

Fig. S1. Effect of *dsLacZ* injection on the total number of hemocyte and hemocyte populations of *A*. *gambiae* susceptible G3 mosquitoes (ns = not statistical difference, T-test).

Fig. S2. *Cactus* expression levels in mosquitoes that received cells or cell-free hemolymph from *Cactus*-silenced donors, relative to control donors injected with dsLacZ (ns = not statistical difference, T-test).

Fig. S3.Tep1 expression in *cactus*-silenced mosquitoes compared to *dsLacZ* controls at 3d postdsRNA injection. Error bars indicate SEM. **, p < 0.01, *, p < .05

Fig. S4. Proportions of granulocyte, oenocytoid and prohemocyte populations in S and R *A. gambiae* during the first 12 days post-emergence.(p>0.05 for all groups, ANOVA).

Fig. S5. Effect of *P. berghei* infection on the proportion of oenocytoid and total number of hemocytes during the first 12 days post-infection in the S strain or R strain. Error bars indicate SEM, *, p<.05

Fig. S6. Effect of *P. yoelii* or *P. falciparum* infection on the proportion of oenocytoid during the first 12 days post-infection. Error bars indicate SEM, *, p<.05

Fig. S7. An. gambiae immune signaling pathways targeted for RNAi-based silencing.