
Appendix: Technical Arguments

Proof of Consistency and Asymptotic Normality of Λ̂0(·).
Conditions. Before presenting the proof of the asymptotic properties of Λ̂0(·), we first
describe the conditions under which these large sample results have been proven.

C1. (Finite Interval) There exists a maximum follow-up time τ > 0 and a constant c
such that Pr(Xij = τ) ≥ c > 0.

C2. (Boundedness) The baseline hazard function λ0(·) is twice differentiable with
second derivatives over [0, τ ] bounded by some fixed constant. Moreover,∫ t

0

λ0(s)/π(s)ds <∞ ∀t ∈ [0, τ ], (A.1)

where π(s) = E[I(Xi0 < s)
∑M

j=1 Yij(s)].

C3. (Identifiability) There is a positive probability that two or more members in a
family fail in the interval [0, τ ].

C4. (Differentiability) The copula function h(t0, t1, . . . , tM ; θ) is continuously thrice
differentiable with respect to each time component on [c′, 1]M+1, where c′ = exp(−c)
and c is defined in Condition C1. In addition, h and its second partial derivatives
are twice differentiable with respect to θ, and the derivatives are also continuously
differentiable with respect to each time component on [c′, 1]M+1.

C5. (Nondegeneracy) The function

`∗(β, γ) = (1− α)E{`◦(β, γ,Xi0, Zi0)|δi0 = 0}+ αE{`◦(β, γ,Xi0, Zi0)|δi0 = 1}

has a unique maximizer (β̄, γ̄). In addition, the limiting value of ∂U(θ,Λ)/∂θ is
positive definite at θ0.

C6. (Kernel regularity condition) The kernel K(·) is symmetric, has support on
[−1, 1] and is differentiable on (−∞,∞) such that K(·) decreases smoothly to 0 in
the neighborhood of ±1. The bandwidth h satisfies h ∼ n−ν with ν ∈ (1

4
, 1
2
).

C7. (Density regularity condition) The conditional density g(·) of Xi0 given δi0 = 1
is bounded below on t ∈ [0, τ ] by some positive number gmin, and g(t) is thrice
differentiable w.r.t. t over [0, τ ] with bounded third derivative.
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Condition C1 is a standard condition survival analysis. The condition (A.1) in Condition
C2 is needed for the first-stage estimator, to ensure that the denominator in (3) does not
tend too quickly to zero as t ↓ 0. Condition C3 is necessary for the dependence parameter
to be identifiable. The same condition has also been assumed in Nielsen et al. (1992) and
Murphy (1994, 1995). Condition C4 is usually satisfied for commonly used copula functions
such as the Clayton-Oakes model (Oakes, 1989) or the normal transformation model (Li and
Lin, 2006). Regarding Condition C5, `∗(β, γ) has a maximizer because it is concave, and
the condition that the maximizer is unique simply rules out a degenerate case. Likewise,
the matrix ∂U(θ,Λ)/∂θ is automatically nonnegative definite, and the assumption that it
be positive definite at θ0 simply rules out a degenerate case. Regarding the assumptions
on the kernel function in Condition C6, it is not difficult to find kernels meeting these
assumptions; one example is the biweight kernel K(u) = (15/16)(1− u2)2I(|u| ≤ 1).

For a function ϕ : [0, τ ]→ R, let ‖ϕ‖ = supt∈[0,τ ] |ϕ(t)|.
Asymptotic properties of β̂. Under Condition C5, it follows from standard theory
(White, 1982; van der Vaart, 1998, Chapter 5), that (β̂, γ̂) converges almost surely to

(β̄, γ̄) and that n1/2{(β̂, γ̂) − (β̄, γ̄)} is asymptotically normal. For use in proving the

asymptotics of Λ̂0(·), we note that

β̂ − β̄ =
1

n

n∑
i=1

e1(β̄, γ̄)
[
Ψ(β̄, γ̄, Xi0, Zi0)− E{Ψ(β̄, γ̄, Xi0, Zi0)|δi0}

]
+ op(n

−1/2) (A.2)

where Ψ(β, γ, t, z) is the gradient vector of `◦(β, γ, t, x) with respect to β and γ, and
e1(β, γ) is −1 times the inverse of the Hessian matrix of `∗(β, γ) with the last row deleted
(the uniqueness of (β̄, γ̄) as a maximizer of `∗ implies that this Hessian matrix evaluated at

(β̄, γ̄) is positive definite). This gives a representation of β̂− β̄ as asymptotically equivalent
to a quantity of the form (11).

Asymptotic properties of Λ̂(·, θ̂). We will show the consistency and asymptotic nor-

mality of Λ̂(·, θ̂) using some of the ideas presented in Gorfine et al. (2009) and Spiekerman
and Lin (1998). Essentially, we can show that for a given θ,

n1/2{Λ̂(t, θ)− Λ(t, θ)} =M1(t) +M2(t) + op(1) (A.3)
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with

M1(t) = n−
1
2p1(t)

∫ t

0

1

p1(s)h(s,Λ)

n∑
i=1

M∑
j=1

Mij(ds)

M2(t) = n−
1
2p1(t)

∫ τ

0

A1(t, u)

p(u)q(u,Λ)

n∑
i=1

M∑
j=1

I(Xi0 < u)Mij(du),

where the integrands in M1(t) and M2(t) are predictable processes. (The notation and
detailed derivation are provided in Section A, the Supplementary Materials.) Hence by

standard martingale theory, ‖Λ̂(·, θ) − Λ(·, θ)‖ →p 0 and n1/2{Λ̂(t, θ) − Λ(t, θ)} converges
weakly to a zero-mean Gaussian process, with weak convergence defined with respect to
the uniform metric on D[0, τ ] (Pollard, 1984, Section VIII.2).

To establish the consistency of θ̂, we note that under condition C4, dh/dθ, dh(01)/dθ,
dh(10)/dθ and dh(11)/dθ are also uniformly Lipschitz continuous with respect to Λ(·). Hence,

from the uniform convergence of Λ̂(·, θ) to Λ(·, θ) and the Lipschitz continuity, we have that

U{θ, Λ̂(t, θ)} converges uniformly to U{θ,Λ(t, θ)} in θ as n→∞. By the strong law of large
numbers, U{θ,Λ(·, θ)} converges to a limit u{θ,Λ(·, θ)}, which equals 0 at θ0. Finally, under
condition C5 and by the Foutz theorem (1977), we conclude that there exists a unique root

θ̂ to U{θ̂, Λ̂(·, θ̂)} = 0 and that θ̂ → θ0 in probability, as n→∞. To show the asymptotic

normality of θ̂, we expand

U{θ̂, Λ̂(·, θ̂)} = U{θ0,Λ(t)}+ [U{θ0, Λ̂(·, θ0)} − U{θ0,Λ(t)}]
+[U{θ̂, Λ̂(·, θ̂)} − U{θ0, Λ̂(·, θ0)}]

= 0.

By a Taylor expansion, the second term is asymptotically equivalent to
∂U{θ0,Λ(·)}/∂Λ(t){Λ̂(·; θ0) − Λ(·)} and the third term is asymptotically equivalent to

∂U{θ,Λ(·, θ)}/∂θ|θ=θ0(θ̂ − θ0). By the martingale representation of Λ̂(·, θ0) − Λ(·) and

condition C5, we get that n1/2(θ̂− θ0) is asymptotically equivalent to n1/2 times a quantity
of the form (11). By the central limit theorem, it is asymptotically normal with mean 0
and a covariance matrix that can be consistently estimated by a sandwich-type estimator.
Similarly, we expand Λ̂(·, θ̂)−Λ(·) = {Λ̂(·, θ̂)−Λ̂(·, θ0)}+{Λ̂(·, θ0)−Λ(·)}, and approximate

the first term by ∂Λ̂(·, θ)}/∂θ|θ=θ0(θ̂ − θ0). By the asymptotic results of θ̂, the martingale

representation of Λ̂(·, θ) and condition C4, we also get that ‖Λ̂(·, θ̂) − Λ(·)‖ →p 0 and

n1/2{Λ̂(·, θ̂)− Λ(·)} converges to a zero-mean Gaussian process.
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Asymptotic results of Λ̂0(·). We now prove that n1/2{Λ̂0(·)−Λ0(·, β̄)} converges weakly

to a Gaussian random process (which implies uniform convergence in probability of Λ̂0(t)

to Λ0(·, β̄)). Note that Λ̂0(·) is a function of θ, since it is a function of the composite

hazard function Λ̂(·, θ), which depends on θ. For clarity of presentation, we now indicate θ

explicitly in the notation, writing Λ̂0(·) as Λ0(·, θ). We have

Λ̂0(t)− Λ0(t, β̄) =

∫ t

0

φ(u, β̄){Λ̂(du, θ̂)− Λ(du)}+

∫ t

0

{φ̃(u)− φ(u, β̄)}Λ(du)

+

∫ t

0

{φ̂(u)− φ̃(u)}Λ(du) +

∫ t

0

{φ̂(u)− φ(u, β̄)}{Λ̂(du, θ̂)− Λ(du)}

≡ (I) + (II) + (III) + (IV). (A.4)

Term (IV) is op(n
−1/2
1 ), and thus asymptotically negligible (For details, see Section C,

Supplementary Materials). Regarding (I), by integration by parts, we can write

(I) = φ(t, β̄){Λ̂(t, θ̂)− Λ(t)} −
∫ t

0

φ′(u, β̄){Λ̂(u, θ̂)− Λ(u)}du = (Ia) + (Ib) + op(n
−1/2)

with

(Ia) =

[
φ(t, β̄)Λ̂′(t, θ0)−

∫ t

0

φ′(u, β̄)Λ̂′(u, θ0)du

]
(θ̂ − θ0)

and

(Ib) = φ(t, β̄){Λ̂(t, θ0)− Λ(t)} −
∫ t

0

φ′(u, β̄){Λ̂(u, θ0)− Λ(u)}du,

where Λ̂′(t, θ0) is the derivative of Λ̂(t, θ) with respect to θ and evaluated at θ0, which can
be shown to converge to Λ′(t, θ0) uniformly in t using similar techniques as in the proof for

Λ̂(·, θ0). The asymptotic results shown above for θ̂ and Λ̂(t, θ), along with the continuous
mapping theorem, imply that (I) is asymptotically equivalent to a quantity of the form
(11) and that n1/2 times (I) is weakly convergent.

We next show that (II) is asymptotically equivalent to the average of i.i.d. mean-zero
terms involving the n1 families only and that n1/2 times (II) converges weakly to a Gaus-
sian process. Here we sketch the argument; full details are provided in Section B, the
Supplementary Materials.
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Denoting Yi = exp(−β̄′Zi) and ∆i = Yi − φ(Xi0, β̄), it can be shown that∫ t

0

{φ̃(u)− φ(u, β̄)}Λ(du) =
1

n1

n∑
i=1

δi0Ω
◦(t,Xi0)∆i + op(n

−1/2
1 ), (A.5)

where Ω◦(t, x) = λ(x)
g(x)

I(x ≤ t). It is easy to see that the main term, which is an average of

mean 0 i.i.d. processes in t, converges weakly in `∞[0, τ ] to B(V (t)), where B is a Brownian
motion process and the variance

V (t) =

∫ t

0

{
λ(u)

g(u)

}2

σ2(u)g(u)du

with σ2(u) = var(Yi|Xi0 = u, δi0 = 1).

For term (III), a Taylor expansion gives (III) = Q(t, β̄)′(β̂ − β̄) + op(n
−1/2), where

Q(t, β̄) =

∫ t

0

[
n∑
i=1

{ci(u)Zi exp(−β̄Zi)}

]
Λ(du)

Using Claim 11 in Section B, the Supplementary Materials, we find that Q(t) converges

to a limit Q̄(t, β̄) uniformly in probability, and β̂ − β̄ has already been shown above to be
asymptotically equivalent to a quantity of the form (11).

Taking the results for (I)-(IV) together, and noting that the sum of tight processes is
tight, we find that

Λ̂0(t)− Λ0(t, β̄) =
1

n

n∑
i=1

Υ(Xi, t) + op(n
−1/2)

uniformly in t, where E[Υ(Xi, t)|δi0] = 0, and that n1/2 times the main term on the right
side converges weakly to a Gaussian process, with weak convergence defined in terms of
the uniform metric. Theorem 1 is thus proved.
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