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A. Proof of Martingale Representation of Λ̂(·, θ)

We begin by defining some basic quantities. Let

Qij(t,Λ) = I(Xi0 < t)Yij(t)R(S(Xi0), S(t−), δi0; θj)S(t−),

Q
(1)
ij (t,Λ) = I(Xi0 < t)Yij(t)

∂

∂u
R(u, S(t−), δi0; θj)|u=S(Xi0)S(t−)S(Xi0),

Q
(2)
ij (t,Λ) = I(Xi0 < t)Yij(t)

∂

∂u
R(S(Xi0), u, δi0; θj)|u=S(t−)S(t−)2

+I(Xi0 < t)Yij(t)R(S(Xi0), S(t−), δi0; θj)S(t−),

where S(t) = exp{−Λ(t)}. Note that the Q’s are also functions of θ; but for simplic-

ity of presentation, we suppress θ whenever there is no confusion. Furthermore, let

Q(t,Λ) = n−1
∑n

i=1

∑M
j=1Qij(t,Λ), Q(1)(t,Λ) = n−1

∑n
i=1

∑M
j=1Q

(1)
ij (t,Λ), Q(2)(t,Λ) =

n−1
∑n

i=1

∑M
j=1Q

(2)
ij (t,Λ) and N̄(t) = n−1

∑n
i=1

∑M
j=1

∫ t
0 I(Xi0 < s)Nij(ds).

In what follows, for a given random variable ξij depending only on the data on individual

ij, we denote E#{ξij} = (1 − α)E{ξij |δi0 = 0} + αE{ξij |δi0 = 1}. Due to condition

C4 and the strong law of large numbers, the above functions converge uniformly in t

and θ to q(t) = E#{Qij(t,Λ)}, q(1)(t) = E#{Q(1)
ij (t,Λ)}, q(2)(t) = E#{Q(2)

ij (t,Λ)} and

n(t) = E#{
∫ t

0 I(Xi0 < s)Nij(ds)}, respectively. Let Mij(dt) = Nij(dt)−Yij(t)R(S(Xi0),

S(t−), δi0; θj) S(t−)Λ(dt, θ), where Λ(t, θ) =
∫ t

0 E
#{R(S(Xi0), S(t−), δi0; θ0j)S(t−)}/

1



E#{R(S(Xi0), S(t−), δi0; θj)S(t−)}Λ(ds) and θ0 = (θ01, . . . , θ0m) is the true value of

θ = (θ1, . . . , θm). Clearly, Λ(t, θ0) = Λ(t). Now we can write the first stage estimator as

Λ̃(t, θ)− Λ(t, θ)

=

∫ t

0

1
n

∑n
i=1

∑M
j=1 I(Xi0 < s)Mij(ds)

Q(s,Λ)
+

∫ t

0

{
1

Q(s, Λ̃)
− 1

Q(s,Λ)

}
N̄(ds)

≈
∫ t

0

1
n

∑n
i=1

∑M
j=1 I(Xi0 < s)Mij(ds)

Q(s,Λ)

+

∫ t

0

1
n

∑n
i=1

∑M
j=1Q

(1)
ij (s,Λ){Λ̃(Xi0, θ)− Λ(Xi0, θ)}

Q(s,Λ)2
N̄(ds)

+

∫ t

0

Q(2)(s,Λ)

Q(s,Λ)2
{Λ̃(s−, θ)− Λ(s−, θ)}N̄(ds).

The second term of the above equation can be written, by interchanging the order of

integration, as ∫ t

0

n∑
i=1

M∑
j=1

n−1Q
(1)
ij (s,Λ)

Q(s,Λ)2

[∫ s

0
{Λ̃(u−, θ)− Λ(u−)}Ñi0(du)

]
N̄(ds)

=

∫ t

0
{Λ̃(s−, θ)− Λ(s−)} 1

n

n∑
i=1

M∑
j=1

Yij(s, t)Ñi0(ds),

where Yij(s, t) =
∫ t
s Q

(1)
ij (u,Λ)/Q(u,Λ)2N̄(du) and Ñi0(t) = I(Xi0 < t). An argument

similar to that of Yang and Prentice (1999) and Zucker (2005) yields the following

representation

Λ̃(t, θ)− Λ(t, θ) = p̂(t)

∫ t

0

1

p̂(s)Q(s,Λ)

1

n

n∑
i=1

M∑
j=1

I(Xi0 < s)Mij(ds), (1)

where

p̂(t) =
∏
s<t

1 +
1

n

n∑
i=1

m∑
j=1

Yij(s, t)Ñi0(ds) +
Q(2)(s,Λ)

Q(s,Λ)2
N̄(ds)

 ,
and p̂(·) is a product integral of empirical processes. By the Glivenko-Cantelli the-

orem (van der Vaart and Wellner, 1996) and the continuous mapping theorem, p̂(t)

converges to a limit p(t) uniformly in t as n → ∞. By Lemma A.1 of Spiekerman
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and Lin (1998), we have that ‖n1/2{p̂(t)
∫ t

0{p̂(s−)Q(s,Λ)}−1n−1
∑n

i=1

∑M
j=1 I(Xi0 <

s)Mij(ds) − p(t)
∫ t

0{p(s−)q(s,Λ)}−1n−1
∑n

i=1

∑M
j=1 I(Xi0 < s)Mij(ds)}‖ converges to

0 in probability. Since
∑n

i=1Mij(s) is square-integrable zero mean martingale with re-

spect to the filtration of the jth relative of all families, by standard martingale theory,

we have that ‖p(t)
∫ t

0{p(s−)q(s,Λ)}−1n−1
∑n

i=1

∑M
j=1 I(Xi0 < s)Mij(ds)}‖ converges to

0 in probability and that n−1/2p(t)
∫ t

0{p(s−)q(s,Λ)}−1
∑n

i=1

∑M
j=1 I(Xi0 < s)Mij(ds)}

converges to a zero mean Gaussian process.

For the second-stage estimator, we similarly define the following parallel notation to the

Q functions,

Hij(t,Λ) = Yij(t)R(S(Xi0), S(t−), δi0; θj)S(t−)

H
(1)
ij (t,Λ) = Yij(t)

∂

∂u
R(u, S(t−), δi0; θj)|u=S(Xi0)S(t−)S(Xi0)

H
(2)
ij (t,Λ) = Yij(t)

∂

∂u
R(S(Xi0), u, δi0; θj)|u=S(t−)S(t−)2

+Yij(t)R(S(Xi0), S(t−), δi0; θj)S(t−).

Similar to the Q functions, we also suppress the dependence of the H’s on θ for simplicity

of presentation. LetH(t,Λ) = n−1
∑n

i=1

∑M
j=1Hij(t,Λ), H(1)(t,Λ) = n−1

∑n
i=1

∑M
j=1H

(1)
ij (t,Λ)

and H(2)(t,Λ) = n−1
∑n

i=1

∑M
j=1H

(2)
ij (t,Λ) with the respective limits denoted by h(t,Λ),

h(1)(t,Λ) and h(2)(t,Λ). Also let N(t) = n−1
∑n

i=1

∑M
j=1Nij(t). The second-stage esti-
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mator can then be approximated by

Λ̂(t, θ)− Λ(t, θ)

≈
∫ t

0

n−1
∑n

i=1

∑M
j=1Mij(ds)

H(s,Λ)

+

∫ t

0

n−1
∑n

i=1

∑M
j=1H

(1)
ij (s,Λ)I(Xi0 ≥ s){Λ̃(Xi0, θ)− Λ(Xi0, θ)}

H(s,Λ)2
N(ds)

+

∫ t

0

n−1
∑n

i=1

∑M
j=1H

(1)
ij (s,Λ)I(Xi0 < s){Λ̂(Xi0, θ)− Λ(Xi0, θ)}

H(s,Λ)2
N(ds)

+

∫ t

0

H(2)(s,Λ)

H(s,Λ)2
{Λ̂(s−, θ)− Λ(s−, θ)}N(ds).

Combining with the first-stage estimator (1) and using a similar argument as used before,

we have

Λ̂(t, θ)− Λ(t, θ)

≈
∫ t

0

n−1
∑n

i=1

∑M
j=1Mij(ds)

H(s,Λ)
+

∫ τ

0

Â(t, u)

p(u)q(u,Λ)

1

n

n∑
i=1

M∑
j=1

I(Xi0 < u)Mij(du)

+

∫ t

0
{Λ̂(s−, θ)− Λ(s−, θ)} 1

n

n∑
i=1

M∑
j=1

Bij(s, t)Ñi0(ds)

+

∫ t

0
{Λ̂(s−, θ)− Λ(s−, θ)}H

(2)(s,Λ)

H(s,Λ)2
N(ds)

where Bij(s, t) =
∫ t
s Q

(1)
ij (u,Λ)/H(u,Λ)2N(du) and

Â(t, u) =

∫ t

0

n−1
∑n

i=1

∑M
j=1H

(1)
ij (s,Λ)I(Xi0 ≥ s ∨ u)p(Xi0)

H(s,Λ)2
N(ds).

Let

p̂1(t) =
∏
s<t

1 +
1

n

n∑
i=1

M∑
j=1

Bij(s, t)Ñi0(ds) +
H(2)(s,Λ)

H(s,Λ)2
N(ds)

 ,
and

Â1(t, u) =

∫ t

0

n−1
∑n

i=1

∑M
j=1H

(1)
ij (s,Λ)I(Xi0 ≥ s ∨ u)p(Xi0)

p̂1(s)H(s,Λ)2
N(ds).
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Then the second stage estimator can be written as

Λ̂(t, θ)− Λ(t, θ) = p̂1(t)

∫ t

0

1

p̂1(s)H(s,Λ)

1

n

n∑
i=1

M∑
j=1

Mij(ds)

+p̂1(t)

∫ τ

0

Â1(t, u)

p(u)q(u,Λ)

1

n

n∑
i=1

M∑
j=1

I(Xi0 < u)Mij(du).

By similar argument to that used for Λ̃(t, θ), we can show that

n1/2{Λ̂(t, θ)− Λ(t, θ)} =M1(t) +M2(t) + op(1) (2)

with

M1(t) = n−
1
2 p1(t)

∫ t

0

1

p1(s)h(s,Λ)

n∑
i=1

M∑
j=1

Mij(ds)

M2(t) = n−
1
2 p1(t)

∫ τ

0

A1(t, u)

p(u)q(u,Λ)

n∑
i=1

M∑
j=1

I(Xi0 < u)Mij(du),

where A is the limit of Â. Hence, n1/2{Λ̂(t, θ)−Λ(t, θ)} can be represented by a sum of

i.i.d. martingales over n individuals.
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B. Proof of Asymptotic Theory for
∫ t

0{φ̃(u)− φ(u, β̄)}λ(u)du

The parameter of interest is the cumulative baseline hazard function Λ0(t, β̄), which can

be obtained by

Λ0(t, β̄) =

∫ t

0
φ(u, β̄)Λ(du)

where

φ(u, β̄) = E{exp(−β̄ TZi)|δi0 = 1, Xi0 = u},

with β̄ being the limiting value of β̂, as described in the main paper. We define the

following notation: g is the density of (Xi0|δi0 = 1), G is the corresponding cumulative

distribution function, and τ is the maximum follow-up time. For given function ϕ, define

‖ϕ‖∞ = supt∈[0,τ ] |ϕ(t)|. Additionally, we let M denote a generic constant which may

change from use to use but will always be independent of any varying quantities.

Let K(·) be a symmetric kernel function and Kh(x) = K(x/h)/h. Write

wi(x) =
δi0
n1

Kh(x−Xi0)

where n1 is the number of cases and h > 0. Note that the definition of wi(x) here is

slightly different from that in the main text of the paper; we have inserted the factor

1/n1, mainly for the ease of presentation in the following proof. The quantity h will

depend on n, but we will suppress this dependence from the notation. We assume that

h ∼ n−ν with ν ∈ ( 1
4 ,

1
2). Let Y ∗i = exp(−β̂TZi). The local linear estimator for φ(x) is

φ̂(x) =

n∑
i=1

ci(x)Y ∗i ,

where

ci(x) =
wi(x)∑n
j=1wj(x)

− Ūw(x)wi(x)(Ui(x)− Ūw(x))∑n
j=1wj(x)(Uj(x)− Ūw(x))2
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with Ui(x) = x−Xi0 and Ūw(x) =
∑n

i=1wi(x)Ui(x)/
∑n

i=1wi(x).

The resulting estimator of Λ0(t) is

Λ̂0(t) =

∫ t

0
φ̂(u)Λ̂(du)

Define φ̃(x) to be equal to the expression for φ̂(x) with Y ∗i replaced by Yi = exp(β̄TZi).

We can write

Λ̂0(t)− Λ0(t, β̄) =

∫ t

0
φ(u, β̄){Λ̂(du)− Λ(du)}+

∫ t

0
{φ̃(u)− φ(u, β̄)}λ(u)du

+

∫ t

0
{φ̂(u)− φ̃(u)}λ(u)du+

∫ t

0
{φ̂(u)− φ(u, β̄)}{Λ̂(du)− Λ(du)}(3)

In the appendix of the paper we show that the first and third terms are asymptotically

equivalent to the sum of i.i.d. variables and the fourth term is asymptotically negligible.

In what follows we will focus on the second term. Conditions C6 to C7 in the Appendix

of the paper are used in the development for the asymptotic theory for φ̂(t).

For ease of presentation we use
∑∗

i to denote summation over the set of i with δi0 = 1,

because φ̃ only involves cases. Let I denote the interval [h, τ − h] and B denote the set

[0, h) ∪ (τ − h, τ ]. Define

ĝ(x) =
∑
i

∗
wi(x) =

1

n1

∑
i

∗
Kh(x−Xi0)

which is the standard kernel density estimate of g(x) with kernel K. Write ḡ(x) =

E[ĝ(x)].

Now define

g∗(x) = g(x)

∫ (τ−x)/h

−x/h
K(v)dv

i.e., g∗(x) = g(x) for x ∈ I and g∗(x) = µ(c)g(x) for x = ch or x = τ − ch with c ∈ [0, 1],
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where

µ(c) =

∫ c

−1
K(u)du

From standard kernel estimation theory, the following results are known (it is here that

we use the differentiability assumption on g stated in Condition C7):

sup
x∈I
|ḡ(x)− g∗(x)| = O(h2) = O(n−2ν

1 ) (4)

sup
x∈B
|ḡ(x)− g∗(x)| = O(h) = O(n−ν1 ) (5)

sup
x∈[0,τ ]

|ĝ(x)− ḡ(x)| = Op((
√
n1 h)−1) = Op

(
n
− 1

2+ν

1

)
(6)

The first two of the above results are proven by Taylor expansion. The third result is

proved by a combination of Donsker’s theorem for the empirical cdf and an integration by

parts argument; see Schuster (1969) and the proof of Claim 4 below. As a consequence

of the above, along with the assumption that ν ∈ ( 1
4 ,

1
2), we have

sup
x∈[0,τ ]

|ĝ(x)− g∗(x)| = Op

(
n
− 1

2+ν

1

)
(7)

Next, define ∆i = Yi − φ(Xi0, β̄). Note that Yi and ∆i are bounded, since Xi0 and Zi

are bounded. For future reference, we denote by ∆max an upper bound on ∆i. We can

write φ̃(x)− φ(x, β̄) as

φ̃(x)−φ(x, β̄) =
D(x)

g∗(x)
−D(x)(ĝ(x)− g∗(x))

ĝ(x)g∗(x)
+
A(x)

ĝ(x)
−Ūw(x)

B(x)

C(x)
+Ūw(x)2D(x)

C(x)
−Ūw(x)

H(x)

C(x)

(8)
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where

A(x) =
∑
i

∗
wi(x){φ(Xi0, β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]}

B(x) =
∑
i

∗
wi(x)(Ui(x)− Ūw(x)){φ(Xi0, β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]}

=
∑
i

∗
wi(x)Ui(x){φ(Xi0, β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]} − Ūw(x)A(x)

C(x) =
∑
i

∗
wi(x)(Ui(x)− Ūw(x))2

D(x) =
∑
i

∗
wi(x)∆i

H(x) =
∑
i

∗
wi(x)Ui(x)∆i

Denote

Hn1(t) =
√
n1

∫ t

0
(φ̃(x)− φ(x))λ(x)dx

Dn1(t) =
√
n1

∫ t

0

(
D(x)

g∗(x)

)
λ(x)dx

E1(t) =
√
n1

∫ t

0

D(x)(ĝ(x)− g∗(x))

ĝ(x)g∗(x)
λ(x)dx

E2(t) =
√
n1

∫ t

0

(
A(x)

ĝ(x)

)
λ(x)dx

E3(t) =
√
n1

∫ t

0
Ūw(x)

(
B(x)

C(x)

)
λ(x)dx

E4(t) =
√
n1

∫ t

0
Ūw(x)2

(
D(x)

C(x)

)
λ(x)dx

E5(t) =
√
n1

∫ t

0
Ūw(x)

(
G(x)

C(x)

)
λ(x)dx

We can then write

Hn1(t) = Dn1(t)− E1 + E2 − E3 + E4 − E5
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In addition, defining

Ω(t, x0) =

∫ t

0

λ(x)

g∗(x)
Kh(x− x0)dx

Ω◦(t, x0) =

(
λ(x0)

g(x0)

)
I(x0 ≤ t)

D◦n1
(t) =

1
√
n1

∑
i

∗
Ω◦(t,Xi0)∆i

E6(t) =
1
√
n1

∑
i

∗
Υ(t,Xi0)∆i

with Υ(t, x) = Ω(t, x)− Ω◦(t, x), we can write

Dn1(t) = D◦n1
(t) + E6(t) (9)

Our main claim is that Hn1(t) is asymptotically equivalent to D◦n1
(t) and that D◦n1

(t)

converges in distribution to a mean-zero Gaussian process. We will prove this by showing

that D◦n1
(t) converges in distribution to a mean-zero Gaussian process and that the terms

E1, . . . , E6 converge in probability to zero uniformly in t. Since the supremum of E6(t)

over an interval of t values may not be measurable, we will use outer probability and

expectation when dealing with such quantities.

Claim 1. a. The process D◦n1
(t) converges in distribution in C[0, τ ] to B(V (t)), where

B is a Brownian motion process and

V (t) =

∫ t

0

(
λ(x)

g(x)

)2

σ2(x)g(x)dx,

where σ2(x) = Var(Yi|Xi0 = x, δi0 = 1).

b. E6(t) converges uniformly in outer probability to zero.

Proof: We take up the two parts of the claim in turn.
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a. WriteQ∗(t, x0,∆) = (λ(x0)/g(x0))∆I(x0 ≤ t) andQ◦i (t) = Q∗(t,Xi0,∆i) = Ω◦(t,Xi0)∆i.

Since E(∆i|Xi0, δi0 = 1) = 0, we have E[Q◦i (t)] = 0. A simple computation yields

Var(Q◦i (t)) = V (t). Since Xi0 and ∆i are bounded, λ is bounded, and g is bounded

below, the classical central limit theorem implies that for any fixed t, D◦n1
(t) converges

in distribution to N(0, V (t)). Similarly, the finite-dimensional distributions of D◦n1
(t)

converge to those of B(V (t)). Since I(· ≤ t) as t ranges over [0, τ ] is a Donsker class, so

is Q∗(t, ·, ·), and we thus obtain the claimed result.

b. We will write E6n(t) to emphasize the dependence of E6(t) on n. Write Qi(t) =

Υ(t,Xi0)∆i. As before, E[Qi(t)] = 0. We have

Var(Qi(t)) = E{Qi(t)2}

= E{(Ω(t,Xi0)− Ω◦(t,Xi0))2σ2(Xi0)}

= E{Ω(t,Xi0)2σ2(Xi0)} − 2E{Ω(t,Xi0)Ω◦(t,Xi0)σ2(Xi0)}+ E{Ω◦(t,Xi0)2σ2(Xi0)}

=

∫ τ

0

{
1

h

∫ t

0

λ(x)

g∗(x)
K

(
x− y
h

)
dx

}2

σ2(y)g(y)dy

− 2

∫ t

0

{
1

h

∫ t

0

λ(x)

g∗(x)
K

(
x− y
h

)
dx

}
λ(y)

g(y)
σ2(y)g(y)dy

+

∫ t

0

(
λ(y)

g(y)

)2

σ2(y)g(y)dy

=

∫ τ

0

{∫ 1

−1

(
λ(y − hv)

f∗(y − hv)

)
K(v)I(y − hv ∈ [0, t])dv

}2

σ2(y)g(y) dy

− 2

∫ t

0

{∫ 1

−1

(
λ(y − hv)

g∗(y − hv)

)
K(v)I(y − hv ∈ [0, t])dv

}
λ(y)σ2(y) dy

+

∫ t

0

(
λ(y)2

g(y)

)
σ2(y)dy

Noting that as n → ∞ we have h → 0 and I(y − hv ∈ [0, t]) → I(y ∈ [0, t]) for all y in
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[0, t] except for the boundary points 0 and t, we find that as n→∞∫ τ

0

{∫ 1

−1

(
λ(y − hv)

g∗(y − hv)

)
K(v)I(y − hv ∈ [0, t])dv

}2

σ2(y)g(y) dy →
∫ t

0

(
λ(y)2

g(y)

)
σ2(y)dy∫ t

0

{∫ 1

−1

(
λ(y − hv)

g∗(y − hv)

)
K(v)I(y − hv ∈ [0, t])dv

}
λ(y)σ2(y) dy →

∫ t

0

(
λ(y)2

g(y)

)
σ2(y)dy

and thus Var(Qi(t))→ 0. This implies that E6n(t) converges pointwise in probability to

zero

We are now going to prove a tightness condition: that for every positive ε and η there

exist a positive number δ and an integer n0 such that Pr∗(sup|s−t|≤δ |E6n(t)− E6n(s)| ≥

ε) ≤ η, for all n ≥ n0, where Pr∗ denotes outer probability. This condition in conjunction

with the pointwise convergence in probability implies the uniform convergence of E6(t) in

outer probability, since the pointwise convergence implies that the supremum of |E6(t)|

over any finite set of t values converges to zero. By the argument in the proof of

Billingsley (1968, Thm. 8.3), it suffices to show the following: for every positive ε and η,

there exist a number γ ∈ (0, 1) and an integer n0 such that

γ−1Pr∗( sup
s∈[t,t+γ]

|E6n(s)| > ε) ≤ η, t ∈ [0, τ ], n ≥ n0 (10)

Define

Υ(t, s, y) = Υ(s, y)−Υ(t, y) =

∫ s

t
a(x)Kh(y − x)dx− a◦(y)I(t < y ≤ s)

with a(x) = λ(x)/g∗(x) and a◦(x) = λ(x)/g(x). Note that |Υ(t, s, y)| ≤ ‖a‖∞ + ‖a◦‖∞.

Note also that, since K(u) = 0 when |u| > 1, Υ(t, s, y) = 0 for y /∈ [t − h, s + h]. For

the remainder of the proof, these are the only properties of Υ(t, s, y) that we will use; in

particular, we will not be using the fact that when h is small Υ(t, y) is small for most

values of t and y, since there are some values of t and y for which this is not the case.
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Since Υ(t, s, y) = 0 for y /∈ [t− h, s+ h], then using the representation (9) leads to

E6n(s)− E6n(t) =
1√
n

∑
i

∗
Υ(t, s,Xi0)∆i

=
1√
n

∑
i

∗
Υ(t, s,Xi0)I(Xi0 ∈ [t− h, s+ h])∆i

=

N(s+h)∑
i=N(t−h)+1

Υ(t, s,Xζ(i)0)∆ζ(i)

For the moment, let us condition on X . Write N(t, s, h) = N(s+ h)−N(t− h). From

the preceding displayed equation, we find that

sup
s∈[t,t+γ]

|E6(s)− E6(t)| = n−1/2 max
1≤j≤N(t,t+γ,h)

|Sj |

with

Sj =

N(t−h)+j∑
i=N(t−h)+1

Υ(t, s,Xζ(i)0)∆ζ(i)

Now,

E[S4
j |X ] =

∑
i1

∑
i2

∑
i3

∑
i4

{(
4∏
r=1

Υ(t, s,X(ir)0)

)
E

[
4∏
r=1

∆ζ(ir)

∣∣∣∣X
]}

where each of the summations above ranges from N(t− h) + 1 to N(t− h) + j.

Next, for a given x, define Q(x, ξ) to be the quantile function of the conditional distri-

bution of ∆ given Xi0 = x, i.e., the (generalized) inverse of the distribution function

F∆|X=x of ∆i given Xi0 = x. We can then represent ∆i as ∆i = Q(Xi0, ξi), where ξi is

a U(0, 1) random variable independent of Xi0. Since E[∆i|Xi0] = 0, it follows that for

any U(0, 1) random variable ξ◦ and any fixed x, we have E[Q(x, ξ◦)] = 0. Since ∆i is

bounded, Q is a bounded function.

We can now write

E[S4
j |X ] =

∑
i1

∑
i2

∑
i3

∑
i4

{(
4∏
r=1

Υ(t, s,X(ir)0)

)
E

[
4∏
r=1

Q(Xζ(ir), ξζ(ir))

∣∣∣∣X
]}

13



Note that all the terms inside the quadruple summation are bounded. Since (by the above

construction) the ξi’s all independent of each other and of X , and E[Q(Xζ(i)0, ξζ(i))|X ] =

0, it follows that all the terms in the quadruple summation above drop out except in the

following cases: (a) i1 = i2 = i3 = i4, (b) i1 = i2, i3 = i4, and i1 6= i3, (c) i1 = i3, i2 = i4,

and i1 6= i2, (d) i1 = i4, i2 = i3, and i1 6= i2. Among these four cases there are a total

of 3j2 − 2j terms. So we have E[S4
j |X ] ≤ Mj2 for every j. It follows from Theorem B

of Serfling (1970) that E[(max1≤j≤N(t,t+γ,h) |Sj |)4|X ] ≤ M(N(t + γ + h) − N(t − h))2.

(Because of the boundedness of the random variables we are dealing with, the quantities

qn in Serfling’s Eqn. (3.6) can be replaced with fixed constants.) Thus (with E∗ denoting

outer expectation)

E∗[( sup
s∈[t,t+γ]

|E6(s)− E6(t)|)4 | X ] ≤M
(
N(t+ γ + h)−N(t− h)

n

)2

and so

E∗[( sup
s∈[t,t+γ]

|E6(s)− E6(t)|)4] ≤ME

[(
N(t+ γ + h)−N(t− h)

n

)2
]

≤M
(

(γ + 2h)2 +
(γ + 2h)

n

)
≤M∗

(
γ2 + h2 +

(γ + 2h)

n

)
where M∗ is a fixed constant. Accordingly, for any ε > 0, Markov’s inequality yields

Pr∗( sup
s∈[t,t+γ]

|E6(s)− E6(t)| > ε) ≤ (M∗/ε4)

(
γ2 + h2 +

γ + 2h

n

)
Now let η be given. Take γ small enough so that (M∗/ε4)γ ≤ 1

2η. With γ thus chosen,

find n0 large enough such that(
M∗

ε4γ

)(
h2
n1

+
γ + 2hn1

n1

)
≤ 1

2η

for n ≥ n0. We then obtain (10), and so the proof is complete.
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Claim 2. The term E1(t) converges in probability to zero uniformly in t.

Proof: Define the event

G = {inf
x
|ĝ(x)| ≥ 1

4gmin and sup
x
|ĝ(x)− g∗(x)| ≤ 1}

Since ĝ converges uniformly in probability to g∗, Pr(Gc) → 0. Thus, defining E∗1 (t) =

E1(t)I(G) where I(·) is an indicator function, it suffices to prove that supt |E∗1 (t)| converges

in probability to zero. We have

E∗1 (t) =

{
√
n1

∫ t

0

D(x)(ĝ(x)− g∗(x))

ĝ(x)g∗(x)
λ(x)dx

}
I(G) =

1
√
n1

∑
i

∗
α1(t,Xi0)∆i

with

α1(t, y) =

{
1

h

∫ t

0
K

(
x− y
h

)
ĝ(x)− g∗(x)

ĝ(x)

λ(x)

g∗(x)
dx

}
I(G)

Note that

|α1(t, y)| ≤ MI(G) sup
x
|ĝ(x)− g∗(x)|Ω(t, y) ≤MI(G) sup

x
|ĝ(x)− g∗(x)|

By the same argument as used to prove tightness in the proof of Claim 1, we obtain

E[(sup
t
|E∗1 (t)|)4|X ] ≤MI(G) sup

x
|ĝ(x)− g∗(x)|

so that

E[(sup
t
|E∗1 (t)|)4] ≤ME[sup

x
|ĝ(x)− g∗(x)|I(G)]

Since supx |ĝ(x)− g∗(x)|I(G) is uniformly bounded and converges in probability to zero,

it follows (see Van der Vaart, 2000, Section 2.5) that E[(supt |E∗1 (t)|)4]→ 0, which yields

the desired result.

Claim 3. The term E2(t) converges in probability to zero uniformly in t.

15



Proof: Recall the expression for E2(t):

E2(t) =
√
n1

∫ t

0

(
A(x)

ĝ(x)

)
λ(x)dx

=
√
n1

∫ t

0

(
λ(x)

ĝ(x)

)[∑
i

∗
wi(x){φ(Xi0, β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]}

]
dx

We can write

E2(t) =
1
√
n1

∑
i

∗
[

1

h

∫ t

0
K

(
x−Xi0

h

)(
λ(x)

ĝ(x)

)
{φ(Xi0, β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]}dx

]
=

1
√
n1

∑
i

∗
∫ 1

−1
I(Xi0 + vh ∈ [0, t])

(
λ(Xi0 + vh)

ĝ(Xi0 + vh)

)
{φ(Xi0, β̄)− [φ((Xi0 + vh, β̄) + φ′((Xi0 + vh, β̄)vh}K(v)dv

Now,

|{φ(Xi0, β̄)− [φ((Xi0 + vh, β̄) + φ′((Xi0 + vh, β̄)vh}| ≤ 1
2‖φ

′′‖∞v2h2 =Mn−2νv2

In addition, from (7) plus the assumption that g(x) is bounded below, we have

sup
x
ĝ(x)−1 ≤ {inf

x
g∗(x) +Op(n

− 1
2

+ν)}−1 = Op(1)

So the integrand in the second line above is bounded byMn−2ν . This gives supt |E2(t)| ≤

Mn−2ν+ 1
2 , which tends to 0 since ν > 1

4 .

Claim 4. We have

sup
x∈[0,τ ]

∣∣∣∣∣∣Ūw(x)−

∫ x/h(x−τ)/h vK(v)dv∫ x/h
(x−τ)/hK(v)dv

h

∣∣∣∣∣∣ = Op(n
− 1

2
1 )

In particular, since K is symmetric, so that
∫ 1
−1 vK(v)dv = 0, we have supx∈I |Ūw(x)| =

Op(n
− 1

2
1 ).
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Proof: We have Ūw(x) = Q(x)/ĝ(x), where

Q(x) =
1

n1h

∑
i

∗
K

(
x−Xi0

h

)
(x−Xi0)

Let K̃(v) = vK(v) and denote by Gn(y) the empirical distribution function of the Xi0’s.

We then have

|Q(x)− E[Q(x)]| =
∣∣∣∣1h
∫
K

(
x− y
h

)
(x− y){dGn(y)− dG(y)}

∣∣∣∣
=

∣∣∣∣∫ K̃

(
x− y
h

)
{dGn(y)− dG(y)}

∣∣∣∣
≤ ‖Gn −G‖∞

[
1

h

∫ ∣∣∣∣K̃ ′(y − xh
)∣∣∣∣ dy]

≤M‖Gn −G‖∞ =Mn
− 1

2
1 (11)

This result, along with (7), implies that

sup
x∈[0,τ ]

|Q(x)− E[Q(x)]|/ĝ(x) = Op(n
− 1

2 ).

Next,

E[Q(x)] =
1

h

∫ τ

0
K

(
x− y
h

)
(x− y)g(y)dy

= h

∫ x/h

(x−τ)/h
vK(v)g(x− hv)dv

= hg(x)

∫ x/h

(x−τ)/h
vK(v)dv + h

∫ x/h

(x−τ)/h
K(v)[g(x− hv)− g(x)]dv

Now, |g(x− hv)− g(x)| ≤ ‖g′‖∞hv. Recall that h ∼ n−ν with ν > 1
4 , we have

E[Q(x)] = hg(x)

∫ x/h

(x−τ)/h
vK(v)dv + o(n

− 1
2

1 )

This result along with (7) lead to the desired conclusion.
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Claim 5. The quantity

B1(x) =
∑
i

∗
wi(x)Ui(x){φ(Xi0,β̄)− [φ(x, β̄) + φ′(x, β̄)(x−Xi0)]

satisfies supx∈[0,τ ] |B1(x)| = Op(n
−3ν
1 ).

Proof: This result is proved using arguments similar to those used to prove (4)-(6) and

Claim 4.

Claim 6. infx∈[0,τ ]C(x) ≥Mn−2ν
1 .

Proof: We have

C(x) =
∑
i

∗
wi(x)U2

i (x)− ĝ(x)Ūw(x)2

Denote the first term by C̃(x). By an argument similar to that used in the proof of

Claim 4, we have supx |C̃(x)− E[C̃(x)]| = Op(n
−( 1

2
+ν)

1 ). In addition, we have

E[C̃(x)] =
1

h

∫ τ

0
K

(
x− y
h

)
(x− y)2g(y)dy

= h2

∫ x/h

(x−τ)/h
v2K(v)g(x− hv)dv

=

[
g(x)

∫ x/h

(x−τ)/h
v2K(v)dv

]
h2 +O(h3)

For x ∈ I, we get

E[C̃(x)] =

[
g(x)

∫ 1

−1
v2K(v)dv

]
h2 +O(h3)

and Claim 4 implies that supx∈I Ūw(x)2 = Op(n
−1). This yields the desired conclusion

for x ∈ I. For x ∈ B, the above developments in conjunction with Claim 4 and (7) lead

to

C(x) =

g(x)

∫ x/h

(x−τ)/h
v2K(v)dv − g∗(x)

∫ x/h(x−τ)/h vK(v)dv∫ x/h
(x−τ)/hK(v)dv

2h2 + op(h
2)
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with the op uniform in x. Since, by definition,

g∗(x) = g(x)

∫ x/h

(x−τ)/h
K(v)dv

we get

C(x) = ω(x)g(x)h2 + op(h
2)

with

ω(x) =

∫ x/h
(x−τ)/h v

2K(v)dv∫ x/h
(x−τ)/hK(v)dv

−

∫ x/h(x−τ)/h vK(v)dv∫ x/h
(x−τ)/hK(v)dv

2

If we consider x = ch for c ∈ [0, 1], we have (for h ≤ 1
2τ) ω(x) = Var(κ|κ > −c), where κ

is a random variable with density K. This quantity is strictly positive for every c ∈ [0, 1],

since for every c the region {v > −c} has positive mass under the density K. It is clear

that Var(κ|κ > −c) is continuous in c, and so its minimum over [0, 1] is attained for some

c∗ ∈ [0, 1], and, as just argued, Var(κ|κ > −c∗) is strictly positive. The same argument

can be made for x = τ − ch, c ∈ [0, 1]. We thus find that minx∈[0,h]∪[τ−h,τ ] ω(x) is strictly

positive. From this result, along with the fact that g(x) ≥ gmin, the desired conclusion

follows.

Claim 7. The term E3(t) converges in probability to zero uniformly in t.

Proof: Let us write E3(t) = E31(t)− E32(t) with

E31(t) =
√
n1

∫ t

0
Ūw(x)

(
B1(x)

C(x)

)
λ(x)dx

E32(t) =
√
n1

∫ t

0
Ūw(x)2

(
A(x)

C(x)

)
λ(x)dx
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Regarding E31(t) we have

|E31(t)| =

∣∣∣∣∣ 1
√
n1

∑
i

∗
∫ t

0

[
1

h
K

(
x−Xi0

h

)
(x−Xi0)

](
B1(x)

C(x)

)
λ(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ h
√
n1

∑
i

∗
∫ 1

−1

[
I(Xi0 + vh ∈ [0, t])

(
B1(Xi0 + hv)

C(Xi0 + hv)

)
λ(Xi0 + hv)

]
vK(v)dv

∣∣∣∣∣
≤Mh

√
n1

[
supx∈[0,τ ] |B1(x)|

infx∈[0,τ ]C(x)

]
= Op(n

−2ν+ 1
2

1 ) = op(1)

using the results of Claims 5 and 6 and the fact that ν > 1
4 . Regarding E32(t), using

Claims 4 and 6 we have

|E32(t)| ≤

[
supx∈[0,τ ] Ūw(x)2

infx∈[0,τ ]C(x)

] [
√
n1

∫ t

0
A(x)λ(x)dx

]
= Op(1)

[
√
n1

∫ t

0
A(x)λ(x)dx

]
and the bracketed term is op(1) by the argument used in the proof of Claim 3.

Claim 8. The term E4(t) converges in probability to zero uniformly in t.

Proof: Let us write E4(t) = E41(t) + E42(t) with

E41(t) =
√
n1

∫
[0,t]∩I

Ūw(x)2

(
D(x)

C(x)

)
λ(x)dx =

1
√
n1

∑
i

∗
α2(t,Xi0)∆i

E42(t) =
√
n1

∫
[0,t]∩B

Ūw(x)2

(
D(x)

C(x)

)
λ(x)dx =

1
√
n1

∑
i

∗
α3(t,Xi0)∆i

where

α2(t, y) =
1

h

∫
[0,t]∩I

K

(
x− y
h

)
Ūw(s)2

C(x)
λ(x)dx ≤M

[
supx∈I Ūw(x)2

infx∈I C(x)

]
α3(t, y) =

1

h

∫
[0,t]∩B

K

(
x− y
h

)
Ūw(s)2

C(x)
λ(x)dx ≤M

[
supx∈B Ūw(x)2

infx∈B C(x)

]
I(y ∈ [0, 2h] ∪ [τ − 2h, τ ])

By the argument used to prove tightness in the proof of Claim 1, we obtain

E[ sup
t∈[0,τ ]

E41(t)4|X ] ≤M
[

supx∈I Ūw(x)2

infx∈I C(x)

]
E[ sup

t∈[0,τ ]
E42(t)4|X ] ≤M

[
supx∈B Ūw(x)2

infx∈B C(x)

](
N(2h) + (N(τ)−N(τ − 2h))

n

)2
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By Claims 4 and 6, we have

supx∈I Ūw(x)2

infx∈I C(x)
= Op(n

−1+2ν
1 ),

supx∈B Ūw(x)2

infx∈B C(x)
= Op(1)

We can now use arguments similar to those in the proof of Claim 2 to show that

supt∈[0,τ ] |E41(t)| P→ 0 and supt∈[0,τ ] |E42(t)| P→ 0.

Claim 9. The term E5(t) converges in probability to zero uniformly in t.

Proof: The proof is the same as that of Claim 8, except that we replace α2(t, y) by

α̃2(t, y) =
1

h

∫
[0,t]∩I

(x− y)K

(
x− y
h

)
Ūw(s)

C(x)
λ(x)dx ≤M

[
h supx∈I Ūw(x)

infx∈I C(x)

]
and similarly with α3(t, y).

Claim 10. supx∈[0,τ ] |φ̃(x)− φ(x, β̄)| = Op(n
− 1

2+ν

1 )

Proof: By integration by parts arguments similar to the one used to prove (11), we can

show that

sup
x
|D(x)| = Op(n

− 1
2+ν

1 )

sup
x
|A(x)| = Op(n

− 1
2

1 )

sup
x
|H(x)| = Op(n

− 1
2

1 )

Using these results and the results of the preceding claims, we can easily verify that each

of the terms in (8) converges uniformly in probability to 0.

Finally, we present a result that is used in the Appendix of the paper to deal with the

first term of (3). The proof is identical to the proof that φ̃(x) converges uniformly in x

in probability to φ(x, β̄).
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Claim 11. The term
n∑
i=1

ci(x)ZiYi (12)

converges uniformly in x in probability to ξ(x) = E[ZiYi|Xi0 = x].

22



C. Proof of term (IV),
∫ t

0{φ̂(u)− φ(u, β̄)}{Λ̂(du, θ̂)− Λ(du)}, is

asymptotically negligible

In this section, we provide the detailed proof of term (IV),
∫ t

0{φ̂(u)−φ(u, β̄)}{Λ̂(du, θ̂)−

Λ(du)}, is op(n
−1/2
1 ), and thus asymptotically negligible. We cannot use an integration

by parts argument because we have not examined the asymptotic properties of the

derivative φ̃′(t), so we take a different approach. Equation (2) gives a representation of

n1/2{Λ̂(t, θ) − Λ(t, θ)} as the sum of two martingale terms M1(t) and M2(t). We will

work with the term in (IV) arising from M1(t); the argument for the term arising from

M2(t) is similar.

We have

n−1/2M1(t) =
p1(t)

n

∫ t

0
ρ(s)

n∑
i=1

M∑
j=1

Mij(ds)

where ρ(s) = [p1(s)h(s,Λ)]−1. From the definition of p̂1 we can see that p1(s) is bounded

below, and Condition C1 implies that h(s,Λ) is bounded below. Thus ρ(s) is bounded

above by some quantity ρmax. Now, an alternate martingale representation of dNij(s) is

given by

dNij(s) = Yij(s)λ(t|Xi0, δi0, Zi0)dt+ dM̃ij(s)

with M̃ij being a martingale with respect to the filtration F∗t = σ(Xi0, δi0, Zi0, Yij(s), Nij(s),

s ≤ t, j = 1, . . . ,m, i = 1, . . . , n). Letting g(s|Xi0, δi0, Zi0) = λ(s|Xi0, δi0, Zi0) −

λ(s|Xi0, δi0), we can write

dMij(s) = Yij(s)g(s|Xi0, δi0, Zi0)ds+ dM̃ij(s).
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By the innovation theorem, E{Yij(s)g(s|Xi0, δi0, Zi0)} = 0. Noting that

n−1/2M1(du) = n−1p′1(u)

∫ u

0
ρ(s)

n∑
i=1

m∑
j=1

Mij(ds)du+ n−1p1(u)ρ(u)

n∑
i=1

M∑
j=1

Mij(du),

we see that (IV) can be decomposed into the following terms:

Γ1(t) =

∫ t

0
(φ̃(u)− φ(u))p′1(u)

∫ u

0
ρ(s)

 1√
n

n∑
i=1

M∑
j=1

Yij(s)g(s|Xi0, δi0, Zi0)ds

 du

Γ2(t) =

∫ t

0
p1(u)ρ(u)(φ̃(u)− φ(u))

 1√
n

n∑
i=1

M∑
j=1

Yij(u)g(u|Xi0, δi0, Zi0)

 du

Γ3(t) =

∫ t

0
(φ̃(u)− φ(u))p′1(u)

∫ u

0
ρ(s)

 1√
n

n∑
i=1

M∑
j=1

dM̃ij(s)

 dsdu

Γ4(t) =

∫ t

0
p1(u)ρ(u)(φ̃(u)− φ(u))

 1√
n

n∑
i=1

M∑
j=1

dM̃ij(u)


Consider first Γ1. Let G(s) denote the term enclosed in curly brackets. This term is n1/2

times the sample average of the mean-zero r.v.’s
∑M

j=1 Yij(s)g(s|Xi0, δi0, Zi0). Conditions

C2 and C4 imply that g(s|Xi0, δi0, Zi0) is continuous as a function of s, and so it follows

from empirical process theory that G(s) converges to a Gaussian process, which implies

that ‖G‖ = Op(1). This fact, in conjunction with the fact that ‖φ̃ − φ‖ →p 0 (Claim

10), easily yields the result that ‖Γ1‖| →p 0. The term Γ2 can be dealt with in a similar

way. Now examining Γ4(t), then from the definition of dM̃ij and the fact that φ̃ is F∗0 -

measurable, it follows that Γ4(t) is a mean-zero martingale w.r.t. F∗t . The predictable

variation process is given by

〈Γ4,Γ4〉(t) =

∫ t

0
p1(u)2ρ(u)2(φ̃(u)− φ(u))2

 1

n

∑
i

∑
j

Yij(s)λ(s|Xi0, δi0, Zi0)

 ds

≤ τρ2
max‖p1‖‖φ̃− φ‖2

∥∥∥∥∥∥ 1

n

∑
i

∑
j

Yij(·)λ(·|Xi0, δi0, Zi0)

∥∥∥∥∥∥ .
By the uniform law of large numbers we have ‖n−1ΣiΣjYij(·)λ(·|Xi0, δi0, Zi0)‖ = Op(1)

and we know already that ‖φ̃ − φ‖ →p 0. So we get 〈Γ4,Γ4〉(τ) →p 0. By Andersen
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and Gill (1982, Theorem I.1.b.) (corollary of Lenglart’s inequality), this implies that

‖Γ4‖ →p 0.

Regarding Γ3(t), we have

‖Γ3‖ ≤ τ‖p′1‖‖φ̃− φ‖2
sup

u

∣∣∣∣∣∣
∫ u

0
ρ(s)

 1√
n

n∑
i=1

M∑
j=1

dM̃ij(s)

 ds

∣∣∣∣∣∣


Applying Andersen and Gill (1982, Theorem I.1.b) again, we find that the term in curly

brackets on the right side of the inequality is Op(1), and so ‖Γ3‖ →p 0.
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D. Efficiency comparison of the one-stage and two-stage es-

timators of Λ(·)

We simulated 1,000 datasets each with 3000 cases and controls, and one relative per case

or control. The correlation of failure times of family members was generated according

to the Clayton-Oakes model (i.e. the Gamma frailty distribution) with θ = 3.0. Table

S1 shows the comparison of the one-stage estimator (3) and two-stage estimator (4)

of Λ(t) at selected ages t = 40, 50, 60, 70, and 80. Both estimators show little bias;

however, the two-stage estimator has considerably smaller standard errors at all ages

than the one-stage estimator, suggesting the second stage can improve the efficiency

considerably.

Table S1: Comparison of the one-stage and two-stage estimators of Λ(t)

One-Stage Two-Stage

True Est SE Est SE

40 0.016 0.016 0.009 0.015 0.001

50 0.043 0.042 0.012 0.042 0.003

60 0.097 0.094 0.019 0.096 0.006

70 0.195 0.187 0.030 0.190 0.012

80 0.353 0.339 0.046 0.345 0.024
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E. Misspecification Effect of the Copula Function

We conducted a simulation study when the true copula distribution is inverse Gaus-

sian and positive stable and the fitting model is the Clayton-Oakes copula model (i.e.

Gamma frailty distribution) (Table S2 and S3). For each copula distribution, we consid-

ered two situations, roughly corresponding to moderate and strong dependences. This

was achieved by adjusting the parameters in the inverse Gaussian and positive stable dis-

tributions such that when it was fit by using the Clayton-Oakes model, the dependence

parameter was around 1 or 3 roughly. The dependence parameter in the Clayton-Oakes

model also possesses a desirable interpretation of constant cross ratio between paired

failure times (Oakes, 1989).

For each scenario we simulated 1,000 datasets each with 3000 cases and controls, and

one relative for each case or control. As a comparison, we also included the results

from the Nelson-Aalen estimator using the relatives’ only data without accounting for

the case-control sampling and the dependence between relatives and probands. It can

be seen that the naive Nelson-Aalen estimator is biased upward and as expected, the

bias becomes more substantial as the dependence is stronger. In contrast, the proposed

estimator is generally unbiased when the dependence is moderate. The bias increases

as the dependence becomes stronger; however, the bias is mostly less than 5% for both

inverse Gaussian and Positive Stable distributions. The bias becomes more noticeable

when at older age (e.g., 70 and 80 years old), probably because the dependence is

overestimated under the misspecified Clayton-Oakes model at late age. However, even

in this situation, the bias is 10-15% or less within true values.
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The coverage probabilities of 95% confidence intervals for the proposed estimator are

much better than the naive Nelson-Aalen estimator under all scenarios considered at

almost all ages. Here we define the confidence interval as providing successful coverage if

it overlaps with a window of ±5% around the true values. The exception is when the age

is 80 years old and the true frailty distribution is positive stable with strong dependence.

This is because the positive stable induces a steep decreasing dependence function over

time, and when the dependence is strong, the strength of dependence decreases rapidly

and at age 80 it is nearly independent. As such, the naive Nelson-Aalen estimator that

assumes independence performs well, whereas the proposed estimator underestimates

the hazard function.
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F. Exploration of Bootstrap-based SE Estimates

For the real data analysis of the prostate cancer study, we increased the number of the

weighted bootstrap samples to 10,000 to evaluate the stability of the standard error

estimates. Figure S1 shows the histogram of bootstrap estimates of hazard function at

selected age 50, 60, 70, and 80 years old, as well as bootstrap estimates of birth cohort

and the dependence parameter. The distributions of these estimates are roughly normal

with slight skewness to right for Λ(50), showing that bootstrap-based standard deviation

estimator is likely to be a good approximation to true SE. We also evaluated the stability

of bootstrap SE estimates over 500, 1000, 2000, and 4000 (non-overlapping) bootstrap

samples (Table S4). It can be seen that there is very little variation across the number

of bootstrap samples.

Table S4: Standard deviations of bootstrap estimates of hazard function at selected ages,

birth cohort, and dependence parameter

# of Bootstrap Samples

500 1000 2000 4000

Λ(50) 0.001 0.001 0.001 0.001

Λ(60) 0.005 0.005 0.004 0.005

Λ(70) 0.015 0.015 0.014 0.015

Λ(80) 0.041 0.040 0.040 0.041

Birth Cohort 0.183 0.176 0.172 0.172

Dependence 0.358 0.359 0.354 0.357

31



Figure S1: Histograms of bootstrap estimates of Λ̂(t) at t = 50, 60, 70, and 80, and

parameters for birth cohort and dependence.
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