
Supplementary material for the paper “On the use of
reproducing kernel Hilbert spaces in functional

classification”, by Berrendero, Cuevas and Torrecilla

S1 An additional result. The proofs of all theorems

S1.1 A consistency result

We first establish the consistency result mentioned in comment (c) of the Subsec-
tion 5.1 in the paper.

Theorem S1. Consider the classification problem (with p = 1/2) according to
the model (3), for t ∈ [0, T ]. Denote m̂(t) = m̂1(t) − m̂0(t), where m̂j(t) :=

n−1
j

∑nj
i=1Xj,i(t) = X̄j(t) for j = 0, 1, and let K̂t1,...,td be the pooled sample covari-

ance matrix, whose (i, j) entry is

K̂t1,...,td(i, j) =
1

n1 + n2

∑
r∈{0,1}

(
nr∑
`=1

(Xr,`(ti)− X̄r(ti))(Xr,`(tj)− X̄r(tj))

)
.

Assume,

(i) E‖ε2j‖∞ <∞, for j = 0, 1, where ‖ · ‖∞ stands for the supremum norm.

(ii) The variable selection method is performed on a compact set Θ ⊂ [0, T ]d.

(iii) Kt1,...,td is invertible for all (t1, . . . , td) ∈ Θ and their entries are continuous
on Θ.

Then, Ln → L∗ a.s., as n→∞.

Proof of Theorem S1. For the sake of conciseness, denote τ := (t1, . . . , td), a generic
element of Θ, τ̂ := (t̂1, . . . , t̂d), and τ ∗ := (t∗1, . . . , t

∗
d). We will also use the following

notation: for j = 0, 1,

ψ̃j(τ) :=

(
2(mj,τ − µ̂τ )>K̂−1

τ m̂τ

)2

m̂>τ K̂
−1
τ KτK̂−1

τ m̂τ

,

where mj,τ := (mj(t1), . . . ,mj(td))
> and µ̂τ = (m̂0,τ +m̂1,τ )/2. Then, if µτ denotes

the population counterpart of µ̂τ and ψ(τ) :=

(
2(mj,τ−µτ )>K−1

τ mτ

)2

m>τ K
−1
τ mτ

it is not difficult

to show that L∗ = 1− Φ(ψ(τ ∗)1/2/2), and

Ln = 1− 1

2
Φ

(
ψ̃0(τ̂)1/2

2

)
− 1

2
Φ

(
ψ̃1(τ̂)1/2

2

)
,
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where Φ is the cumulative distribution function of the standard Gaussian distribu-
tion (to obtain these formulas we have used the arguments in Mardia et al. (1980)
p. 321, for L∗, and Fan and Fan (2008), p. 2609, for Ln). Since Φ is continuous,
the desired conclusion will readily follow if we prove ψ̃j(τ̂) → ψ(τ ∗) as n → ∞,
a.s., for j = 0, 1.

Since E‖εj‖∞ < ∞, for j = 0, 1, Mourier’s Strong Law of Large Numbers
(SLLN) for random elements taking values in Banach spaces (see e.g. Laha and
Rohatgi (1979), p. 452) implies

sup
τ∈Θ
‖m̂τ −mτ‖ → 0, as n→∞, a.s., (S1)

where ‖ · ‖ denotes the Euclidean norm in Rd. Since E‖ε2j‖∞ < ∞ for j = 0, 1,

Mourier’s SLLN also implies that the entries of K̂τ converge uniformly to those of
Kτ , that is for i, j = 1, . . . , d,

sup
τ∈Θ
|K̂τ (i, j)−Kτ (i, j)| → 0, as n→∞, a.s. (S2)

Observe that

K̂−1
τ =

adj(K̂τ )

det(K̂τ )
,

where adj(K) and det(K) denote the adjugate and the determinant of a matrix
K, respectively. By (S2), the entries of adj(K̂τ ) converge uniformly to those of
adj(Kτ ), and det(K̂τ ) converges uniformly to det(Kτ ). Moreover, infτ∈Θ det(Kτ ) >
0 because det(Kτ ) is continuous in τ and, by assumption, det(Kτ ) > 0, for all
τ ∈ Θ, where Θ is a compact set. As a consequence of all these observations,

sup
τ∈Θ
|K̂−1

τ (i, j)−K−1
τ (i, j)| → 0, as n→∞, a.s. (S3)

By (S1) and (S3), it also holds

sup
τ∈Θ
‖K̂−1

τ m̂τ −K−1
τ mτ‖ → 0, as n→∞, a.s.

From this convergence, together with (S1), we deduce

sup
τ∈Θ
|ψ̂(τ)− ψ(τ)| → 0, as n→∞, a.s. (S4)

and
sup
τ∈Θ
|ψ̃j(τ)− ψ(τ)| → 0, as n→∞, a.s. j = 0, 1. (S5)
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Due to (S4), with probability one, given ε > 0 there exists N such that for n ≥ N
it holds ψ̂(τ)− ε ≤ ψ(τ) ≤ ψ̂(τ) + ε, for all τ ∈ Θ. Taking the maximum in these
inequalities we get ψ̂(τ̂)− ε ≤ ψ(τ ∗) ≤ ψ̂(τ̂) + ε. That is, we have

ψ̂(τ̂)→ ψ(τ ∗), as n→∞ a.s. (S6)

Finally, note that for j = 0, 1,

|ψ̃j(τ̂)− ψ(τ ∗)| ≤ |ψ̃j(τ̂)− ψ(τ̂)|+ |ψ(τ̂)− ψ̂(τ̂)|+ |ψ̂(τ̂)− ψ(τ ∗)|.

Then, from (S4), (S5) and (S6) we get ψ̃j(τ̂)→ ψ(τ ∗) as n→∞, a.s. for j = 0, 1,
as desired.

S1.2 Proofs of the theorems and corollaries stated in the paper

Proof of Theorem 2. Equation (4) follows straightforwardly from the combination
of (1) and (2). To prove the expression for the Bayes error notice that 〈X−m0,m〉K
lies in L̄(X−m0) and therefore the random variable η∗(X) is Gaussian both under
Y = 1 and Y = 0. Furthermore, Equations (6.19) and (6.20) in Parzen (1961)
yield

E(η∗(X)|Y = 0) = − ‖ m ‖2
K /2− log

(
1− p
p

)
,

E(η∗(X)|Y = 1) =‖ m ‖2
K /2− log

(
1− p
p

)
,

Var(η∗(X)|Y = 0) = Var(η∗(X)|Y = 1) =‖ m ‖2
K .

The result follows using these values to standardize the variable η∗(X) in L∗ =
(1− p)P(η∗(X) > 0|Y = 0) + pP(η∗(X) < 0|Y = 1).

Proof of Theorem 3. We will use the following result

Theorem S2. [Th. 1 in Shepp (1966)]. Let PB, Pi be the distributions corre-
sponding to the standard Brownian Motion {B(t), t ∈ [0, T ]} and to a Gaussian
process {X(t), t ∈ [0, T ]} with mean function mi in the Dirichlet space D[0, T ]
and covariance function Ki. Then Pi ∼ P0 if and only if there exists a function
K̃i ∈ L2([0, T ]× [0, T ]) such that (5) holds, with 1 /∈ σ(K̃i), the spectrum of K̃i.
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We will also need Lemmas 1 and 2 in Shepp (1966), p. 334-335 which give the
expression of the Radon-Nikodym derivative dPi/dPB in the case Pi << PB under
the conditions of Theorem S2. According to these lemmas, we have for i = 0, 1,

dPi
dPB

(X) = exp

{
−1

2

∞∑
j=1

(
log(1− λi,j) +

(xi,j − ξi,j)2

1− λi,j
− x2

i,j

)}
.

Then, using the chain rule for Radon-Nikodym derivatives:

log
dP1

dP0

(X) = log
dP1

dPB
(X)− log

dP0

dPB
(X) = 2

∞∑
j=1

ηj(X),

where ηj(X) is defined in Equation (6) in the paper. The result follows from the
last expression and (1).

Proof of Corollary 1. For the Brownian bridge we have K(s, t) = min{s, t} − st,
so that (5) amounts to ∫ s

0

∫ t

0

K̃(u, v)dudv = st.

As a consequence, K̃ ≡ 1. It is not difficult to show that λ = T is the only non-zero
eigenvalue for K̃ and ϕ(t) ≡ 1/

√
T is its corresponding unit eigenfunction. From

Theorem S2, P0 ∼ P1 if and only if T < 1. Moreover, since mi(0) = 0 for i = 0, 1
we have ξi,j = 0 for i = 0, 1 and j = 1, 2, . . .. Also, the only value xi,j which does
not vanish is x1,1 = X(T )/

√
T . The corollary is obtained by plugging these values

in the expression of the optimal rule provided by Theorem 3.

Proof of Theorem 5. (a) Observe that, if θj > 0 for all j ≥ 1,

m1 =
∞∑
j=1

µjφj =
∞∑
j=1

µj√
θj

√
θjφj,

where {
√
θjφj : θj > 0} is an orthonormal basis of H(K) [see, e.g., Theorem 4.12,

p. 61 in Cucker and Zhou (2007)]. Then, by Parseval’s formula, m1 ∈ H(K) if
and only if ‖ m1 ‖2

K=
∑∞

j=1 θ
−1
j µ2

j < ∞. As a consequence, we have the desired
equivalence:

P1 ∼ P0 ⇔ m1 ∈ H(K)⇔‖ m1 ‖K<∞⇔
∞∑
j=1

θ−1
j µ2

j <∞.
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Moreover,

err0 = 1− Φ

(
1

2
(
∞∑
j=1

θ−1
j µ2

j)
1/2

)
= 1− Φ

(
1

2
‖ m1 ‖K

)
,

what gives the coordinate-free expression of the Bayes error.
Now, if we further assume (as in Delaigle and Hall (2012a)) that ψ ∈ L2, the

optimal classifier proposed by these authors (8) is equivalent to T 0(X) = 1 if and
only if

〈m1, ψ〉2L2 − 2〈m1, ψ〉L2〈X,ψ〉L2 < 0. (S7)

Since m1 =
∑∞

j=1 µjφj, with m1 6= 0, and ψ =
∑∞

j=1 θ
−1
j µjφj, we have 〈m1, ψ〉L2 =∑∞

j=1 θ
−1
j µ2

j =‖ m1 ‖2
K 6= 0. Therefore, (S7) holds if and only if

〈X,ψ〉L2 − ‖ m1 ‖2
K

2
> 0.

To end the proof it is enough to show 〈X,m1〉K = 〈X,ψ〉L2 . Since 〈X, ·〉K is an
isommetry and θj and φj are, respectively, eigenvalues and eigenfunctions of the
integral operator with kernel K, we have

〈X,m1〉K =
∞∑
j=1

θ−1
j µj〈X, θjφj〉K =

∞∑
j=1

θ−1
j µj

∫ T

0

〈X,K(·, u)〉Kφj(u)du.

Now, from Equation (6.18) in Parzen (1961),∫ T

0

〈X,K(·, u)〉Kφj(u)du =

∫ T

0

X(u)φj(u)du = 〈X,φj〉L2 .

Finally, combining the two last displayed equations,

〈X,m1〉K =
∞∑
j=1

θ−1
j µj〈X,φj〉L2 = 〈X,

∞∑
j=1

θ−1
j µjφj〉L2 = 〈X,ψ〉L2 .

(b) As a consequence of Hájek-Feldman dichotomy for Gaussian measures,
together with the equivalence P1 ∼ P0 ⇔

∑∞
j=1 θ

−1
j µ2

j < ∞, proved in point (a)

above, we have that θ−1
j µ2

j = ∞ entails P1 ⊥ P0. Thus, there exists an event A
such that P1(A) = 1 and P0(A) = 0. Therefore, the rule g∗ = IA is clearly optimal
with Bayes error L∗ = 0.
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Proof of Theorem 6. Let X =
∑∞

i=1 Ziφi, the Karhunen-Loève expansion of X,
with the Zi uncorrelated. For a given trajectory x =

∑∞
i=1 ziφi. Define xn =∑n

i=1 ziφi, This is a trajectory drawn from the process Xn =
∑n

i=1 Ziφi, whose
distribution under Pi is denoted by Pin, for i = 0, 1, the covariance function is
Kn(s, t) =

∑n
i=1 θiφi(s)φi(t), where θi = E(Z2

i ), and the mean function under P1n

is

mn(t) =
n∑
i=1

E(Zi)φi(t),

Note that, under P0, E(Zj) = 0, so that the mean function is 0. From Karhunen-
Loève Theorem (see Ash and Gardner (1975), p. 38) mn(t) → m(t) for all t
.

Note also that mn ∈ H(K). Again this follows from the fact that {
√
θiφi :

θi > 0} is an orthonormal basis of H(K) [see, e.g., Theorem 4.12, p. 61 in Cucker
and Zhou (2007)].

We now prove that we must necessarily have limn ‖mn‖K = ∞. Indeed, if we
had limn ‖mn‖K < ∞ for some subsequence of {mn} (denoted again {mn}) we
would have that such {mn} would be a Cauchy sequence in H(K), since for q > p,

‖mp − mq‖2
K =

∑q
i=p+1

E(Zi)
2

θi
=
∑q

i=p+1
µ2
i

θi
. This, together with the pointwise

convergence mn(t) → m(t) leads, from Corollary 1 (see Berlinet and Thomas-
Agnan (2004), p. 10) to m ∈ H(K). But, from Parzen’s Theorem 1, this would
entail P1 << P0, in contradiction with P1 ⊥ P0. We thus conclude ‖mn‖K →∞.

Then, given ε > 0, choose n such that

(1− p)Φ
(
−‖ mn ‖K

2
− 1

‖ mn ‖K
log

(
1− p
p

))
+pΦ

(
−‖ mn ‖K

2
+

1

‖ mn ‖K
log

(
1− p
p

))
< ε, (S8)

Now, consider the problem Xn ≡ P1n vs Xn ≡ P0n Note that Xn ∼ Pin if and
only if X ∼ Pi, for i = 0, 1. Since mn ∈ H(Kn), we have P0n ∼ P1n (using again
Parzen’s Theorem 1).

Now, according to Theorem 2 (on the expression of the optimal rules in the
absolutely continuous case under homoskedasticity), the optimal rule is gn(X) =
I{ηn(X)>0}, where

ηn(x) = 〈x,mn〉K −
1

2
‖ mn ‖2K − log

(
1− p
p

)
, (S9)

whose probability of error, is exactly the expression on the left-hand side of (S8).
So this probability can be made arbitrarily small.
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Proof of Theorem 7.
(a) Suppose m(·) = m1(·) −m0(·) =

∑d
i=1 αiK(·, ti). Then, m ∈ H(K) which

implies P0 ∼ P1, according to Theorem 1. From Theorem 2, the optimal rule to
classify a trajectory x between P0 and P1 is g∗(x) = I{η∗(x)>0}, where η∗(x) is given
in Equation (4):

η∗(x) =〈x−m0,

d∑
i=1

αiK(·, ti)〉K −
1

2
‖

d∑
i=1

αiK(·, ti) ‖2
K − log

(
1− p
p

)

=
d∑
i=1

αi(x(tj)−m0(tj))−
1

2

d∑
i=1

d∑
j=1

αiαjK(ti, tj)− log

(
1− p
p

)
,

where we have used the reproducing property to obtain the last equality.
Observe that m(·) =

∑d
i=1 αiK(·, ti) implies the following relationship between

α1, . . . , αd and t1, . . . , td:

mt1,...,td = Kt1,...,td · (α1, . . . , αd)
>. (S10)

Then, we can rewrite the previous expression as

η∗(x) =
d∑
i=1

αi

(
x(ti)−

m0(ti) +m1(ti)

2

)
− log

(
1− p
p

)
, (S11)

which exactly coincides with the discriminant score of the optimal (Bayes) rule for
the finite dimensional discrimination problem based on the d-dimensional marginals
(X(t1), . . . , X(td)).

(b) If m is given by m(·) =
∑d

i=1 αiK(·, ti), then

‖m‖2
K =

d∑
i=1

d∑
j=1

αiαjK(ti, tj) = m>t1,...,tdK
−1
t1,...,td

mt1,...,td .

(c) In Theorem 2 (b) we established that the minimal probability of misclassi-
fication was given by

L∗ = (1− p)Φ
(
−‖ m ‖K

2
− 1

‖ m ‖K
log

(
1− p
p

))
+ pΦ

(
−‖ m ‖K

2
+

1

‖ m ‖K
log

(
1− p
p

))
.

But we have just established that ‖ m ‖K coincides with the Mahalanobis distance
between m0 and m1. For simplicity, let us denote by ∆ such distance. Then, the
statement amounts to prove that

L∗(∆) = (1− p)Φ
(
−∆

2
− 1

∆
log

(
1− p
p

))
+ pΦ

(
−∆

2
+

1

∆
log

(
1− p
p

))
7



is a decreasing function of ∆. Indeed, a direct calculation provides

∂

∂∆
L∗(∆) = −

√
1
p
− 1pe−

4 log2( 1
p−1)+∆4

8∆2

√
2π

.

Since ∂
∂∆
L∗(∆) < 0 for all ∆, the result follows.

S2 Simulations

S2.1 Some practical issues

Recall that, as explained in Section 5.1, the variable selection method considered
here (denoted RK-VS) boils down to maximizing the function

ψ̂(t1, . . . , td) := m̂>t1,...,tdK̂
−1
t1,...,td

m̂t1,...,td ,

where m̂t1,...,td are empirical estimators of the difference between the mean vector

of X(t1), . . . , X(td)|Y = i, for i = 0, 1 and K̂t1,...,td is an estimator of the common
covariance matrix.

The algorithm. In general, ψ̂(t1, . . . , td) is a non-concave function with po-
tentially many local maxima so that the maximization process could be hard to
implement even for moderately large values of d. Hence, in practice, we can use
the following “greedy” algorithm.

1. Initial step: consider a large enough grid of points in [0, T ] and find t̂1 such
that ψ̂(t̂1) ≥ ψ̂(t) when t ranges over the grid. Observe that this initial step
amounts to find the point maximizing the signal-to-noise ratio since

ψ̂(t) =
m̂(t)2

σ̂2
t

=
(X̄1(t)− X̄0(t))2

σ̂2
t

,

where σ̂2
t is the considered estimator of the variance at t.

2. Repeat until convergence: once we have computed t̂1, . . . , t̂d−1, find t̂d such
that
ψ̂(t̂1, . . . , t̂d−1, t̂d) ≥ ψ̂(t̂1, . . . , t̂d−1, t) for all t in the grid.

Whereas we have no guarantee that this algorithm converges to the global max-
imum of ψ̂(t1, . . . , td), it is computationally affordable and shows good performance
in practice.
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On the estimation of m and K. In principle (unless some strong parametric
assumptions are made), the estimation of m = m1 − m0 will be done in the
simplest way, using the sample means, i.e., m̂(t) = m̂1(t)− m̂0(t), where m̂j(t) :=
n−1
j

∑nj
i=1Xj,i(t) = X̄j(t), for j = 0, 1.

The estimation of K̂ might look as a more delicate issue. It is well-known that
in some functional data analysis techniques (including functional linear regression
and principal components analysis) there is a need to use smooth estimators of
the covariance operator K; see, for example, Cuevas (2014, Secs. 5.2 and 7.1). Of
course, such smoothed estimators could be also applied here but the underlying
(functional) reasons to use them are not present in this case since in fact we are only
concerned with the covariance matrices Kt1,...,td of finite dimensional projections
(X(t1), . . . , X(td)). Thus, unless otherwise stated, we will estimate Kt1,...,td by the

natural empirical counterpart K̂t1,...,td constructed from the sample covariances.
This has been the method we have used (with overall good results) in our empirical
studies.

A natural alternative to such estimators would arise in those cases in which
we are assuming a precise parametric model, such as for example a Brownian
motion for which K(s, t) = K(θ, s, t) = θmin(s, t) depending on an unknown
parameter θ. In such models one could naturally consider parametric estimations
of type K(θ̂, s, t). From this point of view, the RK methods are completely flexible
allowing for including additional knowledge about the covariance structure. Hence,
the appropriate estimator K̂t1,...,td depends on the assumptions we are willing to
make about the processes involved in the classification problem; see next subsection
for more details on this.

S2.2 An illustrative example. The price of estimating the covariance function

The purpose of this subsection is to gain some practical insight on the meaning
and performance of our RK methods. In particular, we will take into account
that the RK methods can incorporate information on the assumed underlying
model, via a known (or partially known) covariance function. In what follows
we will assume that the data trajectories come from a Brownian Motion with
different (unknown) mean functions. So we would incorporate this information in
our “variable selection + classification” task by just using the, supposedly true,
K(s, t), instead of its estimator in (12). We will denote by RKB-VS and RKB-C
the resulting “oracle” methods for variable selection and classification, respectively,
implemented with K(s, t) = min{s, t}.

While the assumption that K is known might seem too strong, it is still useful
to compare the performance of the oracle RKB-VS and RKB-C methods with
the standard RK-VS and RK-C versions in which K(s, t) is estimated from the
sample; in addition note that, under the model of densely observed functional data,

9



we might even consider a parametric model with K(s, t) = θmin{s, t}, since the
scale parameter θ can be estimated with arbitrary precision using just one densely
observed trajectory.

In any case, we want to assess the loss of efficiency involved in the estimation of
K(s, t). To this end, consider a simulated example under the general model (3) in
which P0 and P1 are Brownian motions whose mean functions fulfill m(t) = m1(t)−
m0(t) =

∑r
i=1 aiΦm,k(t), where t ∈ [0, 1], the ai are constants and the {Φm,k} are

continuous piecewise linear functions as those considered in Mörters and Peres
(2010, p. 28); they are obtained by integrating the piecewise constant functions of
the Haar basis. Explicit expressions can be found in Appendix A. In fact, it can
be proved there that the {Φm,k} form a orthonormal basis of the Dirichlet space
D[0, 1] which is the RKHS space corresponding to this model. As a consequence,
the equivalence condition in Theorem 2 is automatically fulfilled. In addition,
given the simple structure of the “peak” functions Φm,k, it is easy to see that the

“sparsity condition” m(·) =
∑d

i=1 αiK(·, ti) also holds in this case. To be more
specific, in our simulation experiments we have taken m0(t) = 0, m1(t) = Φ1,1(t)−
Φ2,1(t)+Φ2,2(t)−Φ3,2(t), and p = P(Y = 1) = 1/2, so that the Bayes rule given by
Theorem 2 depends only on the values x(t) at t = 0, 1/4, 3/8, 1/2, 3/4 and 1 and
the Bayes error is 0.1587. Note that in this particular example t = 0 is irrelevant in
practice since all trajectories start at 0 and K(·, 0) = 0. Some typical trajectories
are shown in Figure S1. Using K(s, t) = min(s, t) =

∑∞
m=0

∑∞
k=o ΦkjΦjk it is not

difficult to show that m1(t) has the alternative representation

m1(t) ≈ −0.83K(t, 1/4)− 4K(t, 3/8) + 4K(t, 1/2) + 2.83K(t, 3/4)− 2.41K(t, 1).

Now, we analyze the performance of RK and RKB in this example. The left
panel of Figure S2 shows the evolution of the classification error as the sample size
increases for RK-C (blue line with circles) and RKB-C (red line with diamonds).
The dashed black line indicates the Bayes error. Each output is obtained by
averaging 100 independent runs with test samples of size 200; for each sample
size, the number of selected variables is set through a validation sample. The
right panel of Figure S2 shows the classification error in terms of the number
of variables for RK-C and RKB-C for n = 500. Finally, Figure S3 shows the
frequency of selection of each variable among the first six (by construction, we
know there are just six relevant points) corresponding to 100 independent runs of
RK-VS for three different sample sizes. The theoretical relevant points are marked
by vertical dashed lines. So, to sum up, whereas Figure S2 summarizes the results
in terms of classification performance, Figure S3 is more concerned with capacity
of identifying the right relevant variables.

These results are quite positive; RK-C seems to be a good estimator of the op-
timal classifier as the error rate converges swiftly to the Bayes error even when the
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Figure S1: Some trajectories from the toy example B(t) (left) vs B(t) + Φ1,1(t) − Φ2,1(t) +
Φ2,2(t)− Φ3,2(t) (right). Thick solid lines correspond to the mean functions.

Figure S2: Evolution of the classification error of RK-C and RKB-C in terms of the sample
size (left panel) and the number of selected variables (right panel).
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Figure S3: Histograms of the six first selected variables by RK-VS over 100 runs for sample
sizes 50 (top panel), 200 (middle panel) and 1000 (bottom panel).

number of variables is unknown and fixed by validation. The right panel in Figure
S2 shows that for the true number of variables (five-six) the algorithm achieves
the best performance. By contrast, a wrong choice of the number of variables
can entail an important increase of the misclassification rate, so this is a sensitive
issue. In addition, the selected variables (represented in Figure S3) are mostly in
coincidence with the theoretical ones. Even for small sample sizes, RKB-VS and
RK-VS variables are grouped around the relevant variables. Only the variable
X(0) is omitted since it is in fact nearly irrelevant. This good performance in
detecting the important variables is in principle better than one might expect for
a greedy algorithm (that, therefore, might not provide the true global optimum).
Note also that the inclusion of some additional information seems specially bene-
ficial for smaller sample sizes. Finally, it is worth mentioning that the RK-based
methods seem to be relatively inexpensive from the computational point of view.
Our experience suggests that the increase in the computation time as the sample
size increases is much slower than that of other competing dimension reduction
methods.

S2.3 Simulation study

The simulation experiments include 94 models, previously considered in the studies
by Berrendero et al. (2016a,b). These models can be grouped into three classes.

(i) Gaussian models : they are defined via the marginal Gaussian distributions
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(Brownian-like, Ornstein Uhlenbeck,...) Pi of X(t)|Y = i for i = 0, 1. In all cases
p = P(Y = 1) = 1/2.

(ii) Logistic-type models : they are defined through the function η(X) = P(Y =
1|X(t)) and the marginal of X. It is assumed that η(x) = (1 + e−Ψ(x(t1),··· ,x(td)))−1,
with different choices for the link function Ψ.

(iii) Finite mixtures of different types of Gaussian models.
Detailed descriptions of the 94 considered models can be found in Appendix A.

We should emphasize that only 7 among these 94 models fulfill all the conditions
imposed in our theoretical results. They are grouped under the label RKHS in
the extended output tables of Appendix B. The remaining “unorthodox” models
aim at checking the behavior of our proposal when some departures from the
assumptions are present.

Training samples of sizes n = 30, 50, 100, 200 are considered for each model.
Sample trajectories are discretized in 100 equispaced points in the interval [0,1].
The criterion of comparison is the classification accuracy for an independent test
sample of size 200. The number of selected variables as well as the classification
parameters (if needed) are fixed in a validation step, using, for each test sample,
another independent validation sample of size 200. The final output is the average
classification accuracy over 200 runs of this experiment.

Comparison of variable selection methods

The primary aim of the study is to check the performance of our RK variable
selection method against other dimension reduction procedures, chosen among the
winners in Berrendero et al. (2016a,b). To be specific, these are the methods
considered in the experiments:

• RK-VS, as defined in Subsection S2.1.

• RKB-VS, the “oracle” version RK-VS defined in Subsection S2.2 by assuming
that the common covariance structure coincides with that of the Brownian
motion. As mentioned above, RKB is included only for illustration purposes,
just to check the price of the estimation in K(s, t) and the (sometimes sur-
prising) resistance against departures from the assumptions on the covariance
structure.

• mRMR-RD: this is a modified version of the popular minimum redundancy
maximum relevance algorithm (mRMR) for variable selection proposed by
Ding and Peng (2005). The aim of mRMR is to select the subset S of
variables that maximizes the difference rel(S)−red(S), where rel(·) and red(·)
are appropriate measures of relevance and redundancy which are defined in
terms of an association measure between random variables. The improved
version of mRMR considered here (denoted mRMR-RD) has been recently
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proposed in Berrendero et al. (2016a). It relies on the use of the increasingly
popular distance correlation (Székely et al., 2007) association measure to
define relevance and redundancy in the mRMR algorithm.

• MHR: the maxima hunting method (Berrendero et al., 2016b) also uses the
distance correlation R2(t) = R2(X(t), Y ), between X(t) and the binary re-
sponse Y to select the points t1, . . . , tk corresponding to the local maxima
of R2(t). This automatically takes into account the relevance-redundancy
trade-off (though in a qualitative way, quite different to that of the mRMR
methodology).

• PLS: partial least squares, a well-known dimension reduction technique; see
e.g. Delaigle and Hall (2012c) and references therein.

All these methods for variable selection (or, in the case of PLS, for projection-
based dimension reduction) are data-driven, i.e., independent on the classifier, so
we can combine them with different classifiers. For illustrative purposes we show
the results we have obtained with the Fisher linear classifier (LDA), k nearest
neighbors (kNN) and support vector machine with a linear kernel (SVM).

Some aggregated results are in Table S1. Variable selection methods and PLS
are in columns and each row corresponds to a sample size and a classifier. Each
output is the average classification accuracy of the 94 models over 200 runs. Boxed
outputs denote the best result for each sample size and classifier. For readability,
additional, more detailed, summary tables are included in Appendix B. The full
results of the 1128 experiments (94 models × 4 samples sizes × 3 classifiers) are
available in the supplementary file outputs.

The results are quite similar for all considered classifiers: RK-VS methodol-
ogy outperforms the other competitors on average with a better performance for
bigger sample sizes. Although RK-VS could have more difficulties to estimate the
covariance matrix for small sample sizes, it is very close to MHR, which seems to
be the winner in that case. Besides, the number of variables selected by RK-VS
(not reported here for the sake of clarity; see Table S4) is comparable to that of
mRMR-RD and MHR for kNN and SVM but it is about half of the number se-
lected by mRMR-RD and MHR for LDA (the number of PLS components is often
smaller but they lack interpretability). Note that, according with the available ex-
perimental evidence (Berrendero et al., 2016b,a), the competing selected methods
(mRMR-RD, MHR and PLS) have themselves a good general performance. So,
these outputs are remarkable and encouraging especially taking into account that
only 7 out of 94 models under study fulfill all the regularity conditions required
for the best performance of RK-VS. Note that, somewhat surprisingly, the failure
of the “Brownian assumption” implicit in the RKB-VS method does not entail a
big loss of accuracy with respect to the “non-parametric” RK-VS version.
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Table S1: Percentage of correct classification with the three considered classifiers

Classifier Sample size Dimension reduction methods

mRMR-RD PLS MHR RK-VS RKB-VS

LDA n = 30 81.04 82.87 82.44 81.50 80.89

n = 50 82.37 83.78 83.68 83.44 82.54

n = 100 83.79 84.70 84.97 85.30 84.46

n = 200 84.88 85.46 85.90 86.51 85.90

kNN n = 30 81.88 82.45 82.46 82.28 81.92

n = 50 82.95 83.49 83.43 83.75 83.25

n = 100 84.31 84.77 84.73 85.59 84.95

n = 200 85.38 85.79 85.91 87.16 86.50

SVM n = 30 83.22 84.12 84.62 84.28 84.12

n = 50 84.21 85.04 85.44 85.60 85.20

n = 100 85.27 86.03 86.29 86.96 86.48

n = 200 86.10 86.79 86.86 87.90 87.50

Comparison of classifiers

We also assess the performance of the classifiers RK-C and RKB-C; see the
definitions in Subsections 5.1 and S2.2, respectively. The competitors are kNN
and SVM (with linear kernel), two standard all-purpose classification methods.

Table S2 provides again average percentages of correct classification over 200
runs of the previously considered 94 functional models. The results are grouped
by sample size (in rows). Classification methods are in columns. The full detailed
outputs are given in the supplementary file outputs.

The difference with Table S1 is that, in this case, the classifiers kNN and SVM
are used with no previous variable selection. So, the original whole functional
data are used. This is why we have replaced the standard linear classifier LDA
(which cannot be used in high-dimensional or functional settings) with the LDA-
Oracle method which is just the Fisher linear classifier based on the “true” relevant
variables (which are known beforehand since we consider models for which the
Bayes rule depends only on a finite set of variables). Of course this classifier is not
feasible in practice; it is included here only for comparison purposes.

As before, RK-C results are better for higher sample sizes and the distances
between SVM or LDA-Oracle and RK-C are swiftly shortened with n; and again,
RKB-C is less accurate than RK-C but not too much. While the global winner is
SVM, the slight loss of accuracy associated with the use of RK-C and RKB-C can
be seen as a reasonable price for the simplicity and ease of interpretability of these
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Table S2: Average classification accuracy (%) over all considered models.

n kNN SVM RK-C RKB-C LDA-Oracle

30 79.61 83.86 81.50 80.89 84.97
50 80.96 85.01 83.44 82.54 86.23
100 82.60 86.20 85.30 84.46 87.18
200 83.99 87.07 86.51 85.90 87.69

Table S3: Average classification accuracy (%) for the models satisfying the assumptions of
Th. S1

n kNN SVM RK-C RKB-C LDA-Oracle

30 83.20 87.29 88.30 89.95 90.91
50 84.90 88.81 89.81 90.69 91.41
100 86.61 89.88 90.81 91.18 91.64
200 87.94 90.48 91.13 91.30 91.71

methods. Note also that the associated procedure of variable selection can be seen
as a plus of RK-C. In fact, the combination of RK-VS with SVM outperforms
SVM based on the entire curves (see Table S1).

Table S3 shows average percentages of correct classification over 200 runs of the
subset of models among all seven models that satisfy the assumptions in Theorem
S1, which establishes the consistency of the procedure proposed in Section 5. It
is not surprising that for these models RK-C and RKB-C have a better perfor-
mance than kNN and SVM. In fact the RK percentages of correct classification
are very close to those of LDA-Oracle, which means that there is not much room
for improvement under these assumptions

S3 Computational details

All considered methodologies have been implemented in MATLAB. The code is
available upon request. Some details:

• We have followed the implementation of the the minimum Redundancy Max-
imum Relevance algorithm given in Berrendero et al. (2016a). This version
allows us to introduce different association measures.

• We have implemented the original iterative PLS algorithm that can be found,
e.g. in Delaigle and Hall (2012c).
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• Maxima-hunting and the distance correlation measure have been computed
as described in Berrendero et al. (2016b).

• Our k-NN implementation is built around the MATLAB function pdist2 and
allows for the use of different distances; we have employed the usual Eu-
clidean distance. Also, the computation for different numbers of neighbors
can be simultaneously made with no additional cost.

• Our LDA is a faster implementation of the MATLAB function classify.

• The linear SVM has been performed with the MATLAB version of the LIB-
LINEAR library (see Fan et al. (2008)) using the parameters bias and solver
type 2. It obtains (with our data) very similar results to those of the default
solver type 1, but faster. LIBLINEAR is much faster than the more popular
LIBSVM library when using linear kernels.

• The cost parameter C of the linear SVM classifier, the number k of nearest
neighbors in the k-NN rule, the smoothing parameter h in MHR and the
number of selected variables are chosen by standard validation procedures.

• The DHB algorithm has been implemented according to the instructions
given in Delaigle, Hall, and Bathia (2012b), including leave-one-out cross-
validation and computational savings. We have also used the same parame-
ters and the first stopping criterion proposed by these authors.
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APPENDIX A. Models used in the simulation study

The general structure is similar to that of the simulation studies in Berrendero
et al. (2016b) and Berrendero et al. (2016a) which are devoted to the assessment of
variable selection methods in the functional classification setting. Here we consider
the 94 models for which the mean functions m0 and m1 are different. The optimal
classification rule in each case depends only on a finite number of variables. Models
differ in complexity and number of relevant variables. They are defined giving
either:

(E1) A pair of distributions for X|Y = 0 and X|Y = 1 (corresponding to P0 and
P1, respectively) as well as the prior probability p = P(Y = 1); in all cases,
we take p = P(Y = 1) = 1/2.

(E2) The marginal distribution of X plus the conditional distribution η(x) =
P(Y = 1|X = x).

All the 94 considered models belong to one of the following classes:

Gaussian models: they are denoted by G. Gaussian models are generated
according to the general pattern (E1). In all cases the distributions of X(t)|Y = i
are chosen among one of the Gaussian distributions described below.

Logistic models: they are defined through the general pattern (E2). The
process X = X(t) follows one of the above mentioned distributions and Y ∼
Binom(1, η(X)) with

η(x) =
1

1 + e−Ψ(x(t1),··· ,x(td))
,

a function of the relevant variables x(t1), · · · , x(td). The 15 versions and the few
variants of this model considered are identified with the general label L. They
correspond to different choices for the link function Ψ (both linear and nonlinear)
and for the distribution of X.

Mixtures: they are obtained by combining (via mixtures) the above mentioned
Gaussian distributions assumed for X|Y = 0 and X|Y = 1 in several ways. These
models are denoted by M in the output tables.

The processes involved are chosen among the following: first, the standard
Brownian Motion, B. Second, BT denotes a Brownian Motion with a trend
m(t), i.e., BT (t) = B(t) + m(t); we have considered several choices for m(t), a
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linear trend, m(t) = ct, a linear trend with random slope, i.e., m(t) = θt, where
θ is a Gaussian r.v., and different members of two parametric families: the peak
functions Φm,k and the hillside functions, defined by

Φm,k =

∫ t

0

ϕm,k(s)ds , hillsidet0,b(t) = b(t− t0)I[t0,∞),

where, ϕm,k(t) =
√

2m−1
[
I( 2k−2

2m
, 2k−1

2m ) − I( 2k−1
2m

, 2k
2m )

]
for m ∈ N, 1 ≤ k ≤ 2m−1.

Third, the Brownian Bridge: BB(t) = B(t)− tB(1). Our fourth class of Gaus-
sian processes is the Ornstein–Uhlenbeck process, with zero mean (OU) or
different mean functions m(t) (OUt). Finally some “smooth” processes have been
also included. They are obtained by convolving Brownian trajectories with Gaus-
sian kernels. We have considered two levels of smoothing denoted by sB and ssB;
in the list of models below those labeled ssB are smoother than those with label
sB.

In the following list of models, Pi denotes the distribution of X|Y = i and
variables is the set of relevant variables in each Gaussian or Mixture case. We call
them “relevant” in the sense that the optimal classification rule depends only on
these variables. In the list below the variables written in boldface are “especially
relevant” in terms of their relative discriminating capacity.

All considered sample data are discretized in 100 equispaced pointsX1, . . . , X100
in the interval [0,1]. To avoid degeneracies we have excluded the point 0 and the
point 1 in the Brownian Bridge type models.

1. Gaussian models considered:

1. G2 :

{
P0 : B(t) + t
P1 : B(t)

variables = {X100}.

2. G2b :

{
P0 : B(t) + 3t
P1 : B(t)

variables = {X100}.

3. G4 :

{
P0 : B(t) + hillside0.5,4(t)
P1 : B(t)

variables = {X47,X 100}.

4. G5 :

{
P0 : B(t) + 3Φ1,1(t)
P1 : B(t)

variables = {X1,X 48, X100}.

5. G6 :

{
P0 : B(t) + 5Φ2,2(t)
P1 : B(t)

variables = {X48,X 75, X100}.

6. G7 :

{
P0 : B(t) + 5Φ3,2(t) + 5Φ3,4(t)
P1 : B(t)

variables = {X22,X 35, X49, X74,X 88, X100}.

7. G8 :

{
P0 : B(t) + 3Φ2,1.25(t) + 3Φ2,2(t)
P1 : B(t)

variables = {X9,X 35, X48, X62,X 75, X100}.
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2. logistic-type models under study: they are all defined according method (E2)
(see Sec. 6.1 in the main paper). The process X = X(t) follows one of the distributions
mentioned above and Y = Binom(1, η(X)) with η(x) = (1 + e−ψ(x(t1),··· ,x(tk)))−1, a
function of the relevant variables x(t1), · · · , x(tk).

L1: ψ(X) = 10X65.

L2: ψ(X) = 10X30 + 10X70.

L3: ψ(X) = 10X30 − 10X70.

L4: ψ(X) = 20X30 + 50X5020X80.

L5: ψ(X) = 20X30 − 50X50 + 20X80.

L6: ψ(X) = 10X10 + 30X40 + 10X72 + 10X80 + 20X95.

L7: ψ(X) =
∑10

i=1 10X10i.

L8: ψ(X) = 20X2
30 + 10X4

50 + 50X3
80.

L9: ψ(X) = 10X10 + 10|X50|+ 0X2
30X85.

L10: ψ(X) = 20X33 + 20|X68|.

L11: ψ(X) = 20
X35

+ 30
X77

.

L12: ψ(X) = logX35 + logX77.

L13: ψ(X) = 40X20 + 30X28 + 20X62 + 10X67.

L14: ψ(X) = 40X20 + 30X28 − 20X62 − 10X67.

L15: ψ(X) = 40X20 − 30X28 + 20X62 − 10X67.

Some variations of these models have been also considered:

L3b: ψ(X) = 30X30 − 20X70.

L4b: ψ(X) = 30X30 + 20X50 + 10X80.

L5b: ψ(X) = 10X30 − 10X50 + 10X80.
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L6b: ψ(X) = 20X10 + 20X40 + 20X72 + 20X80 + 20X95.

L8b: ψ(X) = 10X2
30 + 10X4

50 + 10X3
80.

3. Mixture-type models: they are obtained by combining (via mixtures) in several
ways the above mentioned Gaussian distributions assumed for X|Y = 0 and X|Y = 1.
These models are denoted M1, ..., M10 in the output tables.

1. M2 :


P0 :

{
B(t) + 3Φ2,2(t), 1/2
B(t) + 5Φ3,2(t), 1/2

P1 : B(t)

variables = {X22,X 35, X48,X 75, X100}.

2. M3 :


P0 :

{
B(t) + 3Φ2,2(t), 1/10
B(t) + 5Φ3,2(t), 9/10

P1 : B(t)

variables = {X22,X 35, X48,X 75, X100}.

3. M4:


P0 :

{
B(t) + 3Φ2,2(t), 1/2
B(t) + 5Φ3,3(t), 1/2

P1 : B(t)

variables = {X48,X 62,X 75, X100}.

4. M5 :


P0 :

 B(t) + 3Φ2,1(t) , 1/3
B(t) + 3Φ2,2(t), 1/3
B(t) + 5Φ3,2(t), 1/3

P1 : B(t)

variables = {X1,X 22,X 35, X48,X 75, X100}.

5. M6 :


P0 :

{
B(t) + 3Φ2,1(t) , 1/2

B(t) + 3t , 1/2

P1 : B(t)

variables = {X1,X 22, X49,X 100}.

6. M7 :


P0 :

{
B(t) + 3Φ1,1(t) , 1/2

BB(t) , 1/2

P1 : B(t)

variables = {X1,X 48,X 100}.

7. M8 :


P0 :

{
B(t) + θt, θ ∼ N(0, 5) , 1/2
B(t) + hillside0.5,5(t) , 1/2

P1 : B(t)

variables = {X47,X 100}.

8. M10 :


P0 :

 B(t) + 3Φ1,1(t) , 1/3
B(t)− 3t , 1/3
BB(t) , 1/3

P1 : B(t)

variables = {X1,X 48,X 100}.

Finally, we consider here those models for which the mean functions m0 and
m1 are different (otherwise any linear method is blind to discriminate between P0

and P1). The full list of models involved is as follows:

1. L1 OU

2. L1 OUt

3. L1 B

4. L1 sB

5. L1 ssB

6. L2 OU

7. L2 OUt

8. L2 B

9. L2 sB

10. L2 ssB

11. L3 OU

12. L3b OU

13. L3 OUt

14. L3b OUt

15. L3 B

16. L3b B

17. L3 sB

18. L3 ssB

19. L4 OU

20. L4b OU
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21. L4 OUt

22. L4b OUt

23. L4 B

24. L4 sB

25. L4 ssB

26. L5 OU

27. L5b OU

28. L5 OUt

29. L5 B

30. L5 sB

31. L5 ssB

32. L6 OU

33. L6b OU

34. L6 OUt

35. L6b OUt

36. L6 B

37. L6 sB

38. L6 ssB

39. L7 OU

40. L7b OU

41. L7 OUt

42. L7b OUt

43. L7 B

44. L7 sB

45. L7 ssB

46. L8 B

47. L8 sB

48. L8 ssB

49. L8b OU

50. L9 B

51. L9 sB

52. L9 ssB

53. L10 OU

54. L10 B

55. L10 sB

56. L10 ssB

57. L11 OU

58. L11 OUt

59. L11 B

60. L11 sB

61. L11 ssB

62. L12 OU

63. L12 OUt

64. L12 B

65. L12 sB

66. L12 ssB

67. L13 OU

68. L13 OUt

69. L13 B

70. L13 sB

71. L13 ssB

72. L14 OU

73. L14 OUt

74. L14 B

75. L14 sB

76. L15 OU

77. L15 OUt

78. L15 B

79. L15 sB

80. G2

81. G2b

82. G4

83. G5

84. G6

85. G7

86. G8

87. M2

88. M3

89. M4

90. M5

91. M6

92. M7

93. M8

94. M10

APPENDIX B. Some additional results

• Table S4 is a complement for Table S1 by showing the average number of variables
(or components).

• Tables S5, S6 and S7 show the classification accuracy (percentage of correct clas-
sification) for different groups of models and methods obtained with LDA, kNN
and SVM classifiers respectively. Results from the different considered classifiers
are quite similar in relative terms. Let us recall that the full results of the 1128
experiments (94 models ×4 samples sizes ×3 classifiers) are available in the sup-
plementary file outputs. The methods appear in columns; apart from methods
in Table 1 we have included Base (except for LDA) and Oracle versions of each
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Table S4: Average number of selected variables (or components) with the three considered
classifiers. Remember that the original dimension is 100.

Classifier Sample size Dimension reduction methods

mRMR-RD PLS MHR RK-VS RKB-VS

LDA n = 30 4.9 2.6 5.4 2.7 3.7

n = 50 5.9 2.8 6.1 2.8 4.1

n = 100 7.2 3.3 7.0 3.2 4.8

n = 200 8.1 4.0 7.5 3.9 5.6

kNN n = 30 7.8 4.3 6.2 7.6 8.1

n = 50 8.0 4.8 6.2 7.3 7.9

n = 100 8.4 5.5 6.2 6.7 7.6

n = 200 8.6 6.2 5.9 6.3 7.2

SVM n = 30 9.3 3.3 8.0 9.3 10.0

n = 50 9.4 3.8 7.9 8.7 9.6

n = 100 9.7 4.6 7.9 8.0 9.2

n = 200 9.8 5.6 7.5 7.6 8.9

method. The first is based on the entire trajectories and Oracle only uses the true
relevant variables. The simulation outputs are grouped in different categories (in
rows) by model type and sample size n. The rows are labelled by the general model
type, that is, logistic, Gaussian and mixtures. The logistic models are also divided
by the type of processes involved according to the notation given above. RKHS
denotes the models that fulfil the hypotheses of RK-VS (G2, G2b, G4,...,G8) and
“All models” includes the outputs of all the 94 considered models for each n. We
have followed the methodology described in the main paper and the outputs are
averaged over 200 independent runs. The marked values correspond to the best
performance in each row (excluding Oracle which is not feasible in practice).
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Table S5: Percentage of correct classification with LDA

Models n mRMR-RD PLS MHR RK-VS RKB-VS LDA-Oracle

All models 30 81.04 82.87 82.44 81.50 80.89 84.97

50 82.37 83.78 83.68 83.44 82.54 86.23

100 83.79 84.70 84.97 85.30 84.46 87.18

200 84.88 85.46 85.90 86.51 85.90 87.69

Logistic OU 30 78.70 80.11 79.36 78.21 76.47 81.92

50 80.12 80.96 80.75 80.23 78.33 83.24

100 81.70 81.90 82.30 82.16 80.69 84.27

200 83.05 82.74 83.65 83.66 82.61 84.84

Logistic OUt 30 80.12 81.30 80.87 79.60 78.56 83.11

50 81.21 82.05 81.98 81.42 80.20 84.44

100 82.39 82.91 83.14 83.14 82.15 85.45

200 83.35 83.51 84.03 84.29 83.66 85.93

Logistic B 30 82.79 84.57 84.19 83.52 82.32 87.54

50 84.18 85.55 85.59 85.65 84.21 88.83

100 85.74 86.60 87.16 87.71 86.47 89.90

200 86.88 87.50 88.33 89.17 88.18 90.51

Logistic sB 30 82.95 84.63 84.26 83.43 82.37 87.10

50 84.18 85.59 85.59 85.39 84.11 88.46

100 85.51 86.60 87.02 87.52 86.34 89.55

200 86.71 87.38 88.20 88.84 87.98 90.18

Logistic ssB 30 84.56 85.73 85.58 84.93 84.51 86.54

50 85.65 86.49 86.54 86.42 85.93 87.90

100 86.86 87.25 87.38 87.89 87.39 88.81

200 87.83 88.01 87.72 88.83 88.59 89.38

Gaussian 30 85.28 88.63 88.70 88.30 89.95 90.91

50 86.72 89.45 89.38 89.81 90.69 91.41

100 88.21 89.91 89.86 90.81 91.18 91.64

200 89.00 90.38 89.96 91.13 91.30 91.71

Mixture 30 71.95 76.19 75.40 73.93 76.65 79.09

50 73.88 77.66 77.03 76.63 78.30 80.29

100 75.54 78.91 78.61 79.13 79.89 81.07

200 76.46 79.66 79.29 80.21 80.61 81.39

RKHS 30 85.28 88.63 88.70 88.30 89.95 90.91

50 86.72 89.45 89.38 89.81 90.69 91.41

100 88.21 89.91 89.86 90.81 91.18 91.64

200 89.00 90.38 89.96 91.13 91.30 91.71

25



Table S6: Percentage of correct classification with kNN

Models n mRMR-RD PLS MHR RK-VS RKB-VS Base kNN-Oracle

All models 30 81.88 82.45 82.46 82.28 81.92 79.61 84.56

50 82.95 83.49 83.43 83.75 83.25 80.96 86.16

100 84.31 84.77 84.73 85.59 84.95 82.60 87.94

200 85.38 85.79 85.91 87.16 86.50 83.99 89.25

Logistic OU 30 78.71 79.22 79.20 78.58 77.82 75.63 81.15

50 79.64 80.04 80.02 79.98 79.05 76.87 82.63

100 80.96 81.13 81.26 81.66 80.68 78.44 84.30

200 82.10 82.07 82.56 83.21 82.23 79.73 85.49

Logistic OUt 30 81.87 82.71 82.30 81.91 81.37 79.50 84.46

50 82.83 83.52 83.18 83.13 82.49 80.62 85.89

100 84.12 84.52 84.33 84.90 84.03 82.02 87.35

200 85.00 85.31 85.30 86.23 85.31 83.14 88.49

Logistic B 30 83.29 84.01 83.94 83.94 83.04 81.10 86.61

50 84.38 85.08 84.90 85.47 84.55 82.35 88.24

100 85.68 86.30 86.31 87.40 86.41 83.92 90.19

200 86.78 87.39 87.63 89.27 88.25 85.35 91.66

Logistic sB 30 84.00 84.48 84.55 84.40 83.66 81.90 86.59

50 84.87 85.36 85.31 85.65 84.93 83.02 88.24

100 86.09 86.61 86.62 87.51 86.62 84.44 90.11

200 87.07 87.58 87.84 89.17 88.35 85.73 91.59

Logistic ssB 30 85.92 85.97 86.35 86.39 86.09 84.47 88.01

50 86.86 86.78 87.11 87.49 87.10 85.41 89.44

100 87.93 87.86 88.05 88.89 88.55 86.71 91.04

200 88.89 88.81 88.75 90.24 89.88 87.91 92.34

Gaussian 30 83.96 85.35 85.79 86.16 87.13 83.20 87.46

50 84.80 86.61 86.68 87.62 88.20 84.99 88.55

100 85.69 87.85 87.58 88.91 89.19 86.61 89.56

200 86.30 88.74 88.19 89.68 89.84 87.94 90.11

Mixture 30 74.20 74.40 74.40 74.42 75.92 71.05 76.83

50 76.59 76.92 76.70 77.45 78.43 73.92 79.58

100 79.46 79.68 79.20 80.76 81.36 77.32 82.70

200 81.48 81.51 81.42 83.21 83.61 79.98 84.74

RKHS 30 83.96 85.35 85.79 86.16 87.13 83.20 87.46

50 84.80 86.61 86.68 87.62 88.20 84.99 88.55

100 85.69 87.85 87.58 88.91 89.19 86.61 89.56

200 86.30 88.74 88.19 89.68 89.84 87.94 90.11
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Table S7: Percentage of correct classification with SVM

Models n mRMR-RD PLS MHR RK-VS RKB-VS Base SVM-Oracle

All models 30 83.22 84.12 84.62 84.28 84.12 83.86 87.53

50 84.21 85.04 85.44 85.60 85.20 85.01 88.21

100 85.27 86.03 86.29 86.96 86.48 86.20 88.75

200 86.10 86.79 86.86 87.90 87.50 87.07 89.03

Logistic OU 30 79.98 80.79 80.81 80.19 79.65 80.18 83.93

50 81.13 81.64 81.69 81.66 80.95 81.36 84.62

100 82.39 82.51 82.59 83.15 82.44 82.50 85.17

200 83.51 83.30 83.50 84.32 83.74 83.42 85.49

Logistic OUt 30 83.38 83.84 84.33 83.70 83.28 83.77 87.24

50 84.37 84.69 85.14 85.00 84.39 84.82 87.88

100 85.43 85.67 86.07 86.34 85.75 85.94 88.37

200 86.15 86.34 86.71 87.26 86.74 86.71 88.64

Logistic B 30 85.24 85.81 87.01 86.56 85.97 86.01 90.58

50 86.23 86.83 87.92 88.11 87.20 87.17 91.23

100 87.35 87.92 88.99 89.58 88.69 88.50 91.80

200 88.16 88.85 89.85 90.71 89.95 89.50 92.09

Logistic sB 30 85.55 85.98 87.06 86.68 86.22 86.22 90.22

50 86.33 86.96 87.92 87.86 87.32 87.32 90.96

100 87.13 88.01 88.88 89.41 88.69 88.51 91.53

200 88.04 88.84 89.55 90.41 89.80 89.40 91.81

Logistic ssB 30 87.16 87.31 87.69 88.26 88.25 87.65 90.08

50 87.93 88.02 88.28 89.07 88.90 88.47 90.57

100 88.82 88.96 88.55 89.91 89.77 89.37 91.00

200 89.47 89.73 88.54 90.60 90.57 90.16 91.25

Gaussian 30 86.42 88.72 88.97 89.00 89.99 87.29 90.54

50 87.33 89.44 89.27 89.94 90.49 88.81 91.02

100 88.48 90.03 89.60 90.63 90.93 89.88 91.38

200 88.98 90.41 89.51 91.03 91.21 90.48 91.45

Mixture 30 73.01 76.52 76.12 75.53 76.93 74.88 78.71

50 74.39 77.90 77.42 77.50 78.35 76.51 79.89

100 75.55 79.27 78.65 79.41 79.72 78.20 80.76

200 76.35 80.10 79.06 80.26 80.50 79.21 81.16

RKHS 30 86.42 88.72 88.97 89.00 89.99 87.29 90.54

50 87.33 89.44 89.27 89.94 90.49 88.81 91.02

100 88.48 90.03 89.60 90.63 90.93 89.88 91.38

200 88.98 90.41 89.51 91.03 91.21 90.48 91.45
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