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1 More on Model Constraints and Penalty Forms

In some applications it may be desirable to require µ2 = −µ3, i.e., the two directions of concordant changes
are exactly opposite to each other. Then µ2 and µ3 can be updated as follows,

µ̂2 = −µ̂3 = (

n∑
i=1

3∑
k=2

pcik
∑
s∈Si

Σ−1
k )−1

[
n∑
i=1

{pci2
∑
s∈Si

Σ−1
2 (yi·s − αs1)− pci3

∑
s∈Si

Σ−1
3 (yi·s − αs1)}

]
.

The case when all the components share the same correlation matrix can also be handled. Let Σ1 ∈
Rm×m be the p.d. covariance matrix of the reference component. We parameterize Σ2 = D2Σ1D2 and
Σ3 = D3Σ1D3, where D2 = diag(d2), D3 = diag(d3), and djk > 0 for any j = 1, . . . ,m and k = 2, 3. In
the following we also write D1 = Im for ease of presentation. From this parameterization, the d2

jk’s can be
regarded as variance inflation parameters. Fixing other parameters, Σ1 is updated as

Σ̂1 =
1

N

n∑
i=1

K∑
k=1

pcik
∑
s∈Si

D−1
k ei·s(k)e

T
i·s(k)D

−1
k , (1)

where N =
∑n
i=1 |Si| is the total sample size. Denote Wk =

∑n
i=1 p

c
ik

∑
s∈Si ei·s(k)e

T
i·s(k). For updating d2,

we need to solve

max
d−1

2 >0

g(d−1
2 ) ≡ −(

n∑
i=1

pcik|Si|)(
m∑
j=1

log dj2)− 1

2
tr(D−1

2 Σ−1
1 D−1

2 W2)

 . (2)

Here for convenience we have equivalently expressed the problem with respect to d−1
2 , for which the gradient

function is

g′(d−1
2 ) =

∂g(d−1
2 )

∂d−1
2

= (

n∑
i=1

pcik|Si|)d2 −
1

2
D(WT

2 D−1
2 Σ−1

1 + Σ−1
1 D−1

2 W2),

where D(·) denotes the vector of diagonal elements of the enclosed matrix. To solve this nonlinear optimiza-
tion problem with linear inequality constraints, we can apply an adaptive barrier algorithm implemented in
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the free software environment R. Although in principle the optimal solution can occur on the boundary of
the feasible region, e.g., dj2 = 0 for some j, we do not observe such occurrence in our numerical experiments.
The problem of updating d3 has exactly the same form as that of updating d2; we thus omit the details.

Beside the group `0 penalty used in the paper, we may also consider the group lasso penalty (Yuan and
Lin, 2006)

ρ(γi;λ) = λ‖γi‖2. (3)

In this case, (15) is a group lasso regression problem with a single group of size m (Yuan and Lin, 2006),
which, however, does not admit an explicit solution in general. There are numerous existing methods for
efficiently solving group lasso (Huang et al., 2012); however, in our problem, naively applying a general
group lasso solver n many times in each M-step can be extremely inefficient. We thus explore further the
properties of the solution of (15), denoted as γ̂i. Based on the Karush-Kuhn-Tucker (KKT) conditions, γ̂i
satisfies

−X̃T(ỹi − X̃γ̂i) + λisi = 0,

where λi = λ/(pi1|Si|), and si is a subgradient vector of ‖γi‖2 at γ̂i, i.e., si = γ̂i/‖γ̂i‖2 if γ̂i 6= 0, and

si is a vector with ‖si‖2 < 1 if γ̂i = 0. It follows that γ̂i = 0 whenever ‖X̃Tỹi‖2 < λi, because the

above KKT condition can be satisfied with γ̂i = 0 and si = X̃Tỹi/λi. When ‖X̃Tỹi‖ ≥ λi, the solution

satisfies γ̂i = (X̃TX̃ + (λi/‖γ̂i‖)I)−1X̃Tyi. Therefore, in our implementation, we directly set γ̂i = 0 for any

‖X̃Tỹi‖2 < λi, and only otherwise a general group lasso solver is used. Since most of γi’s are expected to
be zero vectors, this approach greatly improves computational efficiency.

It is clear that the main difference between the group lasso and the group `0 penalization methods is in
their ways of adjusting for the outlying effects; while the former induces shrinkage estimation so the outlying
effects of the proteins may be partially adjusted in a continuous/smooth fashion as λ varies, the latter acts
in a discrete way, i.e., either fully adjusting for the outlying effects using the least squares solutions or doing
nothing at all. We note that the AICc and the formula for the degrees of freedom given in Section 3.4 still
apply.

2 Connections to Trimmed Likelihood

To better understand the identifiability and robustness of our proposed regularized estimation approach, we
explore its connections with other robust clustering approaches. To focus on the main idea, we consider a
generic setup of the problem, i.e., the task of clustering observations yi ∈ Rm, i = 1, . . . , n, using the group
`0 penalization approach under the eigenvalue-ratio condition A0. Our results can be readily applied to
handle replicated data and additional structural constraints.

Consider

max
Θ∈Ω,Γ

[
n∑
i=1

log

{
K∑
k=1

πkφ(yi;µk + γi(k),Σk)

}
− λ2

2

n∑
i=1

I(‖Γi‖F 6= 0)

]
, (4)

where

Ω = {(πk,µk,Σk), k = 1, . . . ,K; 0 ≤ πk ≤ 1,

K∑
k=1

πk = 1, δmax/δmin = c},

Γi = (γi(1), . . . ,γi(K)) ∈ Rm×K , Γ = {Γi; i = 1, . . . , n}, and ‖ · ‖F stands for the Frobenius norm. (The
tailored approach we use in the protein application corresponds to solving (4) with the extra structural
constraints in A1–A3 and with setting γi(k) = 0 for k 6= 1.)
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Lemma 2.1. Suppose (Θ̂, Γ̂) is a solution from solving (4). Let Ĥ = {i; ‖Γ̂i‖F 6= 0, i = 1, . . . , n} and

h = h(λ) = |Ĥ|. Then solving (4) is equivalent to

(Θ̂, Ĥ) = arg max
Θ∈Ω,H:|H|=h

[∑
i/∈H

log

{
K∑
k=1

πkφ(yi;µk,Σk)

}
+

∑
i∈H

log

{
K∑
k=1

πkφ(yi; yi,Σk)

}]
. (5)

Consider first the special case of equal and known covariances. The second term in (5) becomes a constant
h log{φ(0; 0,Σ)}. Consequently, it is easy to see that our method becomes exactly the same as the trimmed
likelihood approach, in which h observations are completely discarded to achieve the largest likelihood value
possible with the remaining (n−h) observations. More generally, when the covariance matrices are unknown,
our method still searches for h “outlying” observations, each of which is then modeled in a case-specific way,
i.e., yi ∼

∑K
k=1 πkφ(·; yi,Σk), for each i ∈ H. Alternatively, since

∑
i∈H log{

∑K
k=1 πkφ(yi; yi,Σk)} =

h log{
∑K
k=1 πkφ(0; 0,Σk)}, it can also be viewed that the h original observations are replaced by h many 0’s

from the scale mixture
∑K
k=1 πkφ(·; 0,Σk) (0 is its mode). As such, the second term in (5) essentially becomes

a penalty term on the scales of the mixture components. Intuitively, the h observations picked up by the
method tend to be the isolated points in the low-density areas of the mixture data clouds, in order to achieve
a compact mixture structure to best fit the rest of the data. In the protein application, we have restricted
γi(k) = 0 for all k 6= 1, so that the h observations are modeled as yi ∼ π1φ(·; yi,Σk) +

∑K
k=2 πkφ(·;µi,Σk);

as such, the method aims to identify the discordant proteins around the reference component.
Our method can be further reformulated through using an assignment function z(; Θ), which assigns

each observation to either the regular mixture model f(y; Θ) =
∑K
k=1 πkφ(y;µk,Σk) or its case-specific

scale mixture model
∑K
k=1 πkφ(y; y,Σk) (the same as

∑K
k=1 πkφ(0; 0,Σk)). Let α = h/n be the proportion

of identified “outliers”. Let Pn be the empirical measure Pn(·) =
∑n
i=1 δyi(·)/n where δy is the Dirac

measure. Define the distribution function of f as G(u; Θ, Pn) = Pn(f(·; Θ) ≤ u) and the quantile function
of f as Rα(Θ;Pn) = infu{G(u; Θ, Pn) ≥ α}.

Lemma 2.2. Suppose (Θ̂, Γ̂) is a solution from solving (4). Let Ĥ = {i; ‖Γ̂i‖F 6= 0, i = 1, . . . , n} and

h = h(λ) = |Ĥ| and α = h/n. Then solving (4) is equivalent to

Θ̂ = arg max
Θ∈Ω

L(Θ, Pn) ≡ EPn

[
z(·; Θ) log{

K∑
k=1

πkφ(·;µk,Σk)}+ α log{
K∑
k=1

πkφ(0; 0,Σk)}

]
, (6)

where z(·; Θ) = I{f(·; Θ) ≥ Rα(Θ;Pn)}.
The above result is from the formulation established in Lemma 2.1 together with the simple fact that∑K
k=1 πkφ(y;µk,Σk) ≤

∑K
k=1 πkφ(0; 0,Σk) for any y. Therefore, in order to achieve the best partition, it

must be true that the points with the smallest regular mixture likelihood values are assigned as outliers;
we emphasize here that the assignment function z(·; Θ) itself is a function of the model parameters. Our
method thus closely relates to the mixture model approach proposed by Fraley and Raftery (1998), in which
an additional mixture component is introduced to account for the noise, and the trimmed clustering approach
proposed by Garćıa-Escudero et al. (2008), in which the “worst” points are trimmed. From Lemma 2.2, the
main difference is that in our method, the outlying observations are still modeled in a case-specific and
data-adaptive way. Nevertheless, our method provides a new perspective of conducting the robust clustering
through the celebrated regularized estimation, while the determination of the trimming proportion then
naturally translates to the problem of tuning parameter selection. Moreover, our formulation provides more
flexibility on controlling for the extreme observations based on application needs; in the protein application,
we are able to restrict the anomaly detection only around the reference component, in order to account for
the discordant proteins.

Proof of Lemma 2.1. Recall (Θ̂, Γ̂) is the maximizer of (4). We can write

Γ̂ = arg max
Γ

[
n∑
i=1

log{
K∑
k=1

π̂kφ(yi; µ̂k + γi(k), Σ̂k)} − λ2

2

n∑
i=1

I(‖Γi‖F 6= 0)

]
.
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The above problem is separable in each Γi, i.e.,

Γ̂i = arg max
Γi

[
log{

K∑
k=1

π̂kφ(yi; µ̂k + γi(k), Σ̂k)} − λ2

2
I(‖Γi‖F 6= 0)

]
. (7)

If Γ̂i = 0, (7) becomes log{
∑K
k=1 π̂kφ(yi; µ̂k, Σ̂k)}, and if Γ̂i 6= 0, it must be true that γ̂i(k) = yi − µ̂k,

k = 1, . . . ,K, and (7) then becomes log{
∑K
k=1 π̂kφ(yi; yi, Σ̂k)}− λ2/2. Let Ĥ = {i; ‖Γ̂i‖F 6= 0, i = 1, . . . , n}

and h = h(λ) = |Ĥ|. It then follows that the maximum value of the objective function in (4) is

∑
i/∈Ĥ

log{
K∑
k=1

πkφ(yi;µk,Σk)}+
∑
i∈Ĥ

log{
K∑
k=1

πkφ(yi; yi,Σk)} − λ2

2
(n− h).

For any given λ, the number of non-zero Γ̂i is determined and hence the third term becomes a constant.
Therefore, the original problem in (4) is the same as searching for an index set of size h such that the criterion
in (5) is maximized. This proves the results.

Proof of Lemma 2.2. From Lemma 2.1 and using the fact that φ(yi; yi,Σk) = φ(0; 0,Σk), we can write

Ĥ = arg max
H:|H|=h

[
1

n

∑
i/∈H

log{
K∑
k=1

π̂kφ(yi; µ̂k, Σ̂k)}+
h

n
log{

K∑
k=1

π̂kφ(0; 0, Σ̂k)}

]
.

For any Θ, it always holds that f(y; Θ) =
∑K
k=1 πkφ(y;µk,Σk) ≤

∑K
k=1 πkφ(0; 0,Σk), for any y. Therefore,

at the point of solution when Θ = Θ̂, the estimated index set Ĥ must be corresponding to the observations
at the lower α-quartile of the values f(yi; Θ̂) =

∑K
k=1 π̂kφ(yi; µ̂k, Σ̂k). This completes the proof.

3 Problem of Unbounded Likelihood

We have also shown that the problem of unbounded likelihood in our model setup is resolved under mild
conditions similar to Garćıa-Escudero et al. (2008), so the solution of the proposed method is well defined.

Theorem 3.1. Suppose A0 holds and that any (n − h) points of the data {yi ∈ Rm; i = 1, . . . , n} are not
concentrated on less than or equal to K points. Then there exists some Θ ∈ Ω such that the maximum of
(4) is achieved.

Proof of Theorem 3.1. It suffices to consider the problem in (6). We acknowledge that the proof is similar
to that in Garćıa-Escudero et al. (2008) for the trimmed likelihood method, so we shall only sketch the main
steps here. We first show that L(Θ, Pn) is upper bounded by a simpler criterion. Let

zk(y,Θ) = I{max
j
πjφ(y;µj ,Σj) = πkφ(y;µk,Σk)}, and z̃k(Θ) = I{max

j
πjφ(0; 0,Σj) = πkφ(0; 0,Σk)}.

Then we have

z(yi; Θ) log{
K∑
k=1

πkφ(yi;µk,Σk)}+ α log{
K∑
k=1

πkφ(0; 0,Σk)},

≤z(yi; Θ) log{K max
j
πjφ(y;µj ,Σj)) + α log{K max

j
πjφ(0; 0,Σj)}

≤ logK +

K∑
k=1

z(yi; Θ)zk(yi; Θ) log(πkφ(yi;µk,Σk)) + α

K∑
k=1

z̃k(Θ) log(πkφ(0; 0,Σk)).
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Define z∗(yi; Θ) = z(yi; Θ)zk(yi; Θ) = I[{f(yi; Θ) ≥ Rα(Θ;Pn)}∩{maxj πjφ(y;µj ,Σj) = πkφ(y;µk,Σk)}].
Then we have

L(Θ, Pn) ≤ logK + EPn

{
K∑
k=1

z∗(·; Θ) log(πkφ(·;µk,Σk)) + α

K∑
k=1

z̃k(Θ) log(πkφ(0; 0,Σk))

}
. (8)

Consider a sequence {Θt}∞t=1 such that

lim
t→∞

L(Θt, Pn) = sup
Θ∈Ω

L(Θ, Pn) = M > −∞. (9)

It can be easily verified that L(Θ, Pn) is bounded from below. Since [0, 1]K is compact, we can find a
subsequence of {Θt}∞t=1 (denoted as the original one) such that πtk → πk ∈ [0, 1], 1 ≤ k ≤ K, and satisfying
for some g ∈ 0, 1, . . . ,K that µtk → µk, 0 ≤ k ≤ g, and mink>g ‖µtk‖ → ∞. We then consider a further
subsequence (denoted as the original one) admitting one of the following: (I) Σt

k → Σk, 1 ≤ k ≤ K, (II)
δtmax →∞, and (III) δtmin → 0. We show that only (I) is possible. From (8), we obtain

L(Θt, Pn) ≤ logK + EPn
{
K∑
k=1

z∗k(·; Θt)(log πtk −
m

2
log 2π − m

2
log δtmin −

1

2
(δtmax)−1‖ · −µtk‖2)

+ α

K∑
k=1

z̃k(Θt)(log πtk −
m

2
log 2π − m

2
log δtmin)}.

If δtmax → ∞, it must be true that δtmin → ∞ due to the eigenvalue-ratio condition, and consequently
L(Θt, Pn)→ −∞, leading to contradiction with (9). Now consider the case δtmin → 0. Since

L(Θt, Pn) ≤ logK + (1− α)(−m
2

log 2π − m

2
log δtmin)− 1

2
(δtmax)−1EPn

K∑
k=1

z∗k(·; Θt)‖ · −µtk‖2

+ α(−m
2

log 2π − m

2
log δtmin),

it can be shown that EPn

∑K
k=1 z

∗
k(·; Θt)‖ · −µtk‖2 ≥ c for some constant c > 0, whenever any (n− h) points

of the data are not concentrated on less than or equal to K points (Garćıa-Escudero et al., 2008, Lemma
A.2). It follows that

L(Θt, Pn) ≤ logK − m

2
log 2π − m

2
log δtmin −

1

2
(cδtmin)−1c.

If δtmin → 0, then L(Θt, Pn)→ −∞, which again contradicts with (9). Therefore, Σt
k → Σk, 1 ≤ k ≤ K.

If some πk = 0, to complete the proof, we can trivially choose some µk and Σk such that ‖µk‖ <∞ and
Σk satisfies the eigenvalue-ratio condition. It thus remains to show that when πk > 0 for k = 1, . . . ,K, we
must have g = K, so that the centers µtk all converge. That g > 0 is obvious as otherwise L(Θt, Pn)→ −∞.
Following Lemma A.4 of Garćıa-Escudero et al. (2015), for g > 0, we can show that for any y,

0 ≤ z(y; Θt) log{
K∑
k=1

πtkφ(y;µtk,Σ
t
k)} − z(y; Θt) log{

g∑
k=1

πtkφ(y;µtk,Σ
t
k)}

≤ z(y; Θt) log

1 + exp{−1

2
(δtmin)−1

K
min
g=k+1

‖µt1 − µtg‖2}{
K∑

g=k+1

πtg
πt1

(
δtmax

δtmin

)m/2} exp{1

2
(δtmin)−1‖y − µt1‖2}


→ 0
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because of the established convergence results and the fact that minKg=k+1 ‖µt1 − µtg‖2 → ∞. Moreover,
the above expression is uniformly dominated by a function of the form c1 + c2‖y‖2, by using the inequality
log(1 + a exp(y)) ≤ y + log(1 + a) for y ≥ 0. It follows from the dominated convergence theorem that

EPn

[
z(·; Θt) log{

K∑
k=1

πtkφ(·;µtk,Σt
k)}

]
− EPn

[
z(·; Θt) log{

g∑
k=1

πtkφ(·;µtk,Σt
k)}

]
→ 0.

So,

lim
t→∞

supL(Θt, Pn) ≤ lim
t→∞

EPn

[
z(·; Θt) log{

g∑
k=1

πtkφ(·;µtk,Σt
k)}+ α log{

K∑
k=1

πtkφ(0; 0,Σt
k)}

]

= EPn

[
z(·; Θ̃) log{

g∑
k=1

πkφ(·;µk,Σk)}+ α log{
K∑
k=1

πkφ(0; 0,Σk)}

]
,

where Θ̃ is a limit of the subsequence {πt1, . . . , πtg;µt1, . . . ,µtg; Σt
1, . . . ,Σ

t
g} and z(·; Θ̃) is the assignment

function which would be derived when working with the first g components. Note that the second term on
the right hand side does not depend on µk. We can then properly choose some finite µk, g + 1 ≤ k ≤ K,
to result in a strictly larger objective value. This will lead to contradiction with the optimality condition in
(9). It follows that it must be true that g = K. This completes the proof.

4 More Details on the Protein Data

The data consist of three sets of relative intensity levels of proteins along the entire secretomes of four
disease-producing strains as well as one non-disease-producing strain of C. perfringens, all of which are netB
positive. The experiment was replicated 3 times. Each set represents a biological replicate.

The proteins were digested into peptides and labeled with tandem mass tags (TMT- multiplex) (McAlister
et al., 2012; Weekes et al., 2013). The labeled peptides were identified by analysis on an Orbitrap Fusion Mass
Spectrometer followed by comparison of spectra using the SEQUEST algorithm against a Uniprot composite
database derived from C. perfringens. The tandem mass spectrometry technology used in this study was
untargeted (data-independent acquisition). The peptides were quantified based on mass-to-charge ratio
(m/z) fragment reporter ions after the peptide ion was isolated and analyzed in a tandem mass spectrometry
(MS2) experiment. MS2 fragment ions were co-isolated and co-fragmented for increasing the number of
reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). The
Peptide-spectral matches were filtered to a 1% false discovery rate.

In our data, a protein may not be observed in all three replications. Missing values in mass spectrometry
datasets occur widely and can originate from a number of sources, including from both technical and biological
reasons (Karpievitch et al., 2012; Webb-Robertson et al., 2015). Similarly in this study, the source of missing
data is a combination of technical and biological aspects. Technically speaking, sometimes the abundance
of a peptide is below the instrument’s detection limits and hence it appears as a missing value; or, a peptide
cannot be balanced by the alignment of the precursor maps, leading to missing values (Lazar et al., 2016).
In our protein data, a small fraction of observations contained relative intensity values of zero. To avoid
unbounded LIR values, these proteins were not used in the statistical analysis, and have to be directly
examined by the biologists. Alternatively, one could replace the zero relative intensity values by a small
positive number ε so that the LIR values would be finite, but the choice of the ε could be arbitrary. Since the
main focus of the paper is on demonstrating the robust clustering methods, we did not pursue this approach
in the paper.
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5 Additional Simulation Results

We report additional simulation results from the null model without mean shift (Table 1), the simulation
model in the paper with β = 1 (Table 2) and β = 2 (Table 3), and a simulation setup using multivariate t
mixture (Table 4).

Table 1: Simulation: the null model without mean-shifted points.

Oracle PenN-Mix PenN-Mix(0) Uni-Mix K-Means T-Mix N-Mix TrimN-Mix

η% = 0%

MSE(µ) mean 0.004 0.004 0.004 0.147 0.051 0.005 0.006 0.005
sd 0.002 0.002 0.002 0.145 0.020 0.003 0.003 0.003

MSE(Σ) mean 0.003 0.003 0.003 0.260 0.317 0.280 0.281 0.289
sd 0.001 0.001 0.001 0.017 0.011 0.013 0.013 0.013

FNR mean 2.50% 2.05% 2.50% 69.16% 0.81% 4.30% 3.59% 4.27%
sd 0.90% 0.80% 0.90% 4.82% 0.48% 1.25% 1.08% 1.26%

FPR mean 0.44% 0.56% 0.44% 0.07% 8.13% 0.91% 1.17% 0.93%
sd 0.19% 0.21% 0.19% 0.08% 1.27% 0.30% 0.34% 0.32%
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Table 2: Simulation: the magnitude of the mean-shift is set to β = 1 and the probability that the data
experiences a mean shift is varied, η% ∈ {5%, 10%, 15%}.

Oracle PenN-Mix PenN-Mix(0) Uni-Mix K-Means T-Mix N-Mix TrimN-Mix

η% = 5%, β = 1

MSE(µ) mean 0.005 0.010 0.011 0.229 0.061 0.393 0.424 0.008
sd 0.002 0.006 0.006 0.200 0.031 0.150 0.109 0.004

MSE(Σ) mean 0.003 0.005 0.006 0.260 0.314 0.387 0.398 0.357
sd 0.001 0.002 0.002 0.019 0.018 0.077 0.080 0.015

FNR mean 2.40% 1.80% 2.40% 71.13% 0.85% 2.89% 2.60% 14.70%
sd 1.19% 1.00% 1.17% 7.23% 0.50% 1.15% 1.15% 2.00%

FPR mean 0.41% 1.86% 1.73% 0.10% 9.02% 8.43% 9.08% 0.90%
sd 0.19% 0.61% 0.53% 0.09% 2.94% 2.47% 1.39% 0.39%

η% = 10%, β = 1

MSE(µ) mean 0.004 0.014 0.022 0.325 0.053 0.779 0.766 0.009
sd 0.002 0.008 0.017 0.234 0.027 0.167 0.149 0.005

MSE(Σ) mean 0.003 0.006 0.009 0.250 0.302 0.496 0.481 0.389
sd 0.001 0.002 0.004 0.021 0.017 0.099 0.110 0.015

FNR mean 2.44% 1.79% 2.60% 70.89% 0.87% 4.68% 4.09% 23.42%
sd 0.92% 0.78% 0.87% 8.72% 0.49% 2.05% 2.42% 3.36%

FPR mean 0.43% 2.55% 2.54% 0.10% 8.38% 15.00% 15.36% 0.80%
sd 0.17% 0.84% 0.97% 0.11% 2.79% 2.13% 1.27% 0.35%

η% = 15%, β = 1

MSE(µ) mean 0.004 0.014 0.025 0.387 0.051 1.069 1.146 0.014
sd 0.002 0.009 0.024 0.271 0.027 0.929 0.714 0.014

MSE(Σ) mean 0.003 0.006 0.011 0.247 0.296 0.569 0.580 0.420
sd 0.001 0.002 0.007 0.017 0.016 0.403 0.339 0.015

FNR mean 2.38% 1.84% 2.83% 69.79% 0.84% 11.94% 8.99% 31.33%
sd 1.02% 0.83% 1.13% 9.48% 0.46% 15.80% 12.99% 4.12%

FPR mean 0.41% 2.65% 2.74% 0.10% 8.12% 17.64% 20.91% 0.64%
sd 0.16% 1.03% 1.49% 0.12% 3.20% 7.95% 3.79% 0.34%
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Table 3: Simulation: the magnitude of the mean-shift is set to β = 2 and the probability that the data
experiences a mean shift is varied, η% ∈ {5%, 10%, 15%}.

Oracle PenN-Mix PenN-Mix(0) Uni-Mix K-Means T-Mix N-Mix TrimN-Mix

η% = 5%, β = 2

MSE(µ) mean 0.004 0.033 0.133 0.106 0.075 0.050 0.293 0.007
sd 0.002 0.023 0.043 0.083 0.187 0.021 0.406 0.003

MSE(Σ) mean 0.003 0.051 0.179 0.268 0.291 0.392 0.324 0.327
sd 0.001 0.035 0.056 0.017 0.016 0.224 0.272 0.017

FNR mean 2.44% 2.17% 2.86% 64.65% 0.77% 2.50% 5.02% 8.93%
sd 0.93% 0.88% 1.08% 7.93% 0.47% 1.18% 8.30% 2.50%

FPR mean 0.41% 3.19% 5.44% 0.15% 9.71% 6.82% 6.87% 0.83%
sd 0.17% 1.02% 0.56% 0.12% 10.76% 0.83% 0.75% 0.32%

η% = 10%, β = 2

MSE(µ) mean 0.004 0.017 0.389 0.096 0.204 1.796 1.086 0.008
sd 0.002 0.023 0.069 0.065 0.479 1.632 1.318 0.005

MSE(Σ) mean 0.003 0.025 0.424 0.275 0.270 1.502 1.024 0.348
sd 0.001 0.034 0.071 0.017 0.020 1.483 1.146 0.019

FNR mean 2.43% 2.53% 3.76% 60.78% 0.81% 27.35% 16.96% 13.39%
sd 1.07% 1.05% 1.50% 8.06% 0.52% 26.15% 21.68% 3.43%

FPR mean 0.44% 2.33% 10.59% 0.21% 16.70% 28.74% 9.56% 0.76%
sd 0.20% 1.16% 0.81% 0.16% 25.37% 35.22% 7.06% 0.34%

η% = 15%, β = 2

MSE(µ) mean 0.004 0.010 0.629 0.087 0.378 2.008 0.981 0.009
sd 0.002 0.008 0.108 0.049 0.674 1.378 1.124 0.005

MSE(Σ) mean 0.003 0.013 0.615 0.282 0.248 2.277 0.857 0.371
sd 0.001 0.013 0.134 0.015 0.034 3.819 0.895 0.016

FNR mean 2.44% 3.06% 4.23% 57.07% 0.68% 33.27% 15.32% 18.23%
sd 0.98% 1.04% 1.55% 7.31% 0.54% 18.65% 17.86% 3.71%

FPR mean 0.44% 1.69% 15.50% 0.28% 25.73% 69.91% 13.74% 0.71%
sd 0.19% 0.85% 0.83% 0.20% 35.21% 39.28% 15.96% 0.33%

9



0.0

0.5

1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00
Magnitude of shift

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 

fo
r 

m
e

a
n

s

Oracle PenN−Mix TrimN−Mix K−Means T−Mix

Shift% 0.05 0.1 0.15

0.0

0.5

1.0

1.5

2.0

1.00 1.25 1.50 1.75 2.00
Magnitude of shift

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 

fo
r 

c
o
va

ri
a

n
c
e

s

Oracle PenN−Mix TrimN−Mix K−Means T−Mix

Shift% 0.05 0.1 0.15

0.0

0.2

0.4

0.6

1.00 1.25 1.50 1.75 2.00
Magnitude of shift

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

Oracle PenN−Mix TrimN−Mix K−Means T−Mix

Shift% 0.05 0.1 0.15

0.0

0.1

0.2

0.3

1.00 1.25 1.50 1.75 2.00
Magnitude of shift

F
a

ls
e

 n
e

g
a

ti
ve

 r
a

te

Oracle PenN−Mix TrimN−Mix K−Means T−Mix

Shift% 0.05 0.1 0.15

Figure 1: Simulation: performance of different methods with varying shift proportions and shift magnitudes.
Oracle: the three-component normal mixture model fitted without proteins of discordant change; PenN-Mix:
the proposed penalized and constrained normal mixture model; TrimN-Mix: the trimmed normal mixture
model; K-Means: the K-means clustering method; T-Mix: the multivariate t-mixture model.
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Table 4: Simulation: data are generated from multivariate t distributions. Specifically, the data from the
reference distribution are from multivariate t with 5 degrees of freedom, while the data from the other two
components are from multivariate t with 10 degrees of freedom. The rest of setup is exactly the same as the
multivariate normal simulation model in the paper. The magnitude of the mean-shift is set to β = 2 and
the probability that the data experiences a mean shift is varied, η% ∈ {5%, 10%, 15%}.

Oracle PenN-Mix PenN-Mix(0) Uni-Mix K-Means T-Mix N-Mix TrimN-Mix

η% = 5%, β = 2

MSE(µ) mean 0.043 0.137 0.229 1.251 0.126 0.212 0.800 0.013
sd 0.015 0.034 0.048 0.919 0.217 0.086 1.013 0.010

MSE(Σ) mean 0.255 0.434 0.537 0.228 0.227 0.249 0.577 0.228
sd 0.063 0.081 0.084 0.078 0.013 0.098 0.672 0.018

FNR mean 6.49% 5.55% 7.42% 74.94% 1.46% 2.66% 11.23% 8.16%
sd 1.54% 1.44% 1.74% 16.16% 0.63% 1.92% 16.46% 2.27%

FPR mean 6.79% 12.06% 13.44% 1.26% 18.59% 15.68% 15.40% 5.75%
sd 0.83% 1.13% 1.02% 1.11% 11.58% 2.27% 1.74% 1.26%

η% = 10%, β = 2

MSE(µ) mean 0.040 0.115 0.456 0.888 0.218 3.039 2.243 0.012
sd 0.015 0.044 0.089 0.730 0.426 1.480 1.576 0.015

MSE(Σ) mean 0.242 0.433 0.747 0.212 0.205 1.224 1.651 0.259
sd 0.054 0.098 0.094 0.046 0.015 1.034 1.113 0.021

FNR mean 6.25% 5.53% 8.50% 63.93% 1.36% 42.54% 34.87% 11.67%
sd 1.48% 1.31% 2.26% 14.30% 0.62% 22.14% 24.94% 2.75%

FPR mean 6.45% 11.73% 18.58% 1.87% 23.11% 59.56% 16.33% 4.85%
sd 0.87% 1.61% 1.10% 1.38% 21.60% 35.16% 3.24% 1.12%

η% = 15%, β = 2

MSE(µ) mean 0.038 0.072 0.700 0.680 0.302 3.444 2.029 0.123
sd 0.015 0.030 0.107 0.383 0.536 0.918 1.456 0.660

MSE(Σ) mean 0.234 0.378 0.899 0.218 0.191 1.864 1.436 0.286
sd 0.054 0.090 0.104 0.076 0.021 1.095 1.013 0.035

FNR mean 5.96% 5.92% 9.48% 56.44% 1.49% 47.82% 32.06% 16.82%
sd 1.44% 1.42% 1.90% 16.52% 0.66% 15.15% 24.53% 8.77%

FPR mean 6.29% 10.02% 23.74% 2.27% 27.38% 87.12% 21.05% 6.27%
sd 0.81% 1.61% 1.23% 1.23% 27.33% 14.37% 14.05% 12.92%
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