

Heterogeneity, contact patterns and modeling options

Jonathan Dushoff, McMaster University

MMED 2019

Slide set citation: https://doi.org/10.6084/m9.figshare.5044627.v4

Goals

- Explain the importance of heterogeneity on patterns of disease spread
 - Focus on different types of human heterogeneity
- Discuss ways in which homogeneous models fail to match observed dynamics
- Use simple models to explore qualitative effects of heterogeneity on modeling conclusions
- Briefly introduce some methods that are used to incorporate heterogeneity in models

The resilience of infectious disease

1967: It's time to close the book on infectious diseases

Pathogen evolution

Human heterogeneity

Human heterogeneity

Human heterogeneity

Outline

Homogeneous disease models

The importance of heterogeneity

Effects of heterogeneity

Modeling approaches

Expanding our models

• Homogeneous models assume everyone has the same:

 disease characteristics (e.g. susceptibility, tendency to transmit)

mixing rate

probability of mixing with each person

Heterogeneous models allow people to be different

The basic reproductive number

R₀ is the number of people who would be infected by an infectious individual in a fully susceptible population.

$$\blacktriangleright \ \mathcal{R}_0 = \beta / \gamma = \beta D = (cp)D$$

- c: Contact Rate
- p: Probability of transmission (infectivity)
- D: Average duration of infection
- A disease can invade a population if and only if $\mathcal{R}_0 > 1$.

Equilibrium

 Equilibrium is worth knowing even if the disease doesn't reach equilibrium

11/55

System will move around the equilibrium

Equilibrium analysis

*R*_{eff} is the number of people who would be infected by an infectious individual *in a general population.*

$$\blacktriangleright \ \mathcal{R}_{\rm eff} = \mathcal{R}_0 \frac{S}{N} = pcD \frac{S}{N}$$

• At equilibrium:
$$\mathcal{R}_{eff} = \mathcal{R}_0 \frac{S}{N} = 1$$
.

• Thus:
$$\frac{S}{N} = 1/R_0$$
.

• Proportion 'affected' is $V = 1 - S/N = 1 - 1/R_0$.

Proportion affected

- Proportion 'affected' is $V = 1 S/N = 1 1/R_0$.
 - * The same formula as the critical vaccination proportion!
 - If this proportion is made unavailable, the disease cannot spread
 - * At least, in the homogeneous case

Homogeneous endemic curve

endemic equilibrium

- Threshold value
- Sharp response to changes in factors underlying transmission
- Works sometimes
- Sometimes predicts unrealistic sensitivity

Disease dynamics

R0 = 2.00

R0 = 2.83

R0 = 4.00

R0 = 5.66

Homogeneous dynamics

- For many diseases, homogeneous models tend to predict:
 - Too high of an equilibrium, when matching growth rate
 - Too low of a growth rate, when matching equilibrium

Outline

Homogeneous disease models

The importance of heterogeneity

Effects of heterogeneity

Modeling approaches

Beyond homogeneity

Flavors of heterogeneity

- among hosts
- spatial

demographic (discreteness of indviduals)

temporal

others

Heterogeneity in TB

 Contact: Overcrowding, poor ventilation

 Cure: Access to medical care

Heterogeneity in other diseases

STDs: Sexual mixing patterns, access to medical care

- Influenza: Crowding, nutrition
- Malaria: Attractiveness to biting insects, geographical location, immune status

Every disease!

Large-scale heterogeneity

- For schistosomiasis, the worldwide average $\mathcal{R}_0 < 1$
- Disease persists because of specific populations with $\mathcal{R}_0 > 1$.

25/55

This effect operates at many scales.

Outline

Homogeneous disease models

The importance of heterogeneity

Effects of heterogeneity

Modeling approaches

Heterogeneity among hosts

- Differences among people are pervasive, large and often correlated
- We often consider transmission probability as the product of two components:

• The "infector" has tendency to infect τ

• The "recipient" has susceptibility σ

• Then
$$\mathcal{R}_0 = pcD = (\sigma \tau)cD$$
,

- Why do we assume this is multiplicative?
 - * Convenience, question this assumption

Equilibrium calculations

Assume $p = \sigma \tau$ has a susceptibility component and a transmission component:

 $\triangleright \ \mathcal{R}_0 = \sigma \tau c D$

 $\triangleright \ \mathcal{R}_{\rm eff} = \sigma \tau c DS / N$

• Equilibrium $S/N = 1 - 1/\mathcal{R}_0$

Equilibrium calculations with heterogeneity

- τD applies to infectious individuals $\rightarrow \tau_I D_I$
- σ applies to susceptible individuals $\rightarrow \sigma_S$
- c is complicated $\rightarrow c_S c_I / \bar{c}$

Equilibrium calculations with heterogeneity

- $\mathcal{R}_0 = \sigma_S \tau_I c_x D_I$ measured during *invasion*
- $\blacktriangleright \mathcal{R}_{eff} = \sigma_{S} \tau_{I} c_{x} D_{I} S / N \text{ measured at equilibrium}$
- Equilibrium $S/N \neq 1 1/\mathcal{R}_0$

How does \mathcal{R} change?

- Imagine a disease spread by people who differ only in their effective mixing rates
- If the disease has just started spreading in the population, how do c_S and c_I compare to c̄?

 $\triangleright \quad c_S \approx \bar{c}; \, c_l > \bar{c}.$

If the disease is very widespread in the population?

$$\blacktriangleright \ \mathbf{C}_{S} < \mathbf{\bar{C}}; \mathbf{C}_{l} \rightarrow \mathbf{\bar{C}}.$$

Simulated population

Early (5% infection)

Mid (20% infection)

Late (50% infection)

Simulated population (repeat)

Simpson's paradox

- What happens when a peanut farmer is elected to the US Senate?
- The average IQ goes up in both places!

The basic reproductive number

When the disease invades:

- \blacktriangleright The susceptible population \approx the general population
- The infectious population is likely to have higher values of c, D and/or
- R₀ is typically greater than you would expect from a homogeneous model

Equilibrium analysis

- As disease prevalence goes up:
 - Susceptible pool is the most resistant, or least exposed group
 - Infectious pool moves looks more like the general population.
- ► \rightarrow Given \mathcal{R}_0 , net effect of heterogeneity is to lower proportion affected
- Given mean parameters, net effect of heterogeneity could go either way

Homogeneous endemic curve (repeat)

endemic equilibrium

Heterogeneous endemic curves

endemic equilibrium

Heterogeneous endemic curves

endemic equilibrium

Heterogeneity and disease

Heterogeneity has a double-edged effect

- Effects of disease are *lower* for a given value of R₀.
- But R₀ is higher for given mean values of factors underlying transmission

Double-edged effect

When mean spreadiness is low:

- high heterogeneity means that the disease can persist in some particular groups
- When mean spreadiness is high:
 - high heterogeneity means that some particular groups can escape

endemic equilibrium

Heterogeneous endemic curves

- Heterogeneity makes the endemic curve flatter
- Disease levels are more resistant to change

endemic equilibrium

How diseases reach equilibrium

Diseases that invade have high values of R₀

- R_{eff} must be 1 at equilibrium
 - Potentially infectious contacts are wasted
 - Many potential contacts are not susceptible (affected by disease)
 - Those not affected less susceptible than average
 - Infectious pool less infectious

Spatial and network models

- Individual-level, or spatial, heterogeneity also usually increases wasted contacts
- Infectious people meet:
 - people with similar social backgrounds
 - people with similar behaviours
 - people who are nearby geographically or in the contact network
- More wasted contacts further flatten the endemic curve

Outline

Homogeneous disease models

The importance of heterogeneity

Effects of heterogeneity

Modeling approaches

Phenomenological

Multi-group models

- Divide the population into groups.
 - cities and villages
 - rich and poor
 - high and low sexual activity
 - age, gender

Even if details are not correct, heterogeneity will emerge and move model in the right direction

Individual-based models Individual

- Allow many possibilities:
 - vary individual characteristics
 - add a network of interactions
 - Iet the network change
- Individual-based approaches require stochastic models

Summary

endemic equilibrium

endemic equilibrium

Summary

- People are heterogeneous in many ways
 - ...and on many scales
- Simple models give us important qualitative insights
 - Diseases in heterogeneous populations are likely to be more robust to change than expected from homogeneous models

More complicated models can help address relevant detail

UNIVERSITY OF GEORGIA

College of Public Health

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by/3.0/

© 2014-2019 International Clinics on Infectious Disease Dynamics and Data

Title: Heterogeneity, contact patterns and modeling options. DOI: 10.6084/m9.figshare.5044627.v4

Attribution: Jonathan Dushoff, McMaster University Clinic on the Meaningful Modeling of Epidemiological Data

Source URL:

https://doi.org/10.6084/m9.figshare.5044627.v4

For further information please contact <u>figshare@ici3d.org</u>.

