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A Details of fMRI data set

The fMRI data set analyzed in Section 3 was acquired and processed as follows. A spa-

tial working memory localizer (Fedorenko et al., 2013) was performed by a single subject.

On each trial, a 4x2 spatial grid is presented, and locations in that grid are presented se-

quentially (1000 ms per location), followed by a forced-choice probe between two grids,

one of which contained all of the locations presented in the preceding series. In the easy

condition, one location is presented on each presentation, whereas in the hard condition

two locations are presented on each presentation. Twelve 32-second experimental blocks

were interspersed with 4 16-second fixation blocks (acquisition time = 7:28). The contrast

presented in Figure 1 compares the hard versus easy conditions.

fMRI acquisition was peformed using a multi-band EPI (MBEPI) sequence (Moeller

et al., 2010) (TR=1.16 ms, TE = 30 ms, flip angle = 63 degrees, voxel size = 2.4 mm X 2.4

mm X 2 mm, distance factor=20%, 64 slices, oriented 30 degrees back from AC/PC, 96x96

matrix, 230 mm FOV, MB factor=4, 10:00 scan length). fMRI data were preprocessed

according to a pipeline developed at Washington University, St. Louis (Power et al., 2014),

including realignment for motion correction, distortion correction using a field map, and

registration to a 3-mm isotropic atlas space. Preprocessed task fMRI data were analyzed at
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the first level using the FSL Expert Analysis Tool (FEAT, version 5.0.6), using prewhitening

and high-pass temporal filtering (100 second cutoff).

B Finding plateaus in 2D images

Algorithm 1 outlines our approach to finding plateaus, which is needed in our path-based

algorithm for choosing λ. Note that each point in the grid is touched at most k times,

where k is the number of neighbors of that point. Thus the algorithm runs inO(kn), which

is effectively linear time since k � n. The algorithm is mildly sensitive to underlying

numerical inaccuracies in the ADMM solution for β. It is well known that finite-precision

ADMM solutions tend to slightly “round off” sharp edges in the underlying image. This

produces some slight numerical noise in the degrees of freedom estimate. In our expe-

rience, this is rarely a practical concern, and can always be corrected by tightening the

convergence criterion for ADMM below the plateau tolerance in Algorithm 1.

C Benchmark setup

As described in Section 5, all methods were run across a suite of scenarios, with 30 inde-

pendent trials per scenario and a 10% FDR threshold. This appendix describes the method-

specific settings for the two main competing methods: FDRL and the HMRF model.

For FDRL , we used “Method 1” from (Zhang et al., 2011) as this was suggested for

fMRI-type data. We set the null-cutoff λ = 0.2. This is higher than used in (Zhang et al.,

2011), which used λ = 0.1; however, they also used a 1% FDR threshold. Since λ controls

the proportion above which we expect almost all p-values to be true nulls, using a λ of

0.2 is more reasonable with an FDR of 0.1. Preliminary experiments confirmed the FDRL

authors’ claim that FDRL is not very sensitive to the setting of λ.

The HMRF model has several tunable parameters and required tweaks to run the code
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Algorithm 1 Our plateau-finding algorithm.
Input: grid of values β, plateau tolerance ε
Output: list of plateaus and their values φ

1: tocheck ← coordinates(β)
2: checked← {∅}
3: φ← {∅}
4: while tocheck not empty do
5: (x0, y0)← pop tocheck until (x0, y0) 6∈ checked
6: points← {(x0, y0)}
7: βmin, βmax ← βx0,y0 − ε, βx0,y0 + ε
8: unchecked← {(x0, y0)}
9: while unchecked not empty do

10: (x, y)← pop unchecked
11: for each neighbor (v, w) of (x, y) do
12: if then(v, w) 6∈ checked and βmin ≤ βv,w ≤ βmax

13: Add (v, w) to points, unchecked, and checked
14: end if
15: end for
16: end while
17: Add points to φ
18: end while
19: return φ

provided in the supplementary materials of (Shu et al., 2015):

• In order to compile the C++ code, we needed to change all calls to floor(x) with

(double((int)x)).

• 2d grids and edge points are not supported in their implementation. To process the

entire 128× 128 grid, we had to embed it within the center of a 3× 130× 130 array.

This should have no effect on the result, as we specified the original lattice as the

region of interest.

• The alternative density estimation procedure is parametric (as opposed to our non-

parametric approach) and requires specifying the number of components in a Gaus-

sian mixture model. We specify the correct number of components in each case, to

give their model the best possible estimation (i.e. 2 for the well-separated scenarios

and 1 for the poorly-separated scenarios).
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• We ran with the default parameters of sweepb = 1000, sweepr = 5000, sweeplis =

1e6, itermax = 5000. These correspond to 5000 iterations of the main Gibbs sampler

with a 1000-iteration burn-in. These settings are identical to those used in the HMRF

paper.

We made every effort possible to be as generous as possible to both methods. This is the

main reason for choosing to include the “saturated” signal regions, as these cases highlight

the areas where FDRL and HMRFs perform well, even though we expect them to be rare

in practice, as evidenced by the various prior plateaus discovered by FDR smoothing in

Figure 2.

D Comparisons with FDR Regression

Benchmark performance results against FDR regression (FDR-R) are presented in Table 1.

We performed 100 independent trials for each of eight different scenarios, corresponding to

two different plateau setups. In both setups, we used two plateaus of increased probability

levels of 0.5 and 0.8; the “large regions” setup used plateaus of 40×40 and 60×60, whereas

the “small regions” setup used plateaus of size 15×15 and 10×10. For each plateau setup,

we tested the following four different alternative distributions:

1. 0.48N(−2, 1) + 0.04N(0, 16) + 0.48N(2, 1)

2. 0.4N(−1.25, 2) + 0.2N(0, 4) + 0.4N(1.25, 2)

3. 0.3N(0, 0.1) + 0.4N(0, 1) + 0.3N(0, 9)

4. 0.2N(−3, 0.01) + 0.3N(−1.5, 0.01) + 0.3N(1.5, 0.01) + 0.2N(3, 0.01)

FDR regression using a 100-dimensional b-spline basis comes close to the performance

of FDR smoothing, but also has many conceptual and computational disadvantages. These
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are essentially the same disadvantages that one would face in treating any spatial smooth-

ing problem in a regression framework. For example, to handle a smoothing problem using

FDR regression, one must choose the basis set and the number of basis elements. This is

implicitly a choice about the smoothness of the underlying prior image, and is not straight-

forward in large problems or problems over an arbitrary graph structure. FDR smoothing,

on the other hand, has no tunable parameters once our path-based method for choosing λ

is used. Moreover, FDR regression cannot localize sharp edges in the underlying image of

prior probabilities, unless these edges happen to coincide with any edges present in the ba-

sis set. FDR smoothing finds these edges automatically without requiring a clever choice

of basis, and without having to tolerate undersmoothing in other parts of the image. Fi-

nally, at an algorithmic level, the important matrix operations in FDR smoothing involve

very sparse matrices and benefit enormously from pre-caching. This is not true in FDR

regression, which involves dense matrices and linear systems that change at every iteration.

As the table shows, FDR regression with basis functions does provide sensible answers

and good FDR performance. However, the FDR smoothing approach benefits greatly by

exploiting the spatial structure of the problem, resulting in better power and more inter-

pretable summaries at lower computational cost.

E HMRF details and improvements

The HMRF model, while following the prior-dependence philosophy of FDR smoothing,

makes a different distributional assumption on the dependence by placing an Ising model

on the priors. This has two important side effects. First, the model is not necessarily

going to discover constant regions of prior probability. This is clear when looking at the

“local index of significance” (LIS) statistics produced by the HMRF, shown in Figure 1.

While the LIS space is substantially smoothed, it is not constant across different plateaus

like in FDR smoothing. The other core issue with the HMRF model is that its substantial
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True positive rate (TPR)

Large Regions Small Regions
Alt 1 Alt 2 Alt 3 Alt 4 Alt 1 Alt 2 Alt 3 Alt 4

BH 0.364 0.215 0.128 0.366 0.212 0.123 0.090 0.194
2G 0.394 0.229 0.134 0.403 0.211 0.123 0.091 0.196
FDR-R 0.559 0.334 0.167 0.610 0.242 0.141 0.097 0.232
FDRS 0.592 0.352 0.168 0.645 0.264 0.144 0.093 0.257

Oracle 0.688 0.524 0.332 0.718 0.298 0.193 0.139 0.292

False discovery rate (FDR)

Large Regions Small Regions
Alt 1 Alt 2 Alt 3 Alt 4 Alt 1 Alt 2 Alt 3 Alt 4

BH 0.072 0.070 0.073 0.070 0.090 0.093 0.093 0.092
2G 0.089 0.083 0.083 0.089 0.092 0.096 0.098 0.096
FDR-R 0.075 0.058 0.050 0.086 0.102 0.106 0.109 0.105
FDRS 0.072 0.057 0.054 0.079 0.092 0.095 0.098 0.096

Oracle 0.101 0.100 0.100 0.101 0.097 0.101 0.101 0.098

Table 1: Results of the eight simulation studies. Each entry is an average error rate across
100 simulated data sets. FDR smoothing (FDRS) results in the highest true-positive rate for
all but one of the scenarios, consistently beating both the Benjamini–Hochberg procedure
(BH) and the two-groups model (2G). FDR regression (FDR-R) comes close, but slightly
overshoots the desired FDR limit of 10% in the small-signal examples. (Scott et al., 2014)
also report this behavior. In contrast, FDR smoothing remains (on average) under the
nominal FDR across all experiments.
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complexity results in a very difficult model to fit. The implementation provided by the

authors performs an EM algorithm with Gibbs sampling and required more than three days

to run the examples with the suggested number of iterations, compared to minutes with

FDR smoothing on the same examples and the same compute cluster. More to the point, the

final fit shows clear bias to local optima that over-estimate the strength of the signal region.

The result is a model which performs well only when the regions are clearly segmented

and the signal region is saturated, and which otherwise fails to adhere to the specified

FDR threshold. See Appendix E for more details on the HMRF model, its configuration,

and suggestions from the HRMF authors on ways to improve the runtime and fit of the

model; we did not incorporate these suggestions in our benchmarks as they were either

purely computational speedups or were intuitive suggestions that would require developing

entirely new methods.

In an effort to provide fair evaluation, we contacted the first and second authors of the

HMRF paper (Shu et al., 2015). They provided several suggestions for improving the speed

of the algorithm and its performance. The following speedup suggestions were offered:

• Reduce the number of burn-in iterations.

• Monitor the stability of the parameter estimations in order to stop earlier than the

maximum number of iterations.

• Stop the backtracking line search at a fixed number of steps in the Newton’s method

step.

• Use an updated pseudo-random number generator as the code relies on an outdated

generator which may be slower than the most up-to-date version.

Note that all of the above suggestions would reduce the running time of the algorithm,

but would not likely result in an improved fit or better performance on the benchmarks. The

main performance improvement suggested was to preprocess the z-scores so as to detect the
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Figure 1: The inferred “local index of significance” statistics inferred by the HMRF model
on the example in Figure 7. The Ising model assumption, combined with the difficult-to-
fit distribution it induces, results in a model that overestimates the strength of the signal
region.
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different regions first, then run separate HMRFs on each region. One way to do this would

be to run FDR smoothing, then treat each plateau as a different region and fit an HMRF

to them. It is unclear whether this approach would truly address the underlying issues we

observed in the benchmarks. Thus, while this is an interesting idea and may be effective, it

would constitute an entirely new method and therefore we leave it to future work.

F Correlated noise example with large bandwidth

Figure 2 shows an example of a dataset from the experiment in Section 5.3. The highly

correlated noise creates clear regions of false positives that are difficult to distinguish from

the true positive regions. Specifically, the bottom left panel (“True Discoveries”) shows all

true positives, whereas the bottom right panel (“Estimated Discoveries”) shows the discov-

eries reported by the FDR smoothing algorithm. The algorithm reports many false posi-

tives in the lower-right area of the image due to the highly correlated noise that produces

clumped outliers in the observed data (second row, right column). Without prior knowledge

of the correlation of the noise, it becomes virtually impossible to separate true signals from

grouped outliers.
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Figure 2: An example of a dataset generated with a bandwidth just greater than 1. The left
figure in the second row shows the highly-correlated noise added to the model. The corre-
sponding right figure shows the resulting data that the model is given, with clear examples
of phantom plateaus.
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