
Supplementary material for: “Functional feature construction for

individualized treatment regimes”

The Supplementary Material provides details for the proof of the main result. Without

loss of generality throughout it is assumed that E[A] = 0.

1 Proofs

To shorten notation, we use P to denote the expectation operator taken with respect to

the joint distribution of {X,W (T), A, Y }. Thus, Theorem 3.1 from the main paper can be

re-written as follows.

Theorem 1.1. Assume (A1)-(A13). Let Kn be an increasing sequence of integers such that

Kn →∞ and Kn/n
2∆ → 0 as n→∞, then

P
∣∣Q̂Kn

n

{
X,W (T)A; θ̂n

}
−Q {X,W (T), A}

∣∣ = Op(Knn
−1/2 +K

1/2
n n−∆).

By an abuse of notation let EW denote the conditional expectation with respect to the

distribution of W (T) given T.

Recall that

Q̂Kn
n

{
x, w(t), a; θKn

}
, xᵀα +

Kn∑
k=1

βk ̂̀n,k(w(t)) + a

{
xᵀδ +

Kn∑
k=1

γk ̂̀n,k(w(t))

}
,

Q {x, w(t), a} , xᵀα +
∞∑
k=1

βk`k(w(t)) + a

{
xᵀδ +

∞∑
k=1

γk`k(w(t))

}
,

where θKn is 2(p+Kn)-dimensional parameter defined as θKn = (αT , β1, . . . , βKn , δ
T , γ1, . . . , γKn)T .
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Then Q̂Kn
n

{
X,W (T)A; θ̂n

}
−Q {X,W (T), A} can be written as B1 +B2 +B3, where:

B1 = XT (α̂− α) + aXT (δ̂ − δ) +
Kn∑
k=1

`k(W (T))(β̂k − βk) + a

Kn∑
k=1

`k(W (T))(γ̂k − γk)

B2 =
Kn∑
k=1

{̂̀
n,k(W (T))− `k(W (T))

}
(β̂k + aγ̂k)

B3 =
∞∑

k=Kn+1

`k(W (T))(βk + aγk).

Consider B3; we show that P |B3| = o(K
−ς+1/2
n ).

Notice that P |B3| ≤ EW{
∑∞

k=Kn+1 `
2
k(W (T))}1/2{

∑∞
k=Kn+1(β2

k + γ2
k)}1/2. We show next

that the term EW{
∑∞

k=Kn+1 `
2
k(W (T))}1/2 is o(1); the second term is O(K

−ς+1/2
n ), since for

example
∑∞

k=Kn+1 β
2
k is bounded above by

∑∞
k=Kn+1 k

−2ς = O(K−2ς+1
n ).

It suffice to show that
∑∞

k=Kn+1EW [`2
k{W (T)}] = o(1), since EW [

(∑∞
k=Kn+1 `

2
k{W (T)}

)1/2
] ≤√∑∞

k=Kn+1EW [`2
k{W (T)}], by using Jensen’s inequality. Let ξk =

∫
Z(t)φk(t)dt and notice

that `k{w(t)} = E[ξk|w(t)]; recall Z(·) is the latent process. Using conditional expectation

we have EW [`k{W (T)}] = E[ξk] = 0. We have

∞∑
k=Kn+1

EW [`2
k{W (T)}] =

∞∑
k=Kn+1

V ar[`k{W (T)}]

=
∞∑

k=Kn+1

V ar(E[ξk|W (T)])

≤
∞∑

k=Kn+1

{V ar(E[ξk|W (T)]) + E(V ar[ξk|W (T)])}

=
∞∑

k=Kn+1

V ar(ξk) =
∞∑

k=Kn+1

λk → 0. qed.

Consider next B2; we show that P |B2| = Op(n
−∆).

Since |B2| ≤ ‖̂̀n{W (T)}− `{W (T)}‖ ‖θ̂n‖ where ‖ ·‖ denotes the usual Euclidean norm. In
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particular, ‖̂̀n{W (T)} − `{W (T)}‖ =

[∑Kn

k=1

{̂̀
n,k(W (T))− `k(W (T))

}2
]1/2

and ‖θ̂n‖2 =

‖α̂‖2 + ‖δ̂‖2 +
{∑Kn

k=1(β̂2
k + γ̂2

k)
}

. Since ‖θ̂Kn
n ‖ = Op(1) as n → ∞ it suffices to show that

and EW‖̂̀n{W (T)} − `{W (T)}‖ = Op(n
−∆)

Recall that `{W (T)} = H(T){W (T) − µ(T)} where H(T ) = ΛΦ(T)T{G(T,T) +

σ2IM}−1 and ̂̀n,k{W (T)} = Ĥ(T){W (T)− µ̂(T)} for Ĥ(T) = Λ̂Φ̂(T)T{Ĝ(T,T)+ σ̂2IM}−1;

Using triangle inequality we have that

EW‖H(T ){W (T)− µ(T)} − Ĥ(T ){W (T)− µ̂(T)}‖

≤ EW‖{H(T )− Ĥ(T )}{W (T)− µ(T)}‖+ EW‖Ĥ(T ){µ̂(T)− µ(T)}‖

≤ ‖H(T )− Ĥ(T )‖ EW‖W (T)− µ(T)‖+ ‖Ĥ(T )‖‖µ̂(T)− µ(T)‖

where ‖ · ‖ is the Frobenius matrix norm defined as ‖H‖ = (
∑

i,j h
2
ij)

1/2 and ‖x‖ is the

usual Euclidean vector norm. It is sufficient to show that (a) EW‖W (T)− µ(T)‖ <∞, (b)

‖H(T )−Ĥ(T )‖ = Op(n
−∆), (c) ‖Ĥ(T)‖ = Op(1), and (d) ‖µ̂(T)−µ(T)‖ = Op(n

−∆). Result

(a) follows from the observation that EW‖W (T) − µ(T)‖2 =
∑M

j=1 E{W (Tj) − µ(Tj)}2 <

M supt |G(t, t)| and the fact that M <∞. The results (b)-(d) follow from employing similar

arguments as in Staicu et al. (2014) and by using assumptions (A1)-(A3) and various norm

inequalities.

Finally consider B1; we show that P |B1| = Op(Knn
−1/2 + K

1/2
n n−∆). It is easy to show

that EW [
∑Kn

k=1 `
2
k] ≤ λ1‖Σ−1‖F‖GKn‖ = O(1), where GKn is the reduced rank approximation

of the covariance of (Z(t1), . . . , Z(tM))T based only on the first Kn eigenfunctions. The fol-

lowing lemma shows that i) ‖θ̃Kn
n −θKn‖ = Op(Knn

−1/2) and ii) ‖θ̃Kn
n − θ̂Kn

n ‖ = Op(K
1/2
n n−∆).

Thus ‖θ̂Kn
n − θKn‖ = Op(Knn

−1/2 +K
1/2
n n−∆); thus P |B1| = Op(Knn

−1/2 +K
1/2
n n−∆).

It follows that P |B1 +B2 +B3| = Op(Knn
−1/2 +K

1/2
n n−∆), which concludes the proof of the

theorem.
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Lemma 1.2. Assume (A1)-(A13) and that Kn be an increasing sequence of integers such that

Kn →∞ and Kn/n
2∆ → 0 as n→∞. Denote by θKn the 2(p+Kn)-dimensional parameter

defined as θKn = (αT , β1, . . . , βKn , δ
T , γ1, . . . , γKn)T ; let θ̃Kn

n and θ̂Kn
n be the estimators in the

approximated truncated regression models QKn
n

{
x, w(t), a; θKn

}
and Q̂Kn

n

{
x, w(t), a; θKn

}
,

respectively.

Furthermore assume for convenience that E[W (t)] = 0. Then:

(i) ‖θ̃Kn
n − θKn‖ = Op(Knn

−1/2)

(ii) ‖θ̃Kn
n − θ̂Kn

n ‖ = Op(K
1/2
n n−∆)

Before we prove this result remark an important property, that n−1
∑

i ‖`(Wi)‖2 = Op(1):

1

n

n∑
i=1

‖`(Wi)‖2 =
1

n

n∑
i=1

‖ΛΦT
i Σ−1

i Wi‖2

≤ ‖Λ‖ 1

n

n∑
i=1

‖Λ1/2ΦT
i Σ
−1/2
i W̃i‖2

≤ ‖Λ‖ 1

n

n∑
i=1

W̃
T

i Σ
−1/2
i ΦiΛΦT

i Σ
−1/2
i W̃i = Op(1),

since ‖Λ‖ =
√∑Kn

k=1 λ
2
k <∞ and n−1

∑n
i=1 W̃

T

i Σ
−1/2
i ΦiΛΦT

i Σ
−1/2
i W̃i = Op(1); the last result

follows from noting that Σ
−1/2
i ΦiΛΦT

i Σ
−1/2
i is symmetric with non-negative wigenvalues that

are less than one. Here W̃i = Σ
−1/2
i Wi and is multivariate normal distributed wiht zero

mean and identity covariance.

Let Dn,i be the (2p + 2Kn) - dimensional column vector obtained by stacking the p-

dimensional vector Xi, theKn-dimensional vector `(Wi) = (`1{Wi(Ti)}, . . . , `Kn{Wi(Ti)})T ,

the p-dimensional vector aiXi and theKn-dimensional vector ai`(Wi); here we used subscript

i to refer to subject-level data. Denote by Dn the (p+Kn +p+Kn)×n - matrix with the ith

column given by Dn,i. Also denote by X is the n× p matrix obtained by row-stacking XT
i ,
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AX is the n × p matrix with rows aiX
T
i ; similarly define the n ×Kn matrices `n and A`n.

Notice that DT
n = [X|`n|AX|A`n]. From the above result we have that n−1‖Dn‖2 = Op(1).

We can view the conditional model for Yi given Xi and Wi as

Yi = DT
n,iθ

Kn +
∑

k≥Kn+1

`k(Wi)(βk + aiγk) + εi for εi ∼ N(0, σ2
Y ).

Then θ̃Kn
n is calculated as θ̃Kn

n = (DnD
T
n )−1DnY, which equals :

θ̃Kn
n =

(
1

n
DnD

T
n

)−1
[

1

n
DnD

T
n θ

Kn +
1

n

n∑
i=1

Dn,i

{ ∑
k≥Kn+1

`k(Wi)(βk + aiγk) + εi

}]

= θKn +

(
1

n
DnD

T
n

)−1
[

1

n

n∑
i=1

Dn,i

{ ∑
k≥Kn+1

`k(Wi)(βk + aiγk)

}]

+

(
1

n
DnD

T
n

)−1
(

1

n

n∑
i=1

Dn,iεi

)

LetBn(W ) = n−1
∑n

i=1Dn,i

{∑
k≥Kn+1 `k(Wi)(βk + aiγk)

}
andRn(W, ε) = n−1

∑n
i=1 Dn,iεi,

where the notation emphasizes conditional bias, given X,W ’s. Then ‖θ̃Kn
n − θKn‖2:

∥∥∥∥(
1

n
DnD

T
n )−1

∥∥∥∥2

‖Bn(W ) +Rn(W, ε)‖2 ; (1)

in the following we investigate ‖Bn(W )‖2 and ‖Rn(W, ε)‖2. We show in turn that each of

these terms is Op(n
−1Kn). The calculations are tedious and they mainly rely on the following

results: norm inequalities of the form ‖AB‖ ≤ ‖A‖‖B‖, that Σ
−1/2
i Wi ∼ Nmi

(0, Imi
) and

furthermore ‖Σ−1/2
i Wi‖2 ∼ χ2

mi
,
∑

k≥1 λk‖φik‖2 =
∑mi

j=1 G(tij, tij) ≤ M‖G‖∞, and ‖Σ−1
i ‖ ≤

σ−2
√
M . The last inequality follows from the inequality between the Frobenius and the

spectral norms, ‖R‖ ≤
√
m‖R‖2 for some m × m dimensional matrix R. Recall Σi =

cov(Wi) = Gi + σ2Imi
, and Gi is the mi × mi covariance matrix of (Z(ti1), . . . , Z(timi

))T ,
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with the (j, j′) element equal to G(tij, tij′).

Consider first the first summand ofBn(W ), which can be written as n−1
∑

k≥Kn+1 βk
∑n

i=1Dn,i`k(Wi).

We have ‖n−1
∑

k≥Kn+1 βk
∑n

i=1Dn,i`k(Wi)‖2 is bounded by

( ∑
k≥Kn+1

β2
k

)
1

n2

∑
k≥Kn+1

‖
n∑

i=1

Din`k(Wi)‖2 = Op(n
−2ςλKn) (2)

as we show next.

The first term of this product is O(K1−2ς
n ). Now we consider the second term in the

product. Specifically
∑n

i=1Din`k(Wi) has the following column-block components:

n∑
i=1

λkXiW
T
i Σ−1

i Φik =
n∑

i=1

λkXiW̃
T
i Σ
−1/2
i Φik (3)

n∑
i=1

λkΛΦiΣ
−1
i WiW

T
i Σ−1

i Φik =
n∑

i=1

λkΛΦiΣ
−1/2
i W̃iW̃

T
i Σ
−1/2
i Φik (4)

n∑
i=1

λkaiXiW
T
i Σ−1

i Φik =
n∑

i=1

λkaiXiW̃
T
i Σ
−1/2
i Φik (5)

n∑
i=1

λkaiΛΦiΣ
−1
i WiW

T
i Σ−1

i Φik =
n∑

i=1

λkaiΛΦiΣ
−1/2
i W̃iW̃

T
i Σ
−1/2
i Φik; (6)

where we used the notation W̃i = Σ
−1/2
i Wi. Recall W̃i ∼ Nmi

(0, Imi
). Thus

∑
k≥Kn+1 ‖

∑n
i=1 Din`k(Wi)‖2 =

I1 + I2 + I3 + I4 corresponding to the four pieces (3)-(6) respectively.

Consider I1. Notice that ‖
∑n

i=1 λkXiW̃
T
i Σ
−1/2
i Φik‖2 ≤

∑n
i=1 λ

2
k‖XiW̃

T
i ‖2‖Σ−1/2

i ‖2‖Φik‖2.

Thus

∑
k≥Kn+1

‖
n∑

i=1

λkXiW̃
T
i Σ
−1/2
i Φik‖2 ≤

n∑
i=1

‖XiW̃
T
i ‖2‖Σ−1/2

i ‖2

( ∑
k≥Kn+1

λ2
k‖Φik‖2

)

≤ λKnM‖G‖∞
n∑

i=1

‖XiW̃
T
i ‖2‖Σ−1/2

i ‖2

≤ λKnM
3σ−2‖G‖∞

n∑
i=1

‖Xi‖2‖W̃ T
i ‖2
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The second inequality follows from the fact that
∑

k≥Kn+1 λ
2
k‖Φik‖2 ≤ λKn

(∑
k≥Kn+1 λk

∑mi

j=1 φk(tij)
2
)
≤

λKn

∑mi

j=1(
∑

k≥Kn+1 λkφk(tij)
2); the parenthesis is less thanG(tij, tij). Thus

∑
k≥Kn+1 λk‖Φik‖2 ≤∑mi

j=1 G(tij, tij) ≤M‖G‖∞.

For the third inequality above, it is sufficient to show that ‖Σ−1/2
i ‖2 =

√
‖Σ−1

i ‖2 is

bounded (by definition of the spectral norml of a matrix ‖ · ‖2). This is because ‖Σ−1/2
i ‖2 ≤

M‖Σ−1/2
i ‖2

2. Furthermore ‖Σ−1
i ‖2 is the inverse of the smallest eigenvalue of Σi, which is

smaller than 1/σ2 (since the smallest eigenvalue of Σi is larger than σ2). Next we have

‖XiW̃
T
i ‖2 = ‖Xi‖2‖W̃i‖2. Thus

∑n
i=1 ‖Xi‖2‖W̃i‖2 = Op(n) using law of large numbers for

independent random variables, since ‖W̃i‖2 has chi-square distribution with mi degrees of

freedom, where mi < M for all i and E‖X1‖2 = Trace(E[X1X
T
1 ]) < ∞ and E‖X1‖4 < ∞.

It follows that I1 = Op(nλKn).

Consider I2; note ‖
∑n

i=1 λkΛΦiΣ
−1/2
i W̃iW̃

T
i Σ
−1/2
i Φik‖2 ≤

∑n
i=1 ‖ΛΦi‖2‖Σ−1/2

i ‖4‖W̃i‖4λ2
k‖Φik‖2.

Thus

∑
k≥Kn+1

‖
n∑

i=1

λkΛΦiΣ
−1/2
i W̃iW̃

T
i Σ
−1/2
i Φik‖2 ≤

n∑
i=1

‖ΛΦi‖2
(
‖W̃i‖2

)2

‖Σ−1/2
i ‖4

( ∑
k≥Kn+1

λ2
k‖Φik‖2

)

≤ λ1λKn (M‖G‖∞)2
n∑

i=1

‖W̃ T
i ‖4‖Σ−1/2

i ‖4

≤ λ1λKnM
4σ−4‖G‖2

∞

n∑
i=1

‖W̃ T
i ‖4.

The last expression is Op(nλKn) using the same reasoning as earlier. Similarly one can

show that the terms I3 and I4 are also of the same order, and thus I1+I2+I3+I4 = Op(nλKn).

It follows that ‖Bn(W )‖2 = O(K1−2ς
n n−2)Op(nλKn) = Op(K

1−2ς
n n−1λKn).

It is easy to note that ‖Rn(W, ε)‖2 = n−1‖n−1/2
∑n

i=1 Dn,iεi‖2 = Op(n
−1Kn). Here we

used the fact that ‖n−1/2
∑n

i=1Dn,iεi‖2 = ‖n−1/2Dnε‖2 and n−1/2Dnε ∼ N2p+2Kn(0, n−1DnD
T
n );

thus ‖n−1/2Dnε‖2 = Op(Kn)‖n−1DnD
T
n‖2 and ‖n−1DnD

T
n‖2 is the largest eigenvalue of the

matrix n−1DnD
T
n ; ‖n−1DnD

T
n‖2

2 ≤ ‖n−1DnD
T
n‖2 ≤ {n−1‖Dn‖2}2 = Op(1).
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Next, we focus on DnD
T
n :

DnD
T
n =



XTX XT `n XTAX XTA`n

`TnX `Tn`n `TnAX `TnA`n

(AX)TX (AX)T `n XTX XT `n

(A`n)TX (A`n)T `n `TnX `Tn`n


. (7)

since A`TnA`n =
∑n

i=1 a
2
i `{Wi(Ti)}`{Wi(Ti)}T = `Tn`n and similarly AXTAX = XTX

because a2
i = 1.

We know that ‖(n−1DnD
T
n )−1‖2 ≤ (2p+ 2Kn)‖(n−1DnD

T
n )−1‖2 ≤ (2p+ 2Kn)×

{λmin(n−1DnD
T
n )}−1. Notice that the eigenvalues of n−1DnD

T
n are greater or equal to zero.

In the following we show that, for n is sufficiently large, all the eigenvalues of (n−1DnD
T
n )

are positive with probability one.

Let v = (vTX1|vT`1|vTX2|vT`2)T be (2p+ 2Kn) - dimensional eigenvector of n−1DnD
T
n that we

partition according to the partition of the matrix DnD
T
n . Then the corresponding eigenvalue

λv = vT (n−1DnD
T
n )v is equal to:

= n−1{ vTX1X
TXvX1 + vT`1`

T
nXvX1 + vTX2(AX)TXvX1 + vT`2(A`n)TXvX1} (8)

+n−1{vTX1X
T `nv`1 + vT`1`

T
n`nv`1 + vTX2(AX)T `nv`1 + vT`2(A`n)T `nv`1} (9)

+n−1{vTX1X
TAXvX2 + vT`1`

T
nAXvX2 + vTX2XX

TvX2 + vT`2`
T
nXvX2} (10)

+n−1{vTX1X
TA`nv`2 + vT`1`

T
nA`nv`2 + vTX2X

T `nv`2 + vT`2`
T
n`nv`2}. (11)

It is easy to show that

(a) n−1XT `n = n−1
∑n

i=1 Xi[`{W(Ti)}]T →p 0p×Kn ;

(b) n−1XTAX = n−1
∑n

i=1AiXiX
T
i →p E[XXT ]{P (A = 1)− P (A = −1)} = 0p×p;

(c) n−1XTA`n = n−1
∑n

i=1AiXi`{Wi(Ti)}T →p 0p×Kn ;
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(d) n−1`TnA`n = n−1
∑n

i=1 ai`{Wi(Ti)}`{Wi(Ti)}T →p 0Kn×Kn .

Throughout this proof we use the following notation: Φi = Φ(Ti) is the mi × Kn ma-

trix with elements φk(tij), where φk(·) is the kth eigenfunction of the latent process Z(·);

Φik = φk(Ti) is the mi-dimensional column vector of φk(tij). Also Wi = Wi(Ti) is the mi- di-

mensional vector with elements Wi(tij), Gi = G(Ti,Ti) is the mi×mi dimensional covariance

matrix of the true process Zi at the times Ti, Z(Ti); then GKn
i = ΦiΛΦT

i is the reduced-rank

approximation based on the leading Kn eigenfunctions, where Λ = diag{λ1, . . . , λKn} is the

diagonal matrix of the eigenvalues of the true process.

Show (a). For notation simplicity assume temporarily that E[Wi] = 0 for all i; recall

that Wi’s are assumed multivariate Normal and they are independent over i. We break the

matrix into rows, and prove the result for each component q = 1, . . . , p of Xi’s in part.

The term n−1
∑n

i=1 Xiq[`{Wi}]T is Kn-dimensional multivariate normal with mean equal

to n−1
∑n

i=1E[Xiq`{Wi}T ] = 0Kn ; here we used the fact that X and Z are independent given

W and that the measurement error of W is independent of X. To show the result (a) it suffice

to show that its variance converges to zero. Recall that `(Wi) = ΛΦT
i (Gi +σ2Imi

)−1Wi; then

V ar[Xiq`{Wi}] = E[X2
iq]ΛΦT

i (Gi + σ2Imi
)−1ΦiΛ. (12)

To show that n−2
∑n

i=1 V ar[Xiq`{Wi}] → 0 it suffices to show that n−2
∑n

i=1E[X2
iq]∥∥ΛΦT

i (Gi + σ2Imi
)−1ΦiΛ

∥∥→ 0 or furthermore that

n−2

n∑
i=1

E[X2
iq]‖ΛΦT

i ‖ ‖(Gi + σ2Imi
)−1‖ ‖ΦiΛ‖ → 0. (13)

We have that
∥∥ΛΦT

i

∥∥2
=
∑Kn

k=1

∑mi

j=1 λ
2
kφk(tij)

2 ≤ λ1

∑mi

j=1 G(tij, tij) ≤ λ1M‖G‖∞. Here

we used the facts that G(tij, tij) =
∑∞

k=1 λkφ
2
k(tij), M = supi=1,...,nmi, and ‖G‖∞ =

9



supt,t′ |G(t, t′)| is finite as G(·, ·) is continuous bivariate function defined on compact space.

Furthermore using matrix inequalities we have ‖(Gi/σ
2 + Imi

)−1‖ ≤ √mi‖(Gi/σ
2 +

Imi
)−1‖2; see Golub and Van Loan (2012). The last inequality is bounded up by

√
M ‖(Gi/σ

2+

Imi
)−1‖2. We show next that ‖(Gi/σ

2 + Imi
)−1‖2 ≤ 1. Here ‖G‖2 denotes the spectral norm

(= maximum eigenvalue when the matrix is real-valued). Let G̃i = Gi/σ
2; Gi is positive

semidefinite, e.g. aT G̃ia ≥ 0 for all a, and thus it admits non-negative eigenvalues. Then

G̃i + Imi
has positive eigenvalues which furthermore are 1 or larger; it follows that G̃i + Imi

is invertible and furthermore the largest eigenvalue of (G̃i + Imi
)−1 is at most 1; equivalently

‖(G̃i + Imi
)−1‖2 ≤ 1. This part concludes as the left hand side of (13) is bounded up by

E[X2
1q](λ1/σ

2)M‖G‖∞/n which goes to zero as n→∞.

Show(b). This is straightforward since E[A] = 0.

Show(c). The result follows from (a) and (b).

Show(d). The result follows from (b) and from the fact that A and W are independent.

Observe that the weak law of large numbers yields limn→∞ n
−1XTX = limn→∞ n

−1
∑n

i=1 X
T
i Xi →p

E[XT
1 X1] which is not singular and vTXE[XT

1 X1]vX ≥ ‖vX‖2λmin(E[XT
1 X1])

Consider next n−1
∑n

i=1 v
T
` `(Wi)`

T (Wi)v` = n−1
∑n

i=1(vT` Λ1/2ΓiΛ
1/2v`)U

2
i where Γi =

Λ1/2ΦT
i (Gi+σ

2Imi
)−1ΦiΛ

1/2 and Ui ∼ IIDN(0, 1). Below we show that n−1
∑n

i=1(vT` Λ1/2ΓiΛ
1/2v`)

is finite; showing that n−1
∑

(vT` Λ1/2ΓiΛ
1/2v`)

2 is finite is done similarly. Then using a ver-

sion of the central limit theorem we conclude that n−1
∑n

i=1 v
T
` `(Wi)`

T (Wi)v` converges in

probability to limn→∞ n
−1
∑

(vT` Λ1/2ΓiΛ
1/2v`).

Simple algebra shows that every non-negative eigenvalue of the matrix Γi is an eigen-

value of the matrix ΦiΛΦT
i (Gi + σ2Imi

)−1, althought the corresponding eigenvectors are

different. However the positive eigenvalues of the latter matrix ΦiΛΦT
i (Gi + σ2Imi

)−1 are

clearly less than one as Gi = ΦiΛΦi +
∑

k≥Kn+1 λkφikφ
T
ik + σ2Imi

. It follows that aTΓia ≤

‖a‖2 for any vector a, which implies that vT` Λ1/2ΓiΛ
1/2v` ≤ ‖vT` Λ1/2‖ ≤ λ1‖v`‖2; thus

n−1
∑

i v
T
` Λ1/2ΓiΛ

1/2v` ≤ λ1‖v`‖2.

10



It is important to remark that limn→∞ n
−1
∑

(vT` Λ1/2ΓiΛ
1/2v`) > 0. We show this state-

ment by contradiction. Since the sum involves non-negative terms only, the only possibil-

ity that the limit is null is to have all the terms equal to zero. Specifically Λ1/2ΦT
i (Gi +

σ2Imi
)−1ΦiΛv` = 0 for all i. This implies that ΦiΛΦT

i (Gi + σ2Imi
)−1Φv = 0 for v = Λv`,

v 6= 0 for all i. The last equality is true if and only if ΦT
i Φv = 0. This is a contradiction

since the set {tij : i, j} is assumed dense with probability one and {φk(·) : k ≥ 1} is a basis

system, which implies that every finite subset of these functions is linearly independent.

Specifically, let Φ(t) be the Kn column vector with elements φk(t). Then ΦT
i Φi =∑mi

j=1 Φ(tij)Φ
T (tij). Thus there exists a unit vector v′ ∈ RKn such that

∑mi

j=1 Φ(tij)Φ
T (tij)v

′ =

0Kn for all i, which further implies (by multiplication to the left by v
′ T ) that∑mi

j=1 v
′ TΦ(tij)Φ

T (tij)v
′ = 0 or equivalently

∑mi

j=1 ‖v
′ TΦ(tij)‖2 = 0 for all i. It follows that

v
′ TΦ(tij) = 0. Since the set of {tij : j = 1, . . . ,mi; i = 1, . . . , n} is dense in [0, 1], it follows

that
∑Kn

k=1 v
′
kΦk(t) = 0 for all t ∈ [0, 1], where there v′ ∈ RKn is a non-zero vector. Hence

the set of functions {φk(·) : 1 ≤ k ≥ Kn} are linearly dependent.

Hence we have that λv converges in probability to

vTX1E[XT
1 X1]vX1 + vTX2E[XT

1 X1]vX2 + ‖v`1‖2µ1 + ‖v`2‖2µ2

where µ1 > 0 and µ2 > 0 and ‖vX1‖2+‖vX2‖2+‖v`1‖2+‖v`2‖2 = 1. Recall that E[XT
1 X1] has

positive eigenvalues. Thus the minimum eigenvalue of (n−1DnD
T
n ) is positive in probability;

equivalently λ−1
min(n−1DnD

T
n ) = Op(1). It implies that ‖(n−1DnD

T
n )−1‖2 = Op(1). This yields

that ‖(n−1DnD
T
n )−1‖ = K

1/2
n Op(1).

Thus using (1) it follows that ‖θ̃Kn
n − θKn‖2 = Op(K

2
nn
−1).

Next we show that ‖θ̃Kn
n − θ̂Kn‖2 = Op(Knn

−2∆).

Recall that θ̂Kn =
(
n−1D̂nD̂

T
n

)−1 (
n−1D̂nY

)
where D̂n has the same structure as Dn,

except `(Wi)’s are replaced by ̂̀(Wi)’s. Thus θ̂Kn − θ̃Kn = (HD̂ −HD)n1/2Y , where HD =

11



(n−1DnD
T
n )−1n1/2Dn and HD̂ = (n−1D̂nD̂

T
n )−1n1/2D̂n. Thus

‖θ̃Kn
n − θ̂Kn‖2 ≤ ‖HD̂ −HD‖2 × ‖n1/2Y ‖2. (14)

Consider ‖D̂n −Dn‖2 = 2
∑n

i=1 ‖`(Wi)− ̂̀(Wi)‖2

= 2
n∑

i=1

‖(ΛΦT
i Σ−1

i − Λ̂Φ̂T
i Σ̂−1

i )(Wi − µi) + Λ̂Φ̂T
i Σ̂−1

i (µ̂i − µi)‖2

≤ 2
n∑

i=1

‖(ΛΦT
i Σ−1

i − Λ̂Φ̂T
i Σ̂−1

i )(Wi − µi)‖2 + 2
n∑

i=1

‖Λ̂Φ̂T
i Σ̂−1

i (µ̂i − µi)‖2

Using the assumptions (A8) - (A10) one can show that: ‖µ̂i − µi‖2 ≤ M‖µ − µ̂‖2
∞,

‖ΛΦi−Λ̂Φ̂i‖2 =
∑Kn

k=1

∑mi

j=1[{(λk−λ̂k)φk(tij)}+λ̂k{φk(tij)−φ̂k(tij)}]2 ≤ 2
∑Kn

k=1

∑mi

j=1{(λk−

λ̂k)φk(tij)}2 + 2
∑Kn

k=1

∑mi

j=1 λ̂
2
k{φk(tij)− φ̂k(tij)}2 ≤ 2M supk ‖φk‖2

∞
∑Kn

k=1(λk − λ̂k)2 +

2M(
∑Kn

k=1 λ
2
k){
∑Kn

k=1 ‖φk − φ̂k‖2
∞} , and ‖Σ−1

i − Σ̂−1
i ‖2 ≤ ‖(Gi + σ2Imi

)−1(Ĝi − Gi)(Ĝi +

σ2Imi
)−1‖2 + ‖(σ̂2 − σ2)(Ĝi + σ2Imi

)−1(Ĝi + σ̂2Imi
)−1‖2 ≤ M2σ−4‖G − Ĝ‖2

∞ + M(σ̂2 −

σ2)2σ−2σ̂−2. Here we used the fact that ‖A‖2 ≤ m‖A‖2
2 for m × m dimensional matrix A

and ‖A‖2 ≤ m2 maxj,j′ |ajj′ |2 . Also the fact that say |Ĝ(tij, tij′)−G(tij, tij′)| ≤ ‖G− Ĝ‖∞.

In addition we have: ‖Λ‖2 =
∑Kn

k=1 λ
2
k <∞, ‖ΛΦT

i ‖ =
∑Kn

k=1 λ
2
k‖φik‖2 ≤M supk ‖φk‖2

∞‖Λ‖2,

and ‖Σ−1
i ‖2 ≤Mσ−4. Using the fact that n−1

∑n
i=1 ‖Wi − µi‖2 = Op(1) it follows that

n−1‖D̂n −Dn‖2 = Op(n
−2∆).

Next we show that ‖HD̂ −HD‖2 = Op(Knn
−2∆).

Consider D̂nD̂
T
n = DnD

T
n + en, where en = εn1Ln + LT

n εn2, for Ln the 4n × (2p + 2Kn)

block diagonal matrix with elements 0n×p, ̂̀n − `n, 0n×p, and ̂̀n − `n.

12



εn1 =



0p×n XT 0p×n XTA

0Kn×n
̂̀T
n 0Kn×n

̂̀T
nA

0p×n XTA 0p×n XT

0Kn×n
̂̀T
nA 0Kn×n

̂̀T
n


and εn2 =



0n×p 0n×Kn 0n×p 0n×Kn

X `n AX A`n

0n×p 0n×Kn 0n×p 0n×Kn

AX A`n X `n


.

It follows that ‖n−1D̂nD̂
T
n − n−1DnD

T
n‖2 is equal to

‖ 1

n
en‖2 = ‖ 1

n
εn1Ln +

1

n
LT
n εn2‖2 ≤ 2

n2
‖εn1Ln‖2 ≤ 2

n2
× 8× (‖X‖2 + ‖̂̀n‖2)× ‖̂̀n − `n‖2 = Op(n

−2∆),

as both terms n−1‖X‖2 and n−1‖̂̀n‖2 are Op(1) and n−1‖̂̀n − `n‖2 is Op(n
−2∆).

Furthermore this implies that ‖(n−1DnD
T
n )−1(n−1en)‖2 = Op(n

−2∆), which means that

n−1D̂nD̂
T
n is a small perturbation of n−1DnD

T
n and thus is also invertible; and ‖(n−1D̂nD̂

T
n )−1‖ =

Op(1). For the last result we used Theorem 2.3.4 of Golub and Van Loan (2012). It implies

that ‖HD̂ −HD‖2

≤ ‖(n−1D̂nD̂
T
n )−1 − (n−1DnD

T
n )−1‖2‖n−1/2D̂n‖2 + ‖(n−1DnD

T
n )−1‖2‖n−1/2(D̂n −Dn)‖2

≤ O(Kn)‖(n−1D̂nD̂
T
n )−1 − (n−1DnD

T
n )−1‖2

2 ‖n−1/2D̂n‖2

+O(Kn)‖(n−1DnD
T
n )−1‖2

2 ‖n−1/2(D̂n −Dn)‖2;

the first term is smaller than O(Kn)‖n−1en‖2‖(n−1DnD
T
n )−1‖2

2 using the same Theorem

2.3.4 and the second term is of order O(Kn)‖(n−1DnD
T
n )−1‖2

2Op(n
−2∆); thus ‖HD̂−HD‖2 =

Op(Knn
−2∆).
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We show that ‖n1/2Y ‖2 = Op(1). For this notice:

1

n

n∑
i=1

Y 2
i ≤ 3θKn,T

(
1

n
DnD

T
n

)
θKn (15)

+3
1

n

n∑
i=1

{
∞∑

k=Kn+1

`k,i(βk + aiγk)

}2

(16)

+3
1

n

n∑
i=1

ε2i ; (17)

by an abuse of notation we use `k,i = `k(Wi). Next we take each term in part. Term (15) is

Op(1) since ‖n−1DnD
T
n‖ ≤ ‖n−1/2Dn‖2 and n−1‖Dn‖2 = Op(1). Term (16) is Op(K

1−2ς
n ) since

it is bounded upward by
∑∞

k=Kn+1(β2
k + γ2

k) × n−1
∑n

i=1

∑∞
k=Kn+1 `

2
k,i. The first component

of this product is O(K1−2ς
n ) while the second is Op(1). Consider

∑∞
k=Kn+1 `

2
k,i = W̃ T

i HiW̃i,

where W̃i = Σ
−1/2
i Wi is multivariate N(0, Imi

) and Hi =
∑∞

k=Kn+1 λ
2
kΣ−1/2ΦikΦT

ikΣ
−1/2
i . It

is sufficient to show that the eigenvalues of Hi are non-negative and are bounded, since we

can use the argument that n−1
∑n

i=1 W̃
T
i HiW̃i can be written as the average of weighted chi-

square variables that is bounded by the average of independent and identically distributed

chi-square random variables with M degrees of freedom, which is Op(1). First, note that Hi is

symmetric, thus its eigenvalues are non-negative. Secondly, let v an mi-dimensional unit vec-

tor; we calculate vTHiv =
∑∞

k=Kn+1 λ
2
kv

TΣ
−1/2
i ΦikΦT

ikΣ
−1/2
i v =

∑∞
k=Kn+1 ‖λkvTΣ

−1/2
i Φik‖2.

Thus vTHiv ≤
∑∞

k=Kn+1 ‖λ
1/2
k ‖2‖v‖2‖Σ−1/2

i ‖2‖λ1/2
k Φik‖2 ≤ λKn‖Σ

−1/2
i ‖2×

∑∞
k=Kn+1 ‖λ

1/2
k Φik‖2.

Now
∑∞

k=Kn+1 ‖λ
1/2
k Φik‖2 =

∑∞
k=Kn+1

∑mi

j=1 λkΦ2
k(tij) =

∑mi

j=1{
∑∞

k=Kn+1 λkΦ2
k(tij)} ≤

∑mi

j=1 G(tij, tij);

thus vTHiv ≤ λKnM‖Σ−1‖1/2
2 ×M‖G‖∞ ≤ σ−1λKnM

2‖G‖∞ for all i. It follows that the

eigenvalues of Hi are bouded.

The term (17) is Op(1) since it converges in probability to E[ε2i ] = 2σ2.

This concludes the proof that ‖θ̃Kn
n − θ̂Kn‖2 = Op(Knn

−2∆).
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