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Perturbative gauge theory as a 
string theory in twistor space  
Edward Witten. Dec 2003.

http://inspirehep.net/record/635599
http://inspirehep.net/record/635599
http://inspirehep.net/author/profile/Witten%2C%20Edward?recid=635599&ln=en


NEW CALCULATIONS

DISCOVERING NEW STRUCTURE

INSIGHT TO OTHER PREDICTIONS

INNOVATIVE WAYS OF (RE)-CALCULATING



NEW 
CALCULATIONS

DISCOVERING NEW 
STRUCTURE

INSIGHT TO OTHER 
PREDICTIONS

INNOVATIVE WAYS OF 
(RE)-CALCULATING



A KEY STRUCTURAL DEVELOPMENT:

Lots of theories’ predictions are related to 
each other

A Relation Between Tree Amplitudes of Closed and Open Strings  
H. Kawai, D.C. Lewellen, S.H.H. Tye. Sep 1985.

New Relations for Gauge-Theory Amplitudes  
Z. Bern, JJMC, Henrik Johansson May 2008

Scattering in Three Dimensions from Rational Maps  
Freddy Cachazo, Song He, Ellis Ye Yuan. Jun 12, 2013.

KLT

BCJ

CHY

they have a Double Copy structure

and are built out of shared ingredients:
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Color-Kinematics and 
Double Copy Construction



Consider a Villanelle















•Minimal information in.

•Relations propagate this 
information to a full solution.

What’s going on?



Consider an Amplitude
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Color and Kinematics dance together.

Solving Yang-Mills theories means 
solving Gravity theories.

Bern, JJMC, Johansson (’08,’10)



Color factors and 
numerator factors 

satisfy similar lie algebra 
properties

Color-Kinematic Duality!

Jacobi

Vertex 
Antisymmetry

= +

= -

Bern, JJMC, Johansson (’08,’10)

Generic D-dimensional YM theories have a 
fascinating structure at tree-level

Atreem =
X

G2cubic

c(G)n(G)
D(G)



Bern, JJMC, Johansson (’08,’10)

�iM tree
n =

X

G2cubic

n(G)ñ(G)
D(G)

YM’s Color-Kinematic duality makes 
manifest gravitational double copy structure:

Generic D-dimensional YM theories have a 
fascinating structure at tree-level

Atreem =
X

G2cubic

c(G)n(G)
D(G)



GR = YM^2
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CONJECTURE: for all graphs, can impose CK on every edge:

Consequence of unitarity: double copy structure holds.
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Consequence of unitarity: double copy structure holds.



Double-copy
Numerator
Algebra

The scattering amplitudes of many  
relativistic theories admit a: 

This points to previously 
hidden structure in many 

theories.

Structure yet to be generally 
understood at the level of 

the action.
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Many theories amplitudes are double copy!



Bi-Adjoint Scalar: color

spin-1

(S)Gr (…(S)Einstein-YM…):

NLSM / Chiral Lagrangian: “color”

(S)Born-Infeld:

⌦
⌦
⌦
⌦
⌦

(S)YM (…(S)QCD…):

Open String:

Closed String:

spin-1

even-spin-0

color

color

spin-1

even-spin-0spin-1

⌦Special Galileon: even-spin-0even-spin-0

MANY Theories are Double CopiesKey Point:

BCJ (’08) Bjerrum-Bohr, Damgaard, Vanhove; Steiberger; Feng et al; Mafra, Schlotterer, (’08-’11); Johansson, Ochirov

Bern, de Freitas, Wong (’99); Bern, Dennen, Huang; Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O’Connell

KLT(’86); BCJ (’08); Chiodaroli, Gunaydin, Johansson, Roiban; Johansson, Ochirov; Johansson, Kälin, Mogull

Chen, Du ’13

Cachazo, He, Yuan ’14

Broedel, Schlotterer, Stieberger

Broedel, Schlotterer, Stieberger; 

⌦ spin-1↵0Cachazo, He, Yuan ’14

⌦spin-1 corrected spin-1↵0

Z-theory:
Broedel, Schlotterer, Stieberger; JJMC, Mafra, Schlotterer

⌦ “color”↵0

Cachazo, He, Yuan ’14 Cheung, Shen ’16

Cheung, Shen ’16



color

MANY Theories are Double CopiesKey Point:

spin 0,1/2,1

↵0

Bi-Adjoint Scalar (S)Gr  
(…(S)Einstein-YM…)

(S)Born-Infeld

(S)YM  
(…(S)QCD…)

Open String Closed String

NLSM

Ingredients:

Z-theory

Special Galileon

For all these theories:



Physics = Geometry
(the best polytopes are graphs of graphs!)

a geometric guide to color-kinematics 



t̂

û

Color-Kinematics
c(g)

n(g)

Convenient language: graphs of graphs
JJMC



Graphs contributing to an ordered tree (color-stripped), 
generate the 1-skeleton of Stasheff polytopes joined only by 

t̂

t̂ Note: same color-order!

(these polytopes are also called associahedra)

5pt example

JJMC



You might think you need (m-2)! of these color-ordered 
amplitudes to capture everything because this is what 

is required to touch every vertex at least once:

JJMC



In fact, such a choice is the KK-basis, proven sufficient by 
Del Duca, Dixon, and Maltoni

You might think you need (m-2)! of these color-ordered 
amplitudes to capture everything because this is what 

is required to touch every vertex at least once:

JJMC



 But notice, because of color-kinematics, only (m-2)! 
nodes are needed to specify both the color factors and 

numerator factors of everyone
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This reduces the set of necessary color-ordered 
amplitudes (associahedra) to (m-3)! : “BCJ” relations

 But notice, because of color-kinematics, only (m-2)! 
nodes are needed to specify both the color factors and 

numerator factors of everyone

JJMC



(these polytopes are called permutahedra)

 At every multiplicity the masters can be chosen to form 
the 1-skeleton of a polytope related by on every internal 
edge of the relevant scattering graphs

û

123

213

231

321

312

132

x y z

45

û

û

û û

û

û

JJMC



(generalized gauge freedom)

Can linearly solve for the (m-2)! numerators of the masters 
in terms of the (m-3)! “BCJ” independent color-ordered 
amplitudes. In fact you get (m-3)! numerators in terms of the 
color-ordered amplitudes and (m-3)(m-3)! free functions.

JJMC



Building blocks at 6-points:

color-ordered amplitude

associahedron

set of masters

permutahedron

JJMC



105 
cubic graphs at 6 pt 

JJMC



x y z

56

w
masters fixed by 6

set of masters full amplitude

JJMC



1. Gauge invariant building blocks that speak to 
the theory: color-ordered amplitudes, associahedra 

2. CK means only need to specify the boundary 
data: the master graphs, given by the relevant 
permutahedron 

3. Can solve for the full amplitude efficiently in 
terms of the (n-3)! independent associohedra

TREE-LEVEL SUMMARY

physics <—> geometry

= f( )
(linear)

JJMC



Full YM:

Atreem =
X

G2cubic

c(G)n(G)
D(G)

spin-1⌦color

color-stripped YM

Atree
m (⇢) =

X

G2⇢

n(G)
D(G)

(same as kinematic-
stripped gravity 

 �iM tree
n =

X

G2cubic

n(G)ñ(G)
D(G) )

kinematic-stripped YM

Ctree
m (⇢) =

X

G2⇢

c(G)
D(G)

(same as color-stripped 
Bi-Adjoint Scalar 

 
)Ctree

m (⇢) =
X

G2cubic

c(G)c̃(G)
D(G)

Can (pseudo) invert:
= f( )
(linear)

n(G) =
X

⇢

D(G|⇢)A(⇢)



Can only (pseudo) invert iff A(1,2, ) aren’t independent 

n(G) =
X

⇢

D(G|⇢)A(⇢)

�

This means additional relations giving (n-3)! BCJ relations:

A(1, 2,�) =
X

�,⇢

f�,⇢A(1, 2, ⇢, n)

If assume A’s proportional to gen. Park-Taylor factors 
can derive the scattering equations.

Scattering equations [see also Dolan’s talk]

Universal, independent of dim or theory: scattering equations

Ea :=
nX

b=1
b 6=a

sa b
�a � �b

= 0, 8a 2 {1, 2, . . . , n}.

key idea: auxiliary space that “knows” locality & unitarity

I kinematic space of n massless particles Kn

I moduli space of n-punctured Riemann spheres M0,n

I the equations map singularities in Kn to those of M0,n

) massless tree amps from solutions of the equations on M0,n

Cachazo, He, Yuan

Gross, Mende 

Witten ; Roiban, Spradlin, Volovich

High energy strings:
4D connected prescription twistor strings:

D-dimensions YM+Grav+….

Foundation of the powerful and elegant CHY formalism. 
(See Yvonne’s talk)



color-kinematics KLT-type relations
Bern, JJMC, Johansson (2008)

Field theory KLT-type matrix Bern, Dixon, Perelstein, Rozowsky (1999)

/ momentum kernel
Bjerrum-Bohr, Damgaard,Sondergaard, Vanhove (2011)

Bjerrum-Bohr, Damgaard, Feng, Sondergaard (2010)

Mtree
m =

X

G2cubic

n(G)ñ(G)
D(G)

=
X

g2cubic,⇢,⌧

(D(g, ⇢)A(⇢))(D(g, ⌧)Ã(⌧))

D(g)

=
X

⇢,⌧

A(⇢)

0

@
X

g2cubic

D(g, ⇢)D(g, ⌧)

D(g)

1

A Ã(⌧))

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)Ã(⌧)



⇢2 ⇢n�1

1 n

c(⇢) =

color-kinematicsKLT-type relations

=
X

⇢

A(⇢)c(⇢)  Del Duca, Dixon, Maltoni (1999)

Atree
m (⇢)=

X

G2cubic

n(G)c(G)
D(G)

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)C(⌧)
⇢3

color weights of permutahedron:
relies only on color-Jacobi satisfaction

c(⇢) =
X

⌧

S0(⇢|⌧)C(⌧) D(g(⇢)|⌧) = S0(⇢|⌧)



⇢2 ⇢n�1

1 n

⇢3

kinematic weights of permutahedron:
relies only on kinematic-Jacobi satisfaction

Mtree
m (⇢)=

X

G2cubic

n(G)ñ(G)
D(G)

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)Ã(⌧)

=
X

⇢

A(⇢)ñ(⇢) ñ(⇢) =

DDM basis for 
Gravity!

Closed form (non-local) color-dual numerators:

ñ(⇢) =
X

⌧

S0(⇢|⌧)Ã(⌧) Kiermier; Bjerrum-Bohr, Damgaard, 
Sondergaard, Vanhove (2010)

color-kinematicsKLT-type relations



By introducing ansatze. 

By introducing massive over-redundancy in graphs:

He, Schlotterer, Zhang By recycling forward limits & CHY formalism:

JJMC

Can generalize c/k numerators to off-shell multi-loop:

By exploiting BRST invariance of pure-spinor superstrings: Mafra, 
Schlotterer

BCJ; BCDJR; CJ; Bern, Davies, Dennen, Huang, 
Nohle; Johansson, Ochirov; Mogull, O’Connell; 
Johanson, Kälin, Mogull; . . .

Can generalize BCJ amp relns at loops: Vanhove, Tourkine; Hohenegger, 
Stieberger; He, Schlotterer; Boels, 
Isermann 

Can take CHY tree-rep to loop integrand via ambitwistor string:
Adamo, Casali, Skinner; Geyer, Monteiro, Mason, Tourkine; He, Yuan; 
Baadsgaard, Bjerrum-Bohr, Bourjaily, Damgaard, Feng 

(FIRST 5-loop N=8 SG Calc: Form Factor!!!!)Yang



But let’s say you don’t want to do any of that.

Given a generic (non color-dual) 
representation for a gauge amplitude, and 
all you want is the related gravity 
amplitudes.

Is there a simple path forward?



YES.



The idea is natural: take all non-vanishing kinematic-Jacobi 
combinations (the triangles), double-copy them with each 
other, use this information to define off-shell contact graphs 
in the double-copy theory.

=
X

⇥

{{{9, 14, 4}, {1, 1, 1}}, {{9, 10, 7}, {1,�1, 1}}}, {{{10, 9, 7}, {1,�1,�1}}, {{10, 8, 6}, {1, 1, 1}}},
{{{11, 1, 6}, {1, 1, 1}}, {{11, 15, 14}, {1, 1, 1}}}, {{{12, 2, 7}, {1, 1, 1}}, {{12, 15, 13}, {1,�1, 1}}},

{{{13, 3, 8}, {1, 1, 1}}, {{13, 12, 15}, {1, 1,�1}}}, {{{14, 4, 9}, {1, 1, 1}}, {{14, 11, 15}, {1, 1, 1}}},
{{{15, 12, 13}, {1,�1,�1}}, {{15, 14, 11}, {1, 1, 1}}} (14)

The list contains the number of the graph and the sign with which the color factor enters the
Jacobi relation. For example, for the graph 15, defined by the pair of propagators {s2,3, s1,4},
the two color Jacobi relations are

c15 � c12 � c13 = 0 c15 + c14 + c11 = 0 . (15)

Of the 30 functions k(1)
i,1 and k

(1)
i,2 , 6 are determined by the requirement that the YM amplitude

is invariant; thus, there are superficially 24 generalized gauge parameters.

C5
YM =

X

i1,i2

n̂

i1i2ci1i2

d

(1)
i1
d

(2)
i2

⌘
X

i

n̂

i

c

i

d

(1)
i,1 d

(1)
i,2

. (16)

In terms of the functions k(1)
i,1 and k

(1)
i,2 , the supergravity cut is

C5
SG =

X

i

n

i

n

0
i

d

(1)
i,1 d

(1)
i,2

�
X

i

(d(1)
i,1 k

(1)
i,1 + d

(1)
i,2 k

(1)
i,2 )(d

(1)
i,1 k

0(1)
i,1 + d

(1)
i,2 k

0(1)
i,2 )

d

(1)
i,1 d

(1)
i,2

. (17)

The same triplets of graphs and signs above define the violations of the kinematic Jacobi
relations. We will denote them by J

i,1 and J

i,2 if the Jacobi relation involves the first or second
propagator of graph i, respectively.

J

i,1 = s

i11ni11 + s

i12ni12si13ni13 J

i,2 = s

i11ni21 + s

i22ni22 + s

i23ni23 (18)

The numerator n
i11 corresponds to the first entry of the first triplet for graph i in the list (14),

etc; s
i11 is the sign corresponding to that entry. Simmilary, n

i21 corresponds to the first entry
of the second triplet for graph i in the list (14), etc; s

i21 is the sign corresponding to that entry.
Only 5 of the 30 J-s thus defined are independent.
5 of the 26 free k

(1)
i,1 and k

(1)
i,2 functions are determined in terms of J-s; the rest simply

dropout of the expression of the supergravity cut. The relations between momentum invariants
is important.

There are many equivalent ways to package the resulting cut. The most symmetric and
apparently parametrization-independent form is

C5
SG =

X

i

n

i

n

0
i

d

(1)
i,1 d

(1)
i,2

� 1

6

X

i

J

i,1J
0
i,2 + J

i,2J
0
i,1

d

(1)
i,1 d

(1)
i,2

. (19)
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Bern, JJMC, Chen, Johansson, Roiban (2017)



How does this come together for a full integrand?



Unitarity

Bern, Dixon, and 
Kosower (‘96)

Bern, Dixon, Dunbar, 
and Kosower (‘94,’95)

Britto, Cachazo, and 
Feng (’04)



SPANNING CUTSMethod of Maximal Cuts
Developed in: arXiv:0705.1864, Z.Bern, JJMC, H. Johansson, D. Kosower.  

applied to 3-loop SUGRA: arXiv:0808.4112 Z. Bern, JJMC, L. Dixon, H. Johansson, D. Kosower, R. Roiban.

ØØ

ØÿÿÿØ

HFinalAnswer,

nocutconditions!L
!|"

4 carrascoErice2008.nb

Printed by Mathematica for Students

<

leads to notion of a Minimal Spanning Set

EASY VERIFICATION



EASY VERIFICATION



EASY VERIFICATION NATURAL CONSTRUCTION
Method of Maximal Cuts
Developed in: arXiv:0705.1864, Z.Bern, JJMC, H. Johansson, D. Kosower.  

applied to 3-loop SUGRA: arXiv:0808.4112 Z. Bern, JJMC, L. Dixon, H. Johansson, D. Kosower, R. Roiban.

Ø Ø
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METHOD OF MAXIMAL CUTS

8 exposed propagators p2 = 0

Bern, JJMC, Kosower, Johansson (`07)



Full 3-loop Example



3-loop cubic graphs
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FIG. 3: The three diagrams whose kinematic numerators con-
tribute to J{1,1},1. The thick shaded (red) cross marks the
off-shell legs participating in the dual Jacobi relation. The
shaded (red) dot indicates the off-shell leg of the second am-
plitude factor.

TABLE I: A non-BCJ form of the three-loop four-point N = 4
sYM from Ref. [27]. We define τij = 2pi · pj , s = (p1 + p2)2,
t = (p2 + p3)

2 and u = (p1 + p3)
2.

Graph N = 4 sYM numerators.

(a)-(d) s2

(e)-(g) s(p25 + τ45)

(h) s(τ26 + τ36)− t(τ17 + τ27) + st

(i) s(p25 + τ45)− t(p25 + τ56 + p26)− (s− t)p26/3

where we used the shorthand notations J (1)
1,i3
≡ J{1,1},1,i3 ,

etc. and J (1,2)
i3

≡
∑

i1
Ji1,{1,1},i3 , etc. As in Eq. (8), we

have suppressed the second upper index on d(v,j)i because
it takes a single value. We have also derived general for-
mulae for cuts with 4× 5 and 6-point amplitude factors,
which we will present together with the N = 8 super-
gravity five-loop four-point integrand [26].

One subtlety is that, in special cuts, momentum con-
servation can force on shell an internal propagator of a
tree amplitude, leading to a 1/0 divergence. This is asso-
ciated with bubble on external leg or tadpole diagrams,
which in dimensionally regulated massless theories inte-
grate to zero. In N = 8 supergravity the simplest pre-
scription is to take such contributions to vanish whenever
a corresponding numerator vanishes and, if the cancella-
tion occurs between terms (which can leave finite pieces
behind) to take advantage of the asymmetry of the for-
mulæ to choose a labeling that avoids this situation.

Locality and dimension counting imply that contact
terms become simpler as the level increases. For exam-
ple, the contact term numerators at the N6MCs level in
the five-loop four-point amplitude of N = 8 supergrav-
ity are just a linear combination of s2, st and t2. Thus,
in practical calculations, it is more efficient to determine
the high-level contact terms by numerically evaluating
the generalized cuts.

Examples— The three-loop four-point amplitude of
N = 8 supergravity is well studied [3, 4, 27, 28] and serves
as a useful illustration. We will reconstruct it here from
the corresponding N = 4 sYM amplitude of Ref. [27]
whose numerators are displayed in Table I with the mo-
mentum labeling in Fig. 2(a)-(i) (corresponding to the
one of Ref. [3]). As in the normalization of Ref. [3], an

overall factor of stAtree
4 is removed. Following our pro-

cedure, the N = 8 supergravity numerators of diagrams
(a)–(l) are squares of the correspondingN = 4 sYM ones:

NN=8
(x) = n2

(x) , x ∈ {a–i} . (13)

Contact diagrams can appear only at the N2MC level.
There are a total of 62 possible independent such con-
tact terms. Of these, all but the four diagrams (j)-(m)
in Fig. 2 vanish. As an example, consider the contact di-
agram in Fig. 2(l), composed of two four-point vertices.
We obtain it from Eq. (10). First, we identify the nine
cubic diagrams that contribute to it (some are vanish-
ing) and pick one whose numerator we label as n1,1; we
choose diagram (c) in Fig. 2. The two J-functions are
calculated by relabeling the appropriate numerators to
the labels of Fig. 3. For example, J{u1,1},1 is obtained
from the N = 4 sYM numerators of the three diagrams
shown in Fig. 3,

n1,1 = s2, n2,1 = s(t+τ26+τ36), n3,1 = s(u−τ36) , (14)

corresponding to relabeling of diagrams (c) and (g) in
Fig. 2. Summing and applying momentum conservation
gives J{1,1},1 = sτ26. Similarly, J1,{1,1} = sτ37. With
these labels the two off-shell propagators are τ26 and τ37,
so that from Eq. (10) the N = 8 supergravity contact
term numerator for diagram (l) is

NN=8
(l) = −2

J{1,1},1J1,{1,1}
τ26τ37

= −2s2 . (15)

The other three independent contact terms correspond-
ing to diagrams (j), (k) and (m), can similarly be ob-
tained from Eq. (11), with the result

NN=8
(j) = − 1

9 (s− u)2 , NN=8
(k) = NN=8

(m) = −2s2 . (16)

All nonvanishing contact terms are relabelings of these.
We have also computed the four-loop four-point am-

plitude of N = 8 supergravity using the contact-term
method described above. The results are included as a
mathematica attachment [29]. Power counting dictates
that this N = 8 amplitude can have no contact terms
beyond level k = 4, which we checked explicitly.
Generating contact term diagrams by collapsing the

propagators of the cubic-contributions in all possible
ways, we find the result is surprisingly simple. The vast
majority of contacts, 2353 of 2621, vanish outright due
to vanishing J ’s. (In this count we drop cuts where a
leg of a tree-amplitude is directly sewn to another one of
the same tree, since these do not appear in N = 8 super-
gravity.) Even the nonvanishing 268 contact terms are
remarkably simple. For example, as for the three-loop
cut (l), we evaluated the four-loop contact term given by
the second cut in Fig. 1 (corresponding to the 48th N2MC
in the attachment [29]) using Eq. (10) and found that its

Bern, JJMC, Chen, Johansson, Roiban



Graph N = 8 SG cubic numerators.

(a)-(d)

h
s2
i2

(e)-(g)

h
s(p25 + ⌧45)

i2

(h)

h
s(⌧26 + ⌧36)� t(⌧17 + ⌧27) + st

i2

(i)

h
s(p25 + ⌧45)� t(p25 + ⌧56 + p26)� (s� t)p26/3

i2

ASSIGN square of 
3-loop cubic 

graphs to N=8 SG

Bern, JJMC, Chen, Johansson, Roiban



Graph N = 8 SG cubic numerators.

(a)-(d)

h
s2
i2

(e)-(g)

h
s(p25 + ⌧45)

i2

(h)

h
s(⌧26 + ⌧36)� t(⌧17 + ⌧27) + st

i2

(i)

h
s(p25 + ⌧45)� t(p25 + ⌧56 + p26)� (s� t)p26/3

i2

ASSIGN square of 
3-loop cubic 

graphs to N=8 SG

This is just the 
starting point.

Bern, JJMC, Chen, Johansson, Roiban



automatically satisfies all of these cuts
N0 cut

Those cubic grav dressings

Bern, JJMC, Chen, Johansson, Roiban



automatically satisfies all of these cuts too

N1 cut

Those cubic grav dressings

Bern, JJMC, Chen, Johansson, Roiban



satisfy most of these cuts!

N2 cut

Those cubic grav dressings

Bern, JJMC, Chen, Johansson, Roiban



Only 4 non-
vanishing cuts

Need to add 4 
“contact” contributions

N2 cut

Bern, JJMC, Chen, Johansson, Roiban



= �1

9

X

i

Ji,1J 0
i,2 + Ji,2J 0

i,1

d(1)i,1d
(1)
i,2

….but you just write them downNeed to add 4 
contacts

Bern, JJMC, Chen, Johansson, Roiban



Some more examples



Some 5-loop examples



5-loops, a potential N2 contact

This is serious.

(5-loops is definitely not a joke)



5-loops, potential N2 contact

Contact / Missing Information you can just write down:

⇥
X

=

8 pages, local

5-loops isn’t for the faint of heart.



5-loops, potential N2 contact

(cubic graphs)

� , , , , ,

, , , , ,

, , , , �

Note: very non-planar, far from the ladder graphs.



sYM Numerator 

5-loops, potential N2 contact

�
�
�-� ��� + �� - �� + �� - �� � ��·�

��� � + �� �� - �� �� - �� �� + � ��·� �� - � ��·� �� + � ��·� �� - � ��·� �� + �� � - �� �� + �� �� - �� �� + � �� ��·� - � �� ��·� + � �� ��·� -
� �� ��·� - � �� ��·� - � �� ��·� - � �� ��·� + � �� ��·� + � �� ��·� + � �� ��·� - � �� ��·� - � �� ��·� + � �� ��·� + � �� ��·� � -

��� - �� - �� � �� �� � + �� �� �� � - �� �� �� � + � �� �� � - �� �� �� � - �� ��·� �� � - � ��·� �� � - � ��·� �� � - � ��·� �� � - � ��·� �� � +
� ��·� �� � + � �� � �� + �� �� � �� + �� �� � �� - �� ��·� � �� - �� ��·� � �� - �� ��·� � �� - �� ��·� � �� - �� �� �� �� + � �� �� �� - �� �� �� �� -
�� �� �� �� + �� �� �� �� - �� �� �� �� + � �� ��·� �� - �� �� ��·� �� + �� �� ��·� �� - �� �� ��·� �� + �� �� ��·� �� + � �� ��·� �� +
� �� ��·� �� + � �� ��·� �� + �� ��·� ��·� �� + �� ��·� ��·� �� - �� �� ��·� �� - � �� ��·� �� + �� �� ��·� �� - � �� ��·� �� + �� �� ��·� �� -
�� ��·� ��·� �� - �� ��·� ��·� �� + �� ��·� ��·� �� - � �� ��·� �� + � �� ��·� �� + � �� ��·� �� + �� ��·� ��·� �� + �� ��·� ��·� �� - �� ��·� ��·� �� +
�� ��·� ��·� �� - � �� ��·� �� + �� �� ��·� �� - � �� ��·� �� + �� �� ��·� �� - �� ��·� ��·� �� - �� ��·� ��·� �� + �� ��·� ��·� �� - �� ��·� ��·� �� +
�� ��·� ��·� �� - �� �� ��·� �� - �� �� ��·� �� - � �� � - �� � - �� � + � �� �� � - � �� �� � + � �� �� � - � �� �� � + �� �� � + �� �� ��·� � +
�� �� ��·� � + �� �� ��·� � + �� �� ��·� � + �� �� ��·� � + �� �� ��·� � + �� �� ��·� � + �� �� ��·� � - � �� � �� - � �� � �� + �� � �� - � �� �� �� -
� �� � �� - � �� � �� + �� �� �� �� - � �� �� �� + � �� �� �� - �� ��� - �� - �� � ��� + �� - �� + �� - �� � ��·� + � �� � ��·� - � �� �� ��·� +
� �� �� ��·� - � �� �� ��·� - �� �� � ��·� - �� �� � ��·� + �� �� �� ��·� + �� �� �� ��·� + �� �� �� ��·� - �� �� �� ��·� + �� �� �� ��·� +
� �� � ��·� - � �� �� ��·� + � �� �� ��·� - � �� �� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� � ��·� +
�� �� �� ��·� - �� �� �� ��·� + �� �� �� ��·� - �� �� � ��·� - �� �� � ��·� + � �� �� ��·� + � �� �� ��·� + � �� �� ��·� - �� �� �� ��·� +
� �� �� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - � �� � ��·� + � �� �� ��·� -
� �� �� ��·� + � �� �� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� -
�� �� ��·� ��·� - �� �� ��·� ��·� + � ��� + �� - �� + �� - �� � ��·� ��� + � ��·� - � ��·� + � ��·� - � ��·� � - �� �� � ��·� - �� �� � ��·� +
� �� �� ��·� + � �� �� ��·� + � �� �� ��·� - �� �� �� ��·� + � �� �� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� -
�� �� ��·� ��·� - �� �� ��·� ��·� + �� �� ��·� ��·� + �� �� ��·� ��·� - �� �� ��·� ��·� - �� �� ��·� ��·� + � �� � ��·� + � �� � ��·� + �� �� �� ��·� ��



5-loops, potential N2 contact

truth|cut =
X

g2cut

�
ng

2

dg

(truth)

KLT non-local c/k 
numerators
!

…26 pages, non-local



5-loops, potential N2 contact

�
X

g2cut

ng
2

dg

(double copy of cubic sYM)

…26 pages



5-loops, potential N2 contact

Contact / Missing Information

⇥
X

=

you just write it down!



5-loops, potential N3 contact

N3�contact = o↵ shell
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5-loops, potential N3 contact

Contact / Missing Information you just write down:

X
=

22
�

-�l2 - l2 - l2 + l2�2

�4 l22 l2 - 10 l2 l22 + 4 l23 + l22 l2 + 4 l2 l2 l2 - 5 l22 l2 + 2 l2 l22 + l23 + l22 l2 + 4 l2 l2 l2 - 5 l22 l2 +

4 l2 l2 l2 + 3 l22 l2 + 2 l2 l22 + 3 l2 l22 + l23 + l22 �2 l2 + l2 + l2 - 2 l2� + l22 �2 l2 + l2 + l2 - 2 l2� -

2 �l22 - l22 + 3 l2 �l2 + l2� - 2 l2 �l2 + l2� + 2 �l2 + l2�2� l2 +

�4 l2 - 4 l2 + 5 �l2 + l2�� l22 - 2 l23 + l2 �7 l22 - 2 l2 l2 - 2 l22 - 2 l2 l2 - 4 l2 l2 - 2 l22 +

2 l2 �2 l2 + l2 + l2 - 2 l2� - 2 l2 �3 l2 + l2 + l2 - 2 l2� - 2 �l2 - 3 �l2 + l2�� l2 - 4 l22� -

l2 �-7 l22 + 2 l2 �3 l2 + l2 + l2 - 2 l2� + 2 �l2 + l2 - 2 l2� �l2 + l2 - l2� + 2 l2 �l2 + l2 + l2���



(cubic graphs)

5-loops, potential N3 contact

Note: very non-planar, far from the ladder graphs.
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105 cubic graphs contribute to the cut.



truth|cut =
X

g2cut

�
ng

2

dg

(truth)

KLT non-local c/k 
numerators
!

+30 pages, non-local

5-loops, potential N3 contact



�
X

g2cut

ng
2

dg

(double copy of cubic YM)

…35 pages

5-loops, potential N3 contact



(Necessary N2 contacts)

5-loops, potential N3 contact
X

g2N2
contacts

Ng

dg

25 N2 contacts
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5-loops, potential N3 contact

Contact / Missing Information

X
=

22
�

-�l2 - l2 - l2 + l2�2

�4 l22 l2 - 10 l2 l22 + 4 l23 + l22 l2 + 4 l2 l2 l2 - 5 l22 l2 + 2 l2 l22 + l23 + l22 l2 + 4 l2 l2 l2 - 5 l22 l2 +

4 l2 l2 l2 + 3 l22 l2 + 2 l2 l22 + 3 l2 l22 + l23 + l22 �2 l2 + l2 + l2 - 2 l2� + l22 �2 l2 + l2 + l2 - 2 l2� -

2 �l22 - l22 + 3 l2 �l2 + l2� - 2 l2 �l2 + l2� + 2 �l2 + l2�2� l2 +

�4 l2 - 4 l2 + 5 �l2 + l2�� l22 - 2 l23 + l2 �7 l22 - 2 l2 l2 - 2 l22 - 2 l2 l2 - 4 l2 l2 - 2 l22 +

2 l2 �2 l2 + l2 + l2 - 2 l2� - 2 l2 �3 l2 + l2 + l2 - 2 l2� - 2 �l2 - 3 �l2 + l2�� l2 - 4 l22� -

l2 �-7 l22 + 2 l2 �3 l2 + l2 + l2 - 2 l2� + 2 �l2 + l2 - 2 l2� �l2 + l2 - l2� + 2 l2 �l2 + l2 + l2���



Summary
c/k + gen. gauge transforms 

can directly double-copy non-c/k representations  
resulting in add’l local higher-point contact terms

(something you can figure out more or less from tree-level considerations)

=
X

⇥



works for any double-copy theory b/c of single-copy 
properties (sYM/NLSM/Z-theory/…) 

provides a simple path forward for tough to 
crack multi loop double-copy constructions…

• Control through 5-pt => all N^2 cuts
• Control through 6-pt => all N^3 cuts
… and so on

Gen. Double Copy Summary

Multiplicity and loop-order independent!





We have the five loop N=8 SG integrand.
Bern, JJMC, Chen, Johansson, Roiban, Zeng (in preparation)



Integrand has passed many non-trivial tests

N^7 cuts verified in *independent* checks— no missing data

D=22/5 top-level UV-finite

Stay tuned for behavior in D=24/5
(may have news by Radu’s talk next week at String Theory and QG, 
Ascona, Switzerland)

(expected by everyone. anything else 
would’ve likely meant glitch in the calculation)

Reminder:  
D=24/5 at 5-loops is the first potential critical dimension challenging N=8 SG 
having the same perturbative UV behavior as N=4 sYM

DN=4 SYM
c (L) = 4 + 6/L DN=8 SG

c (5) =???
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Playful Construction



Scattering Amplitudesthe game of

free states free states
[S�matrix]

(no interactions) (no interactions)

(all the interactions!)

[S�matrix]

IN OUT

QFT, NR-QM, String Theory, 
Classical Physics…



Scattering Amplitudesthe game of

free states free states
[S�matrix]

(no interactions) (no interactions)

(all the interactions!)

[S�matrix]

IN OUT

Symmetries, 
Scaling, 

Geometry

QFT, NR-QM, String Theory, 
Classical Physics…



Playful Construction Using Double-Copy as a Principle 

1) Take theories that exhibit Double-Copy (e.g. both factors 
obey same algebra), strip one “factor” replace with something 
else that obeys the same algebra.

2) Start with generic ansatze, constrain engineering weight, 
impose algebra.

U = V ⌦W

cf. all the E-YM work of Chiodaroli, Gunaydin, Johansson,Roiban

cf. explorations by Boels; Trnka, Arkani-Hamed, Rodina; Rodoina



Open String:
Broedel, Schlotterer, Stieberger (2013) ⌦ spin-1↵0

OS(P (1, . . . , n)) = ZP ⌦A
Doubly-ordered Z-functions: obey monodromy relations on P

Chan-Paton Stripped open string 

But obey field theory (n-3)! relations on it’s field theory KLT with 
Yang-Mills A.

ZP (q1, q2, . . . , qn) ⌘ ↵0n�3
Z

�1zP (1)zP (2)...zP (n)1

dz1 dz2 · · · dzn

vol(SL(2,R))

Qn
i<j |zij |↵

0sij

zq1q2zq2q3 . . . zqn�1qnzqnq1
.

Example of playful construction



Take seriously Z-functions as encoding 
predictions for some (effective) field theory.

Replace sYM in OS with a color-stripped bi-adjoint Scalar

JJMC, Mafra, Schlotterer (2016)

Dressing with Chan-Paton factors renders something that has the 
possibility of being interpreted as doubly-colored field-theory 
scattering amplitudes: we call it Z theory. 

OS(P (1, . . . , n)) = ZP ⌦A
Z(P (1, . . . , n)) = ZP ⌦ C

Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Color-Stripped (Chan-Paton dressed) tree-level Z-amplitude:



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Now look at: Z ⌦ C

“Low energy limit” -> bi-adjoint scalar:
X

g

c̃(g)c(g)

D(g)

Higher order in :
X

g

z(g)c(g)

D(g)
↵0

both CP-weights and kinematics conspire in 
z(g) to obey algebraic identities.

Color Stripped (or Color-Ordered) tree-level Z-amplitude



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Play with CP factors. Abelian CP generators means no-longer  
a bi-colored scalar. 

Z⇥ ⌦ C =
X

g

z⇥(g)c(g)

D(g)

Color Stripped (or Color-Ordered) tree-level Z-amplitude



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Play with CP factors. Abelian CP generators means no-longer  
a bi-colored scalar. 

Z⇥ ⌦ C =
X

g

z⇥(g)c(g)

D(g)

Low energy limit: lim
↵0!0

Z⇥ ⌦ C ! NLSM

LNLSM =
1

2
Tr

⇢
@µ'

1

1� '2
@µ'

1

1� '2

�
JJMC, Mafra, Schlotterer (2016)

Color Stripped (or Color-Ordered) tree-level Z-amplitude



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Abelian Z: lim
↵0!0

Z⇥ ⌦ C ! NLSM

LNLSM =
1

2
Tr

⇢
@µ'

1

1� '2
@µ'

1

1� '2

�

(Cayley Parameterization) 

JJMC, Mafra, Schlotterer (2016)

Color Stripped (or Color-Ordered) tree-level Z-amplitude

Completely different story for the same prediction. 
Chen, Du ’13 showed obeyed (n-3)! relns. Cheung,Shen ’16 
found an action that directly gives the color-dual kinematic 
story.
LNLSM = Zaµ⇤Xa

µ +
1

2
Y a⇤Y a � fabc

✓
ZaµZb⌫Xc

µ⌫ + Zaµ(Y b
$
@µY

c)

◆



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Abelian Z: lim
↵0!0

Z⇥ ⌦ C ! NLSM

LNLSM =
1

2
Tr

⇢
@µ'

1

1� '2
@µ'

1

1� '2

�

(Cayley Parameterization) 
Completely different story for the same prediction. 
Chen, Du ’13 showed obeyed (n-3)! relns. Cheung,Shen ’16 
found an action that directly gives the color-dual kinematic 
story.
LNLSM = Zaµ⇤Xa

µ +
1

2
Y a⇤Y a � fabc

✓
ZaµZb⌫Xc

µ⌫ + Zaµ(Y b
$
@µY

c)

◆

JJMC, Mafra, Schlotterer (2016)

Somehow abelianization is encoding a story related to SSB

Color Stripped (or Color-Ordered) tree-level Z-amplitude



Z (⌧(1, 2, . . . , n)) ⌘
X

P2Sn�1

Tr(t1tP (2) · · · tP (n))Z1,P (⌧(1, 2, . . . , n))

Abelian Z: lim
↵0!0

Z⇥ ⌦ C ! NLSM
JJMC, Mafra, Schlotterer (2016)

Abelian Open 
Superstring:

He, Liu, Wu ’16; Cachazo, Cha, Mizera ’16 told us:

h⇣
lim
↵0!0

Z⇥

⌘
⌦A

i
! [NLSM⌦A]

[NLSM⌦A] = SDBIVA

For maximal sYM, 16 linearly realized, 16 nonlinearly realized,
Bergshoeff, Coomans, Kallosh, Shahbazi Van Proeyen ’13

Let’s look at it’s other copy, back to the superstring:

Color Stripped (or Color-Ordered) tree-level Z-amplitude



Order by order in higher derivatives can play all these 
constructive games (and more!) using ansatze with the 
correct ingredients. 

Open question as to what theories can be understood as 
nontrivial double copies and what their dual-stories are. 

Clearly lots of fun games yet to be played — very much an 
open field. 

U = V ⌦W

The amplitudes can still be interesting even if crazy 
from some perspectives. 



Classical Solutions



Do classical solutions double-copy?

Monteiro, O’Connell, and White, along with 
increasing list of collaborators are amassing 
evidence that the answer is yes, at least for a 
certain class of solutions. Monteiro, O’Connell, White ‘14

 Luna, Monteiro, O’Connell, White ‘15
 Luna, Monteiro, Nicholson, O’Connell, White ‘16

(See also work of Saotome & Akhoury and combinations of Anastasiou, Borsten, Duff, Hughes, Nagy)

 Luna, Monteiro, Nicholson, Ochirov, O’Connell, Westerberg, White ’16

for general perturbative solutions:  Goldberger, Ridgeway ’16

scattering on sandwich plane-waves: 
Adamo, Casali, Mason, Nekovar ’17 

Goldberger, Prabhu, Thompson ‘17



3-pt Scattering Amplitude
n(g)n(g)

d(g)

gµ⌫ � ⌘µ⌫ = kµk⌫�

Classical Solutions

Double Copy

Double Copy

c(g)n(g)

d(g)

Aa
mu = cak⌫�

(in a special class called Kerr-Schild)

Monteiro, O’Connell, and White



Schwarzschild

gµ⌫ � ⌘µ⌫ =
2GM

r
kµk⌫

kµ = {1, r̂}

Monteiro, O’Connell, and White



Schwarzschild

gµ⌫ � ⌘µ⌫ =
2GM

r
kµk⌫

kµ = {1, r̂}

The double copy of 

Aµ =
2GM

r
kµ

abelianized point charge
Monteiro, O’Connell, and White



+ Constrained solutions => can exploit for technical 
simplicity in prediction 

+ Web of relationships between theories

Classical gravity is a Double Copy?

Remind you of some of the double-copy positives:

Open question: how far can 
this go?



Beautiful body of work going into Solving and Understanding 
Properties of Scattering Eqns

…; Dolan, Goddard; Lam, Yao; Bjerrum-Bohr, Bourjaily, Damgaard, Feng;  
Du, Teng, Wu; Nandan, Pleua, Wormsbecher; He, Liu, Wu; … 

Renewed interest in soft/colinear limits and EFT:
…; Cachazo, Strominger; Cheung, Kampf, Novotny, Shen, Trnka; Nandan, Plefka, Wormsbecher; 

Nandan, Pleua, Wormsbecher; He, Liu, Wu; Broedel, de Leeuw, Plefka , Rosso; Bern, Davies, Nohle ; 
Bern,Davies , Di Vecchia, Nohle; Golden, Spradlin; Di Vecchia, Marotta, Mojaza; Duo, Luo; Kallosh; 

Kallosh, Karlsson, Murli; Nandan, Plefka, Schlotterer, Wen;Klose, McLoughlin, Nandan, Plefka, 
Travaglini; Broedel, de Leeuw, Plefka, Rosso … 

Universality in string interactions:
…; Huang, Schlotterer; Chepelev, Tseytlin; Caron-Huot,Komargodski, Sever, Zhiboedev; … 

Non-planar on-shell diagrams:
…; Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka ; Herrmann, 

Trnka, Bourjaily ; Heslop, Lipstein ; Franco, Galloni, Penante, Wen ; 
Benincasa, Gordo; …

Tons of exciting stuff I haven’t even had a chance to 
begin to talk about….

9



Physical Understanding of Integrated Multiloop Gauge Amplitudes
…; Dixon, Hippel, McLeod, Trnka Caron-Huot; Dixon, McLeod, von Hippel; [Combinations of: 

{Drummond, Gloden, Goncharov,Papathanasiou,Parker,Paulos,Spradlin,Scherlis,Vergu, Volovich}],Del 
Duca, Duhr, Smirnov; Caron-Huot; Dixon, Drummond, Henn Dixon, Drummond, Henn; Caron-Huot, He; 

Dixon, Drummond, von Hippel, Pennington; … 

Physical Aspects of Infinities in Gravity:
…; Bern, Edison, Kosower, Parra-Martinez; Bern, Chi, 

Dixon, Edison; Bern, Cheung, Chi, Davies, Dixon, Nohle; … 

Tons of exciting stuff I haven’t even had a chance to 
begin to talk about….

9

UV Properties & Anomalies in Lower SUSY SG:
…; Bern, Enciso, Parra-Martinez, Zeng; Bern, Davies, Nohle; Freedman, Kallosh, 

Murli, Van Proeyen,Yamada; Bern, Davies, Dennen; Kallosh; Bern, Davies, 
Dennen, AV. Smirnov, VA Smirnov; Bern, Davies, Tristan Dennen; Bern, Davies, 

Dennen, Y.T. Huang; JJMC, Kallosh, Tseytlyn, Roiban; … 

Recent Integration innovations:
…; Bosma, Sogaard, Zhang; Gluza, Jelinski, Kosower;  

Georgoudis), Larsen, Zhang; Kosower; Mastrolia, Peraro, Primo; Remidd, Tancredi; Gehrmann, Henn, 
Presti; Baadsgaard, Bjerrum-Bohr, Bourjaily, Damgaard; Henn; Johansson Kosower, Larsen, Søgaard; 

Eden, VA Smirnov; Feng, Chang, Chen, Gu, Zhang; AV Smirnov; von Manteuffel, Schabinger; Caron-Huot, 
Henn; Johansson, Kosower, Larsen; Pierpaolo Mastrolia, Mirabella, Ossola, Peraro ; … 

http://inspirehep.net/author/profile/Kosower%2C%20David%20A.?recid=1422274&ln=en


Integrability and Amplitudes and Correlation Functions
…; Gromov, Kazakov, Korchemsky, Negro, Sizov; Beisert, Garus, Rosso;  Brandhuber, Hughes, Panerai, 

Spence, Travaglini; Aprile, Drummond, Heslop; Brandhuber, Kostacinska, Penante , Travaglini, Young; 
Korchemsky; Eden, Heslop, Mason; Bork, Onishchenko; Brandhuber, Hughes, Spence, Travaglini; 

Eden, Sfondrini ; Chicherin, Heslop, Korchemsky, Bourjaily, Heslop, Tran; Eden, Paul; Koster, Mitev , 
Staudacher;  Sokatchev. Alday, Korchemsky;Beisert, Müller, Plefka, Vergu;  Koster, Mitev, Staudacher, 

Wilhelm;  Müller, Münkler, Plefka, Pollok,  Zarembo; Kanning, Ko, Staudacher; Ferro, Łukowsk, 
Meneghelli, Plefka, Staudacher; … 

Tons of exciting stuff I haven’t even had a chance to 
begin to talk about….

9

MZV, Polylogs, …
…; Broedel, Matthes, Richter, Schlotterer; Henn, AV Smirnov, VA Smirnov; D’Hoker; Broedel; Green, 

Gurdogan , Vanhove; Broedel, Sprenger, Orjuela; Puhlfürst, Stieberger; D’Hoker, Green, Vanhove; 
Broedel, Mafra, Matthes , Schlotterer; Broedel, Schlotterer, Stieberger, Terasoma; Brown; … 

Amplituhedron…
…; Arkani-Hamed, Thomas, Trnka; [[Ferro, Lukowski, Orta, Parisi]] ; Enciso; Dennen, Prlina, Spradlin, 

Stanojevic, Volovich; Ferro, Łukowski, Staudacher… 



NEW 
CALCULATIONS

DISCOVERING NEW 
STRUCTURE

INSIGHT TO OTHER 
PREDICTIONS

INNOVATIVE WAYS OF 
(RE)-CALCULATING




