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Appendix S1

· Loop Analysis semi-quantitative theoretical framework

Loop models show relationships as a sign, which indicates the type of influence each variable has upon another (i.e. positive, negative, or zero). For instance, in ecological relationships, (+,-) denotes a predator-prey or parasite-host interaction, (-,-) represents competition between two species, whereas (+,+), (+,0), and (-,0) represent mutualism, commensalism, and ammensalism, respectively. Each variable is represented by a node (large circle) and edges (lines) representing directions and types of interactions -an arrow at one end indicates a positive effect; a circle means the effect is negative; and the lack of a symbol shows a null effect. Loop Analysis is based on the correspondence between differential equations near equilibrium, matrixes and their loop diagrams. Therefore, in the benthic system, the element aij of the matrix and the loop diagram represent the effect of variable j on the growth variable i when the equation:
)						(1)
where the change in time of variable Xi is a function fi of other interconnected variables Xn and parameters Cn, and is solved at equilibrium. The link from Xj to Xi is similar to the αij in [1], as follows:
										(2)
where X* is evaluated at moving equilibrium. The element of the graph representing the link from j to i is sign (αij) – whether positive, negative, or zero – where the function sign (X) is 1 when X > 0, 0 when X = 0, and -1 when X < 0.

Local stability, as determined by the Routh-Hurwitz criteria, translates into loop terms as Condition 1 when Fk < 0 for all k; i.e. Fk corresponds to the negative feedback on every level (k) that must exceed the positive feedback. Condition 2 indicates that negative feedback on higher levels cannot be too great compared to the negative feedback on lower levels in order to conserve the qualitative stability properties of the systems. This second condition was calculated by using the expansion of the Hurwitz determinants in terms of feedbacks or loops [2]. The feedback for each level can also be calculated by estimating the characteristic polynomial related to the Jacobean interaction matrix, in which the polynomial now can be written in terms of the feedback notation as follows: 
				(3)
where F0 ≡ -1 and the Fn is the feedback of the entire system (n = total number of variables in the system) [2]. It is assumed that the system is locally stable when Fn is negative. The stronger the negative feedback (Fn) becomes, the greater the resistance will be to external change [3]. Based on this local stability criterion, it is possible to estimate the degree of resistance to perturbations (as a measure of sustainability) of the system and, simultaneously, to explore strategies to increase this resistance. 

Loop Analysis [2, 3, 4] is a useful technique for estimating the local stability (sustainability) of systems and assessing the propagation of direct and indirect effects as a response to external perturbations [2]. This approach has been applied widely in different fields of the natural sciences [5, 6, 7] including fisheries management [8, 9, 10, 11, 12, 13, 14] and malaria control interventions [15], and has shown a high degree of predictability (after perturbation) of natural phenomena [16, 17, 18, 19, 20, 21].
· Hessian optimization procedure 
The Hessian optimization analysis considers a multidimensional function as follows: 
										(4)
where H is the multidimensional function varying continuously in an open region, and Xi the variables. Consider the set of determinants ǀ Di ǀ, i = 1, 2, 3, …., n, where
						(5)
If ∂H/∂X1 = ∂H/∂X2 = ∂H/∂Xn = 0 at (X10, X20, …, Xn0), then it is possible to establish the following conditions of optimization:
1.- ǀ Diǀ< 0 for i = 1, 3, 5, … , andǀDiǀ> 0 for i = 2, 4, 6, … indicates the presence of a relative maximum at X10, X20, …., Xn0.
2.-ǀDiǀ> 0 for i = 1, 2, 3, …, n indicates the presence of a relative minimum at X10, X20, …., Xn0. 
Any departure from these conditions corresponds to a saddle-point, that is, without maximum neither minimum [22].
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