001
##  B2 - B3  -0.68454247 0.1280173 217.79  -5.347  <.0001
##  B2 - B4   1.13495995 0.1235889 217.75   9.183  <.0001
##  B2 - B5  -0.67441532 0.1280224 217.79  -5.268  <.0001
##  B2 - ND   0.29395306 0.1235889 217.75   2.378  0.2128
##  B2 - PC   2.09366815 0.1235889 217.75  16.941  <.0001
##  B3 - B4   1.81950242 0.1280173 217.79  14.213  <.0001
##  B3 - B5   0.01012715 0.1323024 217.83   0.077  1.0000
##  B3 - ND   0.97849553 0.1280173 217.79   7.643  <.0001
##  B3 - PC   2.77821062 0.1280173 217.79  21.702  <.0001
##  B4 - B5  -1.80937527 0.1280224 217.79 -14.133  <.0001
##  B4 - ND  -0.84100689 0.1235889 217.75  -6.805  <.0001
##  B4 - PC   0.95870820 0.1235889 217.75   7.757  <.0001
##  B5 - ND   0.96836838 0.1280224 217.79   7.564  <.0001
##  B5 - PC   2.76808347 0.1280224 217.79  21.622  <.0001
##  ND - PC   1.79971509 0.1235889 217.75  14.562  <.0001
## 
## Temp = 18:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -0.10316266 0.1256993 217.79  -0.821  0.9826
##  B1 - B3  -1.53319756 0.1325820 217.81 -11.564  <.0001
##  B1 - B4   0.47873470 0.1256993 217.79   3.809  0.0034
##  B1 - B5  -1.62674505 0.1327700 217.90 -12.252  <.0001
##  B1 - ND  -0.61261281 0.1256993 217.79  -4.874  <.0001
##  B1 - PC   1.37199786 0.1256993 217.79  10.915  <.0001
##  B2 - B3  -1.43003491 0.1308308 217.90 -10.930  <.0001
##  B2 - B4   0.58189736 0.1235889 217.75   4.708  0.0001
##  B2 - B5  -1.52358239 0.1308271 217.89 -11.646  <.0001
##  B2 - ND  -0.50945016 0.1235889 217.75  -4.122  0.0010
##  B2 - PC   1.47516052 0.1235889 217.75  11.936  <.0001
##  B3 - B4   2.01193227 0.1308308 217.90  15.378  <.0001
##  B3 - B5  -0.09354749 0.1377330 218.04  -0.679  0.9936
##  B3 - ND   0.92058475 0.1308308 217.90   7.036  <.0001
##  B3 - PC   2.90519543 0.1308308 217.90  22.206  <.0001
##  B4 - B5  -2.10547975 0.1308271 217.89 -16.094  <.0001
##  B4 - ND  -1.09134752 0.1235889 217.75  -8.830  <.0001
##  B4 - PC   0.89326316 0.1235889 217.75   7.228  <.0001
##  B5 - ND   1.01413224 0.1308271 217.89   7.752  <.0001
##  B5 - PC   2.99874291 0.1308271 217.89  22.921  <.0001
##  ND - PC   1.98461068 0.1235889 217.75  16.058  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## greater inhibition than  PC

ggplot(SRS, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## J423 ##

m1_J423 <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = J423, REML = F)

Anova(m1_J423, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                  Chisq Df Pr(>Chisq)    
## Bacteria      1678.502  6  < 2.2e-16 ***
## Temp            30.675  1   3.05e-08 ***
## Bacteria:Temp   96.704  6  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_J423 <- lsmeans(m1_J423, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_J423)
## Temp = 12:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -0.77928818 0.1117205 219.86  -6.975  <.0001
##  B1 - B3  -1.53422192 0.1133810 219.94 -13.532  <.0001
##  B1 - B4   0.19945253 0.1117205 219.86   1.785  0.5594
##  B1 - B5  -1.55876034 0.1178139 221.65 -13.231  <.0001
##  B1 - ND  -0.67375896 0.1117205 219.86  -6.031  <.0001
##  B1 - PC   1.46460041 0.1117205 219.86  13.110  <.0001
##  B2 - B3  -0.75493374 0.1075199 219.81  -7.021  <.0001
##  B2 - B4   0.97874070 0.1057146 219.56   9.258  <.0001
##  B2 - B5  -0.77947217 0.1118993 220.70  -6.966  <.0001
##  B2 - ND   0.10552921 0.1057146 219.56   0.998  0.9540
##  B2 - PC   2.24388858 0.1057146 219.56  21.226  <.0001
##  B3 - B4   1.73367445 0.1075199 219.81  16.124  <.0001
##  B3 - B5  -0.02453842 0.1135786 220.66  -0.216  1.0000
##  B3 - ND   0.86046295 0.1075199 219.81   8.003  <.0001
##  B3 - PC   2.99882232 0.1075199 219.81  27.891  <.0001
##  B4 - B5  -1.75821287 0.1118993 220.70 -15.712  <.0001
##  B4 - ND  -0.87321149 0.1057146 219.56  -8.260  <.0001
##  B4 - PC   1.26514788 0.1057146 219.56  11.968  <.0001
##  B5 - ND   0.88500138 0.1118993 220.70   7.909  <.0001
##  B5 - PC   3.02336075 0.1118993 220.70  27.019  <.0001
##  ND - PC   2.13835937 0.1057146 219.56  20.228  <.0001
## 
## Temp = 18:
##  contrast    estimate        SE     df t.ratio p.value
##  B1 - B2  -0.57014471 0.1057146 219.56  -5.393  <.0001
##  B1 - B3  -1.26598158 0.1057146 219.56 -11.975  <.0001
##  B1 - B4   0.03291239 0.1057146 219.56   0.311  0.9999
##  B1 - B5  -1.28045626 0.1095037 219.94 -11.693  <.0001
##  B1 - ND  -0.32508245 0.1057146 219.56  -3.075  0.0377
##  B1 - PC   0.63324648 0.1057146 219.56   5.990  <.0001
##  B2 - B3  -0.69583688 0.1057146 219.56  -6.582  <.0001
##  B2 - B4   0.60305710 0.1057146 219.56   5.705  <.0001
##  B2 - B5  -0.71031156 0.1095037 219.94  -6.487  <.0001
##  B2 - ND   0.24506226 0.1057146 219.56   2.318  0.2401
##  B2 - PC   1.20339119 0.1057146 219.56  11.383  <.0001
##  B3 - B4   1.29889397 0.1057146 219.56  12.287  <.0001
##  B3 - B5  -0.01447468 0.1095037 219.94  -0.132  1.0000
##  B3 - ND   0.94089913 0.1057146 219.56   8.900  <.0001
##  B3 - PC   1.89922806 0.1057146 219.56  17.966  <.0001
##  B4 - B5  -1.31336865 0.1095037 219.94 -11.994  <.0001
##  B4 - ND  -0.35799484 0.1057146 219.56  -3.386  0.0145
##  B4 - PC   0.60033409 0.1057146 219.56   5.679  <.0001
##  B5 - ND   0.95537381 0.1095037 219.94   8.725  <.0001
##  B5 - PC   1.91370274 0.1095037 219.94  17.476  <.0001
##  ND - PC   0.95832893 0.1057146 219.56   9.065  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## greater inhibition than  PC

ggplot(J423, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18)) 

## JEL404 ##

m1_404 <- lmer(final_inhibition ~ Bacteria*Temp + (1 | Incubator/Plate), data = J404, REML = F)

Anova(m1_404, type = "II", test = "Chisq")
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: final_inhibition
##                   Chisq Df Pr(>Chisq)    
## Bacteria      1094.9804  6  < 2.2e-16 ***
## Temp             2.5614  1  0.1095019    
## Bacteria:Temp   23.9712  6  0.0005287 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## this indicates a significant interaction

## use lsmeans to look at what the interaction
p1_404 <- lsmeans(m1_404, pairwise~Bacteria|Temp, adjust = "tukey")
pairs(p1_404)
## Temp = 12:
##  contrast     estimate        SE     df t.ratio p.value
##  B1 - B2  -0.734185288 0.1181327 217.73  -6.215  <.0001
##  B1 - B3  -1.331994000 0.1250397 217.91 -10.653  <.0001
##  B1 - B4  -0.408429799 0.1181327 217.73  -3.457  0.0115
##  B1 - B5  -1.369318255 0.1201444 217.77 -11.397  <.0001
##  B1 - ND  -0.366876144 0.1181327 217.73  -3.106  0.0345
##  B1 - PC   0.888914748 0.1181327 217.73   7.525  <.0001
##  B2 - B3  -0.597808713 0.1250397 217.91  -4.781  0.0001
##  B2 - B4   0.325755489 0.1181327 217.73   2.758  0.0894
##  B2 - B5  -0.635132968 0.1201444 217.77  -5.286  <.0001
##  B2 - ND   0.367309143 0.1181327 217.73   3.109  0.0342
##  B2 - PC   1.623100036 0.1181327 217.73  13.740  <.0001
##  B3 - B4   0.923564202 0.1250397 217.91   7.386  <.0001
##  B3 - B5  -0.037324255 0.1270688 218.02  -0.294  0.9999
##  B3 - ND   0.965117856 0.1250397 217.91   7.718  <.0001
##  B3 - PC   2.220908748 0.1250397 217.91  17.762  <.0001
##  B4 - B5  -0.960888457 0.1201444 217.77  -7.998  <.0001
##  B4 - ND   0.041553654 0.1181327 217.73   0.352  0.9998
##  B4 - PC   1.297344547 0.1181327 217.73  10.982  <.0001
##  B5 - ND   1.002442111 0.1201444 217.77   8.344  <.0001
##  B5 - PC   2.258233003 0.1201444 217.77  18.796  <.0001
##  ND - PC   1.255790892 0.1181327 217.73  10.630  <.0001
## 
## Temp = 18:
##  contrast     estimate        SE     df t.ratio p.value
##  B1 - B2  -0.793639488 0.1225721 217.93  -6.475  <.0001
##  B1 - B3  -1.719937229 0.1225721 217.93 -14.032  <.0001
##  B1 - B4  -0.230153463 0.1225721 217.93  -1.878  0.4973
##  B1 - B5  -1.676827510 0.1349328 217.90 -12.427  <.0001
##  B1 - ND  -0.790820327 0.1225721 217.93  -6.452  <.0001
##  B1 - PC   0.531583143 0.1225721 217.93   4.337  0.0004
##  B2 - B3  -0.926297741 0.1181327 217.73  -7.841  <.0001
##  B2 - B4   0.563486025 0.1181327 217.73   4.770  0.0001
##  B2 - B5  -0.883188022 0.1312392 217.95  -6.730  <.0001
##  B2 - ND   0.002819161 0.1181327 217.73   0.024  1.0000
##  B2 - PC   1.325222631 0.1181327 217.73  11.218  <.0001
##  B3 - B4   1.489783766 0.1181327 217.73  12.611  <.0001
##  B3 - B5   0.043109719 0.1312392 217.95   0.328  0.9999
##  B3 - ND   0.929116902 0.1181327 217.73   7.865  <.0001
##  B3 - PC   2.251520372 0.1181327 217.73  19.059  <.0001
##  B4 - B5  -1.446674046 0.1312392 217.95 -11.023  <.0001
##  B4 - ND  -0.560666864 0.1181327 217.73  -4.746  0.0001
##  B4 - PC   0.761736606 0.1181327 217.73   6.448  <.0001
##  B5 - ND   0.886007182 0.1312392 217.95   6.751  <.0001
##  B5 - PC   2.208410653 0.1312392 217.95  16.827  <.0001
##  ND - PC   1.322403470 0.1181327 217.73  11.194  <.0001
## 
## P value adjustment: tukey method for comparing a family of 7 estimates
## greater inhibition than  PC

ggplot(J404, aes(x = Bacteria, y = final_inhibition)) + geom_boxplot(aes(color = Isolate)) +facet_grid(.~Temp) + ylab("% inhibition") + theme(text = element_text(size = 18))