

Heterogeneity, contact patterns and modeling options

Jonathan Dushoff, McMaster University

MMED 2019

Slide set citation: [https://doi.org/10.6084/m9.figshare.5044627.v](https://doi.org/10.6084/m9.figshare.5044627.v4)4

Goals

- \blacktriangleright Explain the importance of heterogeneity on patterns of disease spread
	- \blacktriangleright Focus on different types of human heterogeneity
- \triangleright Discuss ways in which homogeneous models fail to match observed dynamics
- \triangleright Use simple models to explore qualitative effects of heterogeneity on modeling conclusions
- \triangleright Briefly introduce some methods that are used to incorporate heterogeneity in models

The resilience of infectious disease

1967: It's time to close the book on infectious diseases

Pathogen evolution

Human heterogeneity

Human heterogeneity

!
!

Human heterogeneity

7/55 !
!

Outline

[Homogeneous disease models](#page-7-0)

[The importance of heterogeneity](#page-20-0)

[Effects of heterogeneity](#page-25-0)

[Modeling approaches](#page-47-0)

Expanding our models

• Homogeneous models assume everyone has the same:

 \blacktriangleright disease characteristics (e.g. susceptibility, tendency to transmit)

mixing rate

 \triangleright probability of mixing with each person

EXTERCHM Heterogeneous models allow people to be different

The basic reproductive number

 \triangleright \mathcal{R}_0 is the number of people who would be infected by an infectious individual *in a fully susceptible population.*

$$
\blacktriangleright \mathcal{R}_0 = \beta/\gamma = \beta D = (cp)D
$$

- ▶ *c*: Contact Rate
- \triangleright *p*: Probability of transmission (infectivity)
- ▶ *D*: Average duration of infection
- A disease can invade a population if and only if $R_0 > 1$.

Equilibrium

- \blacktriangleright Equilibrium is worth knowing even if the disease doesn't reach equilibrium
- \triangleright System will move around the equilibrium

Equilibrium analysis

 \triangleright \mathcal{R}_{eff} is the number of people who would be infected by an infectious individual *in a general population.*

$$
\blacktriangleright \mathcal{R}_{\text{eff}} = \mathcal{R}_0 \frac{S}{N} = \rho c D \frac{S}{N}
$$

• At equilibrium:
$$
\mathcal{R}_{\text{eff}} = \mathcal{R}_0 \frac{S}{N} = 1.
$$

$$
\triangleright
$$
 Thus: $\frac{S}{N} = 1/R_0$.

Proportion 'affected' is $V = 1 - S/N = 1 - 1/R_0$.

Proportion affected

- Proportion 'affected' is $V = 1 S/N = 1 1/R_0$.
	- \blacktriangleright * The same formula as the critical vaccination proportion!
	- \blacktriangleright * If this proportion is made unavailable, the disease cannot spread
	- \blacktriangleright * At least, in the homogeneous case

Homogeneous endemic curve

endemic equilibrium

- Threshold value
- Sharp response to changes in factors underlying transmission
- I Works sometimes
- \blacktriangleright Sometimes predicts unrealistic sensitivity

Disease dynamics

R0 = 2.00

R0 = 2.83

R0 = 4.00

Homogeneous dynamics

- \blacktriangleright For many diseases, homogeneous models tend to predict:
	- \triangleright Too high of an equilibrium, when matching growth rate
	- \triangleright Too low of a growth rate, when matching equilibrium

Outline

[Homogeneous disease models](#page-7-0)

[The importance of heterogeneity](#page-20-0)

[Effects of heterogeneity](#page-25-0)

[Modeling approaches](#page-47-0)

Beyond homogeneity

 \blacktriangleright Flavors of heterogeneity

 \blacktriangleright among hosts

 \blacktriangleright spatial

 \blacktriangleright demographic (discreteness of indviduals)

 \blacktriangleright temporal

 \triangleright others

Heterogeneity in TB

▶ Contact: Overcrowding, poor ventilation

Cure: Access to medical care

Heterogeneity in other diseases

▶ **STDs**: Sexual mixing patterns, access to medical care

- **Influenza:** Crowding, nutrition
- **Malaria:** Attractiveness to biting insects, geographical location, immune status

Every disease!

Large-scale heterogeneity

- \blacktriangleright For schistosomiasis, the worldwide average $\mathcal{R}_0 < 1$
- \triangleright Disease persists because of specific populations with $\mathcal{R}_0 > 1$.
- \blacktriangleright This effect operates at many scales.

Outline

[Homogeneous disease models](#page-7-0)

[The importance of heterogeneity](#page-20-0)

[Effects of heterogeneity](#page-25-0)

[Modeling approaches](#page-47-0)

Heterogeneity among hosts

- \triangleright Differences among people are pervasive, large and often correlated
- \triangleright We often consider transmission probability as the product of two components:

 \blacktriangleright The "infector" has tendency to infect τ

 \blacktriangleright The "recipient" has susceptibility σ

$$
\blacktriangleright \text{ Then } \mathcal{R}_0 = pcD = (\sigma \tau) cD,
$$

- \triangleright Why do we assume this is multiplicative?
	- \blacktriangleright * Convenience, question this assumption

Equilibrium calculations

Assume $p = \sigma \tau$ has a susceptibility component and a transmission component:

 \blacktriangleright $\mathcal{R}_0 = \sigma \tau cD$

$$
\blacktriangleright \ \mathcal{R}_{\text{eff}} = \sigma \tau cDS/N
$$

Equilibrium $S/N = 1 - 1/R_0$

Equilibrium calculations with heterogeneity

- $\blacktriangleright \tau D$ applies to infectious individuals $\rightarrow \tau_I D_I$
- \triangleright σ applies to susceptible individuals $\rightarrow \sigma_S$
- \triangleright *c* is complicated \rightarrow *csc*_{*l*}/ \overline{c} </sub>

Equilibrium calculations with heterogeneity

- \triangleright $\mathcal{R}_0 = \sigma_S \tau_l c_x D_l$ measured during *invasion*
- \triangleright $\mathcal{R}_{\text{eff}} = \sigma_{ST}/c_{x}D_{i}S/N$ measured at *equilibrium*
- Equilibrium $S/N \neq 1 1/R_0$

How does *R* change?

- \blacktriangleright Imagine a disease spread by people who differ only in their effective mixing rates
- If the disease has just started spreading in the population, how do c_S and c_I compare to \bar{c} ?

$$
\blacktriangleright c_S \approx \bar{c}; c_I > \bar{c}.
$$

If the disease is very widespread in the population?

$$
\blacktriangleright c_S < \bar{c}; c_I \to \bar{c}.
$$

Simulated population

Early (5% infection)

Mid (20% infection)

Late (50% infection)

Simulated population (repeat)

Simpson's paradox

- \triangleright What happens when a peanut farmer is elected to the US Senate?
- \blacktriangleright The average IQ goes up in both places!

The basic reproductive number

 \blacktriangleright When the disease invades:

- \triangleright The susceptible population \approx the general population
- \triangleright The infectious population is likely to have higher values of *c*, *D* and/or τ
- \triangleright \mathcal{R}_0 is typically greater than you would expect from a homogeneous model

Equilibrium analysis

- \triangleright As disease prevalence goes up:
	- \triangleright Susceptible pool is the most resistant, or least exposed group
	- \blacktriangleright Infectious pool moves looks more like the general population.
- $\triangleright \rightarrow G$ *iven* \mathcal{R}_0 , net effect of heterogeneity is to lower proportion affected
- **In Given mean parameters, net effect of heterogeneity could** go either way

Homogeneous endemic curve (repeat)

0.1 0.5 2.0 5.0 R_0 Proportion affected 0.0 Proportion affected
O.
G. $1.0 - \square$ homogeneous

endemic equilibrium

Heterogeneous endemic curves

endemic equilibrium

Heterogeneous endemic curves

endemic equilibrium

Heterogeneity and disease

\blacktriangleright Heterogeneity has a double-edged effect

- **Effects of disease are lower** for a given value of \mathcal{R}_0 .
- But \mathcal{R}_0 is *higher* for given mean values of factors underlying transmission 0.1 0.5 2.0 5.0

endemic equilibrium

!
! !

Double-edged effect

 \blacktriangleright When mean spreadiness is low:

- \blacktriangleright high heterogeneity means that the disease can persist in some particular groups
- \blacktriangleright When mean spreadiness is high:
	- \blacktriangleright high heterogeneity means that some particular groups can *escape*

Heterogeneous endemic curves

- \blacktriangleright Heterogeneity makes the endemic curve flatter
- \blacktriangleright Disease levels are more resistant to change

How diseases reach equilibrium

 \triangleright Diseases that invade have high values of \mathcal{R}_0

- \triangleright \mathcal{R}_{eff} must be 1 at equilibrium
	- \blacktriangleright Potentially infectious contacts are wasted
		- \blacktriangleright Many potential contacts are not susceptible (affected by disease)
		- \blacktriangleright Those not affected less susceptible than average
	- \blacktriangleright Infectious pool less infectious

Spatial and network models

- \blacktriangleright Individual-level, or spatial, heterogeneity also usually increases wasted contacts
- \blacktriangleright Infectious people meet:
	- \blacktriangleright people with similar social backgrounds
	- \blacktriangleright people with similar behaviours
	- \triangleright people who are nearby geographically or in the contact network
- \triangleright More wasted contacts further flatten the endemic curve

Outline

[Homogeneous disease models](#page-7-0)

[The importance of heterogeneity](#page-20-0)

[Effects of heterogeneity](#page-25-0)

[Modeling approaches](#page-47-0)

Phenomenological

 \blacktriangleright Simply *make* β go down with prevalence, $\beta = B \times$: \blacktriangleright $e^{-\alpha P}$ \blacktriangleright $(1 - P)^s$ ▶ $(1 - P/s)^{\alpha s}$

Multi-group models

- \blacktriangleright Divide the population into groups.
	- \blacktriangleright cities and villages
	- \blacktriangleright rich and poor
	- \blacktriangleright high and low sexual activity
	- \blacktriangleright age, gender

I ...

 \blacktriangleright Even if details are not correct, heterogeneity will emerge and move model in the right direction

Individual-based models

- \blacktriangleright Allow many possibilities:
	- \blacktriangleright vary individual characteristics
	- \blacktriangleright add a network of interactions
	- \blacktriangleright let the network change
- \blacktriangleright Individual-based approaches require stochastic models

52/55

!
! !

Summary

endemic equilibrium

endemic equilibrium

Summary

- \blacktriangleright People are heterogeneous in many ways
	- \blacktriangleright . . and on many scales
- \triangleright Simple models give us important qualitative insights
	- \triangleright Diseases in heterogeneous populations are likely to be more robust to change than expected from homogeneous models

 \triangleright More complicated models can help address relevant detail

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at

http://creativecommons.org/licenses/by/3.0/

© *2014-2019* International Clinics on Infectious Disease Dynamics and Data

Title: Heterogeneity, contact patterns and modeling options. DOI: 10.6084/m9.figshare.5044627.v4

Attribution: Clinic on the Meaningful Modeling of Epidemiological Data Jonathan Dushoff, McMaster University

Source URL:

[https://doi.org/10.6084/m9.figshare.5044627.v](https://doi.org/10.6084/m9.figshare.5044627.v4)4

For further information please conta[ct figshare@ici3d.or](mailto:figshare@ici3d.org)g.

UNIVERSITY OF GEORGIA **College of Public Health**

 \overline{C} $\frac{1}{178}$ 0