Supplementary material
Optimal control and additive perturbations help in
estimating ill-posed and uncertain dynamical

systems

1 Notations and Norm inequalities
The definition of the Tracking estimator is based on the following optimization problem:

Minimize: C(Y;z,u,20,0,U) = [i |Ca(t) = Y(@)|[3dt+ [, [lu(t)|7 dt
i(t) = f(t,z(t),0) + Bu(t)

Subject to: 2(0) =z
ue L% ([0, T],R%)

The cost S is profiled on the admissible “perturbation” wu:

S(Y;0,U) = min C(Y;u,0,U) (1.2)

u€L,

and the Tracking estimator is the global minimum of S

T _ . O
0" = argreréléls(Y,H, U)

For this reason, it is useful to introduce Xp ,, ., the solution of :
(1.3)

We recall ||||?] and ||.|[;2 ; are respectively the weighted version of the squared euclidean norm
and L? norm (e.g | f(t)|% = F()TUF(#) and 1£132. = Jo IIF (@) dt ), for U = Id we simply use
the classic notation |.||* and II.Il 2. For matrices, we use the Frobenius norm || 4|, = Z?,j a;j .
Continuity and differentiability have to be understood according to these norms.

We recall conditions C1-C11 introduced in the paper:

C1 The vector field f has a compact support @ w.r.t z, that is @ is compact and f(¢,z,0) = 0 if
x ¢ Q. V0 € O, there is a unique solution Xy of the original ODE defined on [0, T .

C2 V§ € ©, (t,x) — f(t,x,0) is continuous on [0, T] x @ and Vt € [0, T], © —> %(t,x, 0) exists
and (¢,2) — g—i(t,% 6) is continuous on [0, T] x Q.

C3 The signal ¢ — Y'(¢) is continuous on [0, T] (at least has a continuous representative).
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C2 bis V0 € O, (t,x) — f(t,z,0) is C? on [0, T] x Q and bounded.
C3 bis The signal t — Y (t) is C? on [0, T.

C4 The model is structurally identifiable at (6, ) i.e

V(H,JZ()) €EOXQ; OX97$0 = OXG*,.’L‘S - (9, $0) = (9*, xS) .

C5 The functions (¢, z,6) — %(t,x, ), (t,x,0) — %(t,x, 6) are continuous on [0, 7] x Q x ©
and bounded.
C6 The functions (¢, z,0) — %(t,x,ﬁ), (t,z,0) — %(tw,@),(tw,@) — %(t,mﬁ) and
3
t,x,0) — 2.f t,x,0) are continuous on [0, T| X @ x © and bounded.
03z

c7 92S(Y*;0%,U)

50T 50 is non singular.

C8 Observations (t;,Y;) are i.i.d with Var(Y; | t;) = 0lgy with o < +00 and the ¢; are uniformely
distributed on [0, 7.

C9 It exists s > 1 such t — f(t, X*(t),0%) is C*~* ([0, T],R?) and v/nK~* — 0 and £~ — 0.
C10 The meshize max; |7;41,x — 75, x| — 0 when K — +o0.

We recall also the following notations:

Xo 2, solution of &(t) = f(¢,z,0) with initial condition Xy ,,(0) = zo.

X 30,4 solution of &(t) = f(t,z,0) + Bu with initial condition Xg 4, .(0) = zo.

Ay (Yt z,u) == ||Cx — Y(t)||§ + ||u||%] running cost for the Optimal Control Problem (1.1).

¢ = max OxQx[0,T) ||X6,zo(t)||2

%(t,x,@)HQ

fgc = 1NaX |0, TIxQx© ‘

fmm = ma’X[O,T]XQX@ ’

2
2 (t,0)|
2
D(Y) :=supgee [|Y = CXgu(.Y)][ ;2 < 00

E(Y) := 2\/&||CH2 %D(Y

F(Y) = §|BIE T2e75T (FE(Y) +2|/C))

A (Y) = YTBIz Bo(Y) ez%ﬁT
- § . )
) s (B ) (1 aviTr) (1 2)

A3(C) =F(Y*)+ 3 <L1C + \/(L1C +4Vd||C]|, Lz) L1C>
Aa(Q) = F(Y™) + LsC

) _ e2Vdfat _
Ly = ||BJf; PAAT22V T, 1C1l, szl

Ly = d||B||; T2e2V4-T | C]l,
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5 5 _— e2Vdfat _ Vd||C|l,L
Ly = d3 ||B|3 T2Vl T ||C], T ( A—HH(H;)z + 1)

B(Y*,() = {Y € L? ([o, 7] ,Rd’) stV =Y. < g}

In the following proofs, we use repeatedly the following norm inequalities: || AX ||, < Vd|[|Al|, | X||,

and 4 [|p(t), < H‘fl—‘f(t)HZ where ¢t — ©(t) is a matrix valued function. Indeed, we have:

I J
Lol = STl S ei®?
23571 2 i ()i (1)
2/ X e (8)?
it Zj:1 $i,5 () @i, (t)
el

e Nl I )| .
Ie@IIe0l, — 1),

IN

The last inequality is obtained by Cauchy-Schwarz.

2 Extended simulation: Misspecified FitzHugh-Nagumo model

The FitzHugh-Nagumo is a nonlinear two-dimensional ODE introduced for modeling neurons.
For well-chosen parameters and initial conditions, it exhibits a periodic behavior, with typical

oscillations corresponding to a limit cycle.

{V - C(V_VTB+R) . (2.1)
R = —1(V-a+bR)

The true parameters are ¢* = b* = 0.2 and ¢* = 3 and z§ = (V, R§) = (—1,1), and are taken
from [7] where it was introduced as a benchmark for parameter estimation in ODE. In our case,
the original model is altered by a step function Z defined by: Z(t) = 0.3I[5, 10)(t) + 0.3I}15, 20] (2)-
This function is originally present in the model proposed by [4] to picture an exogenous stimuli.

Hence, the true model is in fact

vV = C(V—VTS-FR-FZ) (2.2)
R = —1(V—a+bR) '

but we still use (2.1) as the true model during the estimation procedure. To give a clearer idea of
the influence of Z in the resulting dynamics, we plot in figure 2.1 the solution of (2.1) and (2.2)
for the same parameter value (a*, b*, ¢*) and initial conditions z§. We also plot an example of
generated data with the parameter 8*: the data are generated by adding a Gaussian noise to the
trajectories of (V, R), for various sample sizes, see figures . This experiment gives an idea of the
robustness of estimation with respect to model misspecification (the case of the estimation of a
well-specified model is not discussed here as NLS, GP and Tracking behave similarly). The results
are presented in table 2.2. In that case, Tracking or GP give notably superior estimates thanks to
the use of approximate models: the estimates are obtained by profiling the possible perturbations of
the model, and both the bias and variance of the estimators are reduced with respect to Nonlinear
Least Squares. For n = 100, Tracking and Generalized Profiling are equivalent, but for a smaller

size, Tracking gives a smaller bias and variance.
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— V: Original model —V:True curve |
— — V: Perturbed model [N 2 X V: Observation |
R: Original model R: True curve

R: Perturbed model R: Observation
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Fig. 2.1: Left: Solution of (2.1) and (2.2). Right:Example of simulated data and corresponding

curves.
’ (n, o) ‘ ‘ Bias(d) ‘ Tr (V(§)>x10*4 ‘ MSE (x10~2)
or 0.30 6.36 3.41
(100,0.1) | oNLS 0.43 13 7.13
cP 0.30 7.26 3.48
or 0.28 9.31 3.45
(50,0.1) | oNLS 0.42 17 6.52
cP 0.36 11 5.47

Tab. 2.1: Bias, Variance, MSE, for parameter estimation for ill specified FitzHugh-Nagumo model

3 Pontryagin Maximum Principle and perturbed ODE

We want to find the optimal controls, i.e the solutions of the problem (1.1) in order to compute
S. By applying THEOREM 3.1 to the problem (1.1), we derive that the optimal processes (Xg 7, )

are obtained by solving a Boundary Value Problem.

Theorem 3.1. If conditions C1, C2 and C3 are satisfied, then the optimal processes (Xgz,a) for
the problem (1.1) satisfy the Pontryagin Mazimum Principle. That is, the optimal control and S

are respectively equal to:

gl

(1) = 5U B pol) (3.1)

and
T

r 1
S(Y;0,U) :/ ||cxm(t)—Y(t)||§dt+Z/ po(t)" BU ™' B  py(t)dt
0 0

where py is called the adjoint vector, an absolutely continuous vector valued function, defined such
that (Xoz, pe) is the solution of the extended ODE with boundary constraint:

Xom(t) = f(t, Xou(t),0) + 3 BU B py(t)
po(t) = — 5L (t, Xou(1),0)"po(t) +2CT (CXoalt) — Y(t) - (3.2)
(Xo,a(0),po(T)) = (20,0)

Proof. For applying the Pontryagin Maximum Principle, we need to check the required assump-

tions, given in [2].

The regularity assumptions C1 and C2 are enough in order to satisfy the “Classical regularity



3 Pontryagin Maximum Principle and perturbed ODE 5

hypotheses” (22.1, page 427 in [2]): F(t,z,u) := f(t,z) + Bu and (t,z,u) — Ay(Y,t,z,u) :=
|Cx — Y(t)||§ + ||u||12] are continuous, have derivatives w.r.t  continuous on [0, 7] X Q.

Since we do not know a priori if the optimal control is bounded, we need also to check hypothesis
22.16 p. 454 in [2]: there exists € > 0, a constant ¢ and a summable function d such that, for
almost every t € [0, T], we have:

o = Xa(tl < e = | 2E22 1,0,300)

) < c||(FAw) (8 @, a(t)) ||, + d().

The hypothesis 22.16 is also satisfied because

on [0,T] x Q. We can use Pontryagin Maximum Principle to derive the existence of an arc
p : [0, T] — R? and a scalar n satisfying V¢ € [0, T], (n,p(t)) # 0 (non-triviality condition),

% (ta‘rvu)H2 + | aé\zU (t,x,u)||2

IN

|% .00, + 2l (€2 vl
fo+2|cT (cx -y,

IA

p(T) = 0 (transversality condition),

—p(t) = (%H”(t, Xz(t),p(t),u(t)) (adjoint equation)
and

H"(t, Xz(t),p(t),u(t)) = sup H"(t, X7(t), p(t), u(t)) (maximum condition)

where H" is the Hamiltonian given by H"(t,x,p,u) = p? f(t,z,u) — nAy (Y, t, 2, u).
The nontrivially condition imposes n = 1. Indeed, if n = 0, the adjoint vector p is the solution
of the linear ODE
{ B(t) = —p(t)" G (t, Xa(0), u(1))
p(T) =0

By uniqueness, this implies that it should satisfies p(¢) = 0 for all ¢ in [0, 7], which violates the
nontrivially condition.
For all (¢,z,p), H(t,x,p,u) is strictly concave w.r.t u , hence it has an unique maximum given

by the first order condition:

OH 1
%(t,x,p, u)=0&u= iU_lBTp

For every ¢, we can compute the optimal control @ with the maximum condition, which gives
u(t) = 2U'BTp(t). Since we have:

OH 0
ot p) = 9L (62) T — 207 (Ca — V(1)

we know the adjoint vector is driven by the ODE
() = =5 (t. Xa(t))'p(t) + 2C7 (CXu(t) = Y (1))

by merging this equation with the original one ruling X; and with the optimal control expression,
we obtain that (Xz(t),p(t)) is solution of the extended ODE with boundary constraint (3.2). O
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4 Existence theorem

Theorem 4.1. If conditions C1 and C2 are satisfied, then for all signals Y € L*([0, T) ,Rd,) and
for all 6 € ©, the problem (1.1) admits at least one solution. It exists a process (Xgz,u) that
minimizes the cost i.e C(Y; X 7,%,0,U) = min,cr2 C(Y; Xgu,u,0,U).

Proof. For the sake of notation clarity, we drop the dependence in 6 for the vector field and the
solution. Lemma (4.2) ensures the existence of admissible processes for problem (1.1), thus, we

can consider an admissible minimizing sequence (X,,, ;). Since we have:
2
Muillzz < C(Y; Xy i, U)

with A maximum eigenvalue of U, the sequence {u;} is uniformly bounded in L2?([0, T],R%), a
reflexive Banach space, according to THEOREM IIL.27 in [1], its exists a subsequence converging

weakly to a limit u. Using Holder inequality:
11
9l <150 Dol with 3+ 2 <

, we also know the subsequence is bounded in L'([0, T],R?). (For the sake of notation here and
in the following we still denote the subsequence by {u;}). For the following, let us denote @ the
upper bound of the sequence {u;}.

Knowing that:

[ X=X, < 170 X0 @) = FEXE)] + [Bui®)]
< T X (t) = XOlly + VBl (D)

(here f, < oo thanks to C2 as a continuous function on a compact subset). Gronwall’s lemma

gives us:

t F(t—s ot
IXu () = XDy < VAulIBlly Jo e/~ Nui(s)llyds < VAo l|Bllye?* [ luils)lly ds

and so:
_ oyt B
[ Xuw; O)lly < [[Xu; (1) = X (Ol + 1 X @2 < Vdu || Bl ef“t/o [ui(s)lly ds + ¢

u;, being bounded in L([0, 7] ,R%), we deduce X,,, (modulo a subsequence) is uniformly bounded

on [0, T and since:

[xuol, < [fu0 -], +[xol,
(2, X, () = FE X @) + [ Buslly + 172 X (1)

fo 1 X, (8) = X (O)lly + [1Bui(t)ll, + f

IN AN IA

we conclude from that X,, is bounded in L2([0, T],R%), hence (again modulo a subsequence) X,
converges weakly to a limit X.

Since the sequence X, is equicontinuous because

X, (8) = X (@)lly < Tt = €|+ Vau | Bl iy /It~ ¥
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we can invoke Arzela-Ascoli theorem to obtain the uniform convergence (modulo a subsequence)
of X, toward a continuous function X on [0, T]. Using the identity, X, (¢) = zo + fg Xy, (s)ds
and by taking the limit we know X is an absolutely continuous function with X (t) = X (t) a-e.
We respect the hypothesis of THEOREM 6.38 in [2] we deduce from that:
C(Y; X,u,U) <liminf C(Y; Xy,,u;,U) = inf C(Y;z,u,U).
11— 00

We now demonstrate (X,%) is an admissible process (thus the infimum is reached). Using uniform
convergence we have X (0) = z. The last thing left to show is that X is a trajectory corresponding
to u, thus X = X. For any measurable subset A of [0, T'] we have:

/A (Xu () — f(t X, () — Bui(t)) dt =0

by weak convergence we directly obtain [, X, (t)dt — [, X (t)dt and [, Bu;(t)dt — [, Bu(t)dt.

Using continuity of the vector field on the compact [0, T] X @ and invoking dominated convergence
theorem: [, f(t, Xy, (t))dt — [, f(t, X (t))dt. By taking the limit we obtain:

/ (X(0) ~ £ X(0)) — Ba(t)) dt = 0.
A
Hence, we have indeed demonstrate u € L2([0, T],R%) and

{ X(t) = f(t, X(t)) + Bu(t)a.eon [0, T]
Y(O) = X0

which finishes the proof. O

To prove the existence of solutions for the optimal control problem (1.1) defining our estimator,
we have considered in the proof a minimizing sequence (X,,,u;). But for doing so, we need to

ensure the controlled ODE (1.3) has indeed solutions, it is the point of the following lemma.

Lemma 4.2. Let us suppose conditions C1, C2 and, in the presence of functional parameters, that
21,0 € Of. Then there exist admissible processes for the perturbed ODE (1.8) i.e 3u # 0 s.tu € L2,

Proof. In the first part of the lemma we will assume there is no functional parameter and B = I
i.e the perturbated ODE is simply X = f(¢, X) + u.

We assume that no admissible process u exists, i.e we can not find a control u defined on [0, T7,
with [Ju|| ;. # 0s.t the corresponding solution X, exists on [0, T']. Then each solution X,, value must
leave every compact in finite time (Lemma 2.9 in [9]). Let us consider a compact C’ which strictly

contains X value. We define ¢’ > 0 such that for a given z if 3t € [0, T ||z — X(t)||, < 0’ =z €

5

C’. Let us consider X, the solution corresponding to a control u such that 0 < |jul/,. < 2eTTr

Let us define t' € [0, T the time the solution X, leaves C’ we have:

| X0 - x|

IN

1 (8 X (8)) = £ (& X (@) + Ju(®)l;
< FollXu(®) = X @)l + u@)],

2

A
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Gronwall’s Lemma implies that

1Xu@) = X@)y < fy ) fu(s)) ds
< L us)l ds
< 5

So X, (t') is strictly contained in C’, hence the contradiction.

Now let us deal with presence of functional parameters, we have to consider the extended ODE:

T = f(t,.’L', Zl)
21 = 22
22 = V2

Here the autonomous linear subsystem:

,é'l = 22
22 = V3

fulfills the Kalman condition: according to [8] (Chapter 3, Theorem 3 p 89), this system is control-
lable at any time ¢, from any initial conditions. Hence, starting from an initial condition 21,9 € O¢
we can find controls (vq,v2) such that the resulting z; gives a solution of & = f(t, z, z1) defined on

[0, T]. Then, we can apply the first part of the lemma to conclude. O

5 Sufficiency of the Pontryagin maximum principle

The PMP only gives necessary conditions satisfied by optimal processes (Xp 7, Up). In order to

turn these conditions into sufficient ones, we need to impose a lower bound condition on A.

1. A first lower bound for local optimality is derived by using the quadratic conditions devel-

opped by Milyutin and Osmolovskii [5].

2. A second lower bound for global optimality is derived by finding a condition on A ensuring

uniqueness of the solution of BVP.

5.1 Local optimality of controls respecting the PMP

Theorem 5.1. Let a process (Xoz,u) be an admissible process respecting the PMP presented in
theorem 3.2. If C1, C2bis and C3bis are satisfied, then for A such that:

L /oT </0t Re(S)Bllﬁds) dt

A>MN(Y) foe, (5.1)

% 2
A > % Ht — a% (ps (1) f(t, Xpz(1)))

or:

then (Xgz,%) is a strong local minimum for the problem (1.1).

Proof. We use theorem 11.1 in [5] proving, by the means of the so-called quadratic conditions,
sufficiency of the Pontryagin maximum principle for obtaining a bounded strong minimum. We

use the same formalism and we consider the alternative cost, J(zo, yo, s, ys) = k1yy, the extended
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ODE:
&= f(t,x) + Bu

=M, t,z,u)
(2(0),5(0)) = (w0, o)
kQ (1'0 — 1’8)

ksyo
depending on k; and k3 (its expression is given by 5.2). Obviously any minimizer (X, 9, %) of the

and the constraint K(xo,yo,zf,y5) = < = 0. Here k1 > 0 and k3 > 0, ko

alternative cost is a minimizer of our original cost and reciprocally. We will show for A large enough,
the Pontryagin maximum principle is a sufficient condition for optimality for the alternative cost
and hence for our original cost.

We define I(ag,B,v) = agJ(v) + BTK(v) = aokiys + BT ka (xo — ) + Baksyo with v =

(z0,Y0,xs,yr), hence %(ao,ﬁ,u) = ( kofB1 ksBa 0 kiag ), we also introduce the extended
Pontryagin function Hy(p,p1,w,t) = pT (f(t,z) + Bu) + p1Ax(Y,t,2,u), with here w = (x,y,u).
With our regularity hypothesis, our cost and extended ODE vector field are twice differentiable

as required by [5]. As in Milyutin et al., for a given process (Xz,¥,u), we denote My the set of
t—uples n= (a()aﬂla 627pap1) Verifying

ag >0, ap + [B1] + B2 =1

p=—5L(t, Xa(t))Tp — p12CT (CXz(t) — Y (1))

p1 =0

(p(0), p1(0)) = (k2B1, k3f2) - (5.2)
(p(T), p1(T)) = (0, —k1a)

9 (p(t), pr, Xu(t), (1), u(t), 1) = 0

vt € [0, T, max, Hx(p(t),p1(t), Xz(t),y(t), u, t) = Hx(p(t), p1(t), Xu(t),y(t), u(t), t)

Thanks to lemma 5.2, we know the set My is non empty if and only if (X, %) respects the
Pontryagin Maximum Principle version presented in theorem 3.2. Moreover, we have an expression
for a tuple 7 = (ao, B1, B2, D, 1) respecting (5.2), it is under the form 77 = (%,E, —k%’@, —1)
where ; the vector with each component equal to % (1 — 1711 — ,%3) and p such that (X, p) solution
of the BVP presented in theorem 3.2
We now introduce the Quadratic Form:
T 277 =8 7
_ 2 OTH(p(t), p1, Xu(t), 5(t), u(t), t) -
Q)\(T%w) — _/ w(t)T )\(p( ) P1 azu( ) y( ) U( ) )w(t)dt

w

0

with w = (Z, 9, w) belonging to the critical cone K i.e, the points verifying:

r <0
AL
9K (7)5 = 0 il
Y Yo =10
and the linear ODE:
T = 9Lt Xq(t)T + Bu

U= 2t Xg(t),u(t)T + 2D (t, Xu(t), u(t))u
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O*Hy (p,p1,w;t)
02w

In our case, is a sparse matrix:

PRy [ 77 @D FmCTC 00

2w = 0 0 0
0 0 2piAly
so the Quadratic Form has a simpler expression:
@) = — [ HOT (8 071t Xalt) + 2007C) F(t)dt — 2y [

From this Quadratic Form, Milyutin et al. have expressed necessary and sufficient conditions for
the given process (Xz,¥,%) to be a Pontryagin minimum.

Condition A: The set M is nonempty and YV € K, max, e, (1, w) > 0.

According to theorem 10.1 in [5], condition A is a necessary condition for a Pontryagin minimum.
But if we strengthened condition A, we can turn it into a sufficient condition for (X, 7,u) to be
a bounded strong minimum.

We denote Leg. (M) the subset of My respecting the additional conditions:

1) Strict maximum:

vt € [07 T] ,Vu 7é ﬂ(t)v E(p(t)>p1> Xﬂ(t)uy(t)a U, t) < F/\<p(t)7pla Xﬂ(t)7§(t)vﬂ(t)v t)'

2) Strengthened Legendre-Klebch condition: V¢ € [0, T7, NGRS (t)”’(t) 0D is negative
definite.
Condition B: The set Legy(M,) is nonempty and it exists a nonempty compact set M C

Leg. (M) and a constant € > 0 such that Vo € K, max,en Qi (7, w) > € Hu||L2
According to theorem 10.2 in [5], if condition B is fullfilled for a trajectory Xz then it is a

bounded strong minimum. Since O Hx(pop1 X@Q(t) F().8(0).1)
— —1 and 0% H, (p,p1, Xa(t),5(t),u(t),t)

= 2p1Al4, choosing in My the tuple

7 gives us p; = REm is negative definite in that case. Hence 77 €
Leg, (M) and we choose M = {7j}.
Thus we have to find a lower bound under the form e ||uHL2for Qu (7, w). For p; = —1 we have:
T L9, _
O(0.) > 2l = [ 30T o (0 (00 Xo(0) F(0) (5.9

By using Cauchy-Schwarz and norm inequality, we have:

Jo FOT B (05 (OF(t, Xom(@)) FO)dt < |70 ||t — 25 (05 (OF (8, Xoa(t))) F(2) Lo

(
< V|t o 0F (010 Xow(0)]|, 1

N

All we have left to do is to control H%HZLQ w.r.t ||u]| ;.. For this, we recall that Z follows a linear
ODE, so we can use Duhamel’s formula to obtain:

i) = [ Ro(s)Bi(s)ds
Ro(t) = ZL(t, Xq(t))Ro(t)
Ry(0) = I,
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SO:
E@)ll, < VA fy | Ra(s) Bl |[(s)], ds
< Vdy/ [y I1Ro(s) Bl ds |l 2

Taking the L2-norm gives us: [|Z]|7, < dfoT (fo |Ro(s)BI|> ds) dt ||@)|3 . and finally we obtain the

bound:
r K 2 2
[ ([ 1moigas) dt) .
L2 J0 0

which gives a tractable and computable in practice a posteriori criteria.

2

b (pF () f(t, Xo.u(t)))

Qi (n, @) > <2>\ —d? o

However, if we want a theoretical a priori upper bound for A\ (i.e which do not depends on the
found control @), we need lemma lemma 7.4 which gives the uniform upper bound ||ps(t,Y)|, <
E(Y) , to obtain:

Jo FO )T Gk (¢, X)) F (@)t < VAE(Y) o |72 (5.4)

9 2\/df1T

and the Gronwall’s lemma to have the bound: ||a:||L2 <T|BJ5 ¢ |l HLZ . By reinjecting
these inequalities in (5.3), we can find a lower bound for Q (7, w) only expressed in terms of the
controls:

o~ 2x/ﬁT ~
Q@) = (22— BOOVAT |BI; <55 o ) il

Hence taking A larger than the values given by (5.1) ensures the existence of a constant € > 0 such
that Vw € IC, Q) (77, w) > ¢ HUHLz, and so (Xz,7,u) is a bounded strong minimum.

We now use theorem 9.4 in [5] to show that bounded strong minimum is a strong one for our
cost. For this, we need to fullfill condition B presented in page 275 in [5]: it exists € >0, p > 0
such that for all ¢ € [0, T] and = € R? such that ||z — Xz (t)||, < € imply —Hx(p, —1,2,y,u,t) >
—Hx\(p, =1, 2, y,a(t), 1) + p[lu — a(t)]],-

Here Hy(p, —1,z,y,u(t),t) = pT (f(t,x) + Bu(t)) — Ax(Y,t,2,%u(t)) and we have already shown
that V¢ € [0, T], = € R?, we have BHX (p,—1,z,y,u(t),t) = 0 and a;g(p, —1,z,y,u(t),t) = —2X\1,.

We can conclude using theorem 9.4 in [5]. O

Lemma 5.2. (X, 7, ) respects the simplified Pontryagin mazimum principle presented in theorem
3.2 if and only if it respects Pontryagin Maximum Principle presented in Milyutin et al. for the

alternative cost with constraint:

J(xo,yo, 25, yr) = krys
K (0,90, 27, 57) = ( Zz (o — ) > —0
390
=f( z) + Bu
= A\(t,z,u)
(l’(O) y(0)) = (z0,%0)

where k, = % with P such that (Xz, D) is the solution of the extended ODE with boundary
constraint:
Xa(t) = f(t, Xa(t)) + 53 BBTH(1)
B(t) = = 5L (t, Xz(t)TB(t) + 20T (CXo(t) — Y (1)) (5.5)
(X%(0),p(T)) = (x5,0)
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Moreover we have an expression for a tuple 7 € My under the form: 1 = (k%’E’ —é,ﬁ, —1) with

Bi the vector with each component equal to % ( o i k—t)

1

Proof. We consider w = (X7, 7, u) respecting our simplified Pontryagin maximum principle, i.e
the optimal control is equal to u(t) = 55 B7p(t), such (X, p) is the solution of the extended
ODE with boundary constraint 5.5. Again we denote My the set of tuples n = (ag, 51, 52, Pe, P1)
verifying (5.2). The Pontryagin maximum principle presented in Milyutin for the alternative cost
is equivalent to have My nonempty. Starting from the simplified maximum principle let us contruct
a tuple 7 respecting (5.2).

Firstly let us choose ay = 1?11 obviously ag > 0 and p; beeing constant it imposes p;(t) = —1 =
k3fP2 so we take 5 = —é. The adjoint equation become:

p(t) = —2L(t, X () Tp(t) + 2CT (CXq(t) — Y (1))

p(T) =0
which is indeed respected by p(¢). The non triviality condition ag + |51] + |52| = 1 imposes
|31| =1— 2% — L. We can choose for 3; the vector with each component equal to % 21— H — 1713)

dp 0)

- . Since Hy(p, p1,w,t) =

In order to respect the constraint p(0) = k251 we have to set k, =
T k3

pT (f(t,z) + Bu) + p1Ax(t, 7, u) is the same for the two problems, the maximality constraints:

O (5, —1,7w,t) = 0
max,, Hy(p(t), =1, Xz(t),7(t),u, t) = Hx(p(t), —1, Xu(t),5(t), u(t),t)

are already fullfillled. Hence the tuple: 77 = (k—ll,E, _1713’@ —1) with B; the vector with each

component equal to % (1 - = = —) belongs to M.
Reciprocal is obtalned by substltutlng 77 in (5.2). O

5.2 Uniqueness of BVP solutions
We need to introduce the reversed time solutions pjy(t) = pg(T — t) and X 5(t) = Xou(T —t).

Theorem 5.3. If C1, C2bis are satisfied, then for A\ > \2(Y'), we have uniqueness of the solution
of
Xoz(t) = f(t, Xoz(t),0) + 55 BB py(t)

Po(t) = —SL(t, Xoa(t),0)Tpe(t) +2CT (CXpu(t) — Y (1)) (5.6)
( X0,a(0),p9(T)) = (20,0)

Proof. Let us define (Xl,pl) and (X2,p2) two solutions of:
X(t) = f(t X(t) + 5x BB p(t)

B(t) = —5E(t, X (1)) p(t) +2CT (CX(t) — Y (1))
(X(0), ( )) = (20,0)

First let us control || X! — XQHL2 w.r.t ||p! —pQHLQ, we have:

L BB (5 (1) - (1))

X1(t) = X2(t) = (1, X1(0) — (1, X2(0) + o
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Taking the Frobenius norm gives us:

@ [ X = X2(1) 17, X*(1)) = f(t x2()|,

dHan H 1 (t)

fa ||X X2 (t)

I

@1,

IN + A

dIIBHg

I, + =55 [lp* () = P (1),

Using Gronwall’s lemma we obtain:

Ty w2 <dHB||§ tﬁ(tfs) 1 2
180 = XF@ll; < =537 | e Ip*(s) = p*()][, ds

and Cauchy-Schwarz inequality gives us:

[ X (1) — X2(1)

dl| B3 o (t—s
AR Jy 2T 0=ds [y 191 (5) — p2(5) 3 ds

dHB“z /e2f;ft 1 || 12 HL2

We finally obtain the following upper bound for || X! —

I

IN N

2 .
Iz2 -

d|B|2 T — 2T

1 y2
xt - x2),, < 42 —

— |l = 2| (5.7)

Now we have to bound le — p2HL2 w.r.t HX1 — X2HL2 for the reversed time solutions we have

the differential relation:

. . T .
phi(e) - p? - (BT - . XMi(0) - BT - £, X%(1)) pi() )
BT X (g 0) £ 2070 () - X0
Taking the Frobenius norm we have the following inequality:
di i@ —pt@ll, < Va||FhT -t X2 H I (1) = (1)
+ 2Vd|| — X1,
VA ||2Hax<T—tX“<t>> 9T — 1, x%4(0) |
< VAE o) - 2],
+ Vd(foo [V O, +2[[C7C,) X210 - X0
Using Gronwall’s lemma we obtain:
[ (1) = " (1) ffte“m” (fow I* ()], + 2] C7 )I!X“s)levi(s)HgdS

IA A

f(fa:;v +2HCTCH )fte\/ﬁ(t s) HX21 Xl,i(S)H2d8

Cauchy-Schwarz inequality gives us:

VA (FrB(Y) +2(|CTC|,) \/ fo 2V wsﬂ | X2:(s) — XLi(s)][3 ds

[p*i(@) —p™ (1), <
< ¢*€“ﬂtth V) +2]loTel) X -

X2

Taking the L? norm finally gives us the desired upper bound:
— T E(Y))+2||CTC
I =l < e avapr RO ey )
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By plugging (5.7) into this inequality, we get

= T 2
8fa

_ . _
It —p?)|,. < 4Bl (fzzE<Y>+2Hc %) \/(eQ@TflfQ\/ET) (2= =1 = 21T |Ip* = 22|

Hence the solution uniqueness follows if A > Ay(Y'). O

6 Consistency

Xop,u and pg depend on the data through Y, to emphasize they are functions of ¥, we sometimes
denote Xy ,,(¢,Y) and py(¢t,Y) for the controlled trajectory and adjoint variable for a given 6 and
Y. For the sake of simplicity, we denote )A(97u(t) = X97u(t,i>), po(t) == pg(t,i}) and Xj (t) =
Xou(t,Y™), pi(t) :=po(t,Y™). Since we have defined an M-estimator, we need to prove:

1. S(Y*;0,)) has a global well-separated minimum at § = 8* (proposition 6.1),

2. uniform convergence of S(}A/; 0, ) toward S(Y*;0,\) (proposition 6.2),

to ensure consistency of 5{ by using the theorem 5.7 in [10].

Proposition 6.1. If C1, C2bis,C3 and C/ are satisfied, then for all A > F(Y*) we have:
SY*0,\) =0« 0=0"

Proof. In that case our asymptotic criteria become: C(Y*;u,6,\) = fOT |CXg.(t) — CX*(t)H; dt+
A ||u||2L2 If 0 = 6 then the process (Xg. ,,u = 0) ensures C(Y*;u,0,\) = 0, is solution of the
asymptotic ODE with boundary value and is unique thanks to lemma 7.5, since A > F(Y™*) , hence
SY*;6*, 1) =0.

We denote 6° s.t S(Y*;0°, \) = 0 since we have reached the minimum, we have by definition of
S(Y*;6,\) that the related optimal control @ is equal to the null function. So Xgo 7 is solution of
the unpertubated ODE, thus we have [, chgoj(t) . OX*(t)Hz dt = 0, identifiability condition

imposes §° = 9*. -

Proposition 6.2. If C1 and C2bis are satisfied, then for all A > F(Y*) we have:

s -stan| = (o0 + o) (85 )7,
+ & (BO) + BD)) (5obtey + M) [y = V|

L2
2
My = d||B|; T**Y T ||C|,
with M = T2 |B|3 a3V "0y (T B(Y) + 2| C))
2
M; = 272 || B||; d3eV-T ||C],
Proof. We have using Cauchy-Schwarz inequality:

S(Y*:6,\) — S(Y; 9, /\)‘ < Jr (cxm(t) — OXp (6 + Y (t) — ?(t))T (C’Xg,a(t) - f/(t)) ‘ dt
+ Jo |(eXiat) - Y*(t))T (CXom(t) = CXGa(t) + V(1) = V(1)) | dt
+ B T o () + Dy (1)l lpe(t) — P (1)
<y (|exoa =7, +|cxsa—v7| )| Xom - X34,
v (Jexos =7+ fexia-v,) -7,
+ B py 4 pjll,» llpo — Pl o



7 Asymptotics proof 15

By using lemma 7.4, which gives us ||pg(¢,Y)]|, < E(Y), we obtain the following upper bound:

)

SOr50,0) - SFi0.0| < (D) + D)) (IC1 || Yo - X5z

U

+HY*7?’
2

L

~

dT||B||2 * S
UEH (E(y )+E(Y)) lpo — pjll

(6.1)
Using lemma 7.5, we know we have for A > F(Y™),
1Xom = Xoal Y9l < b [y =7,
and ( )
% Vi, Fea B(Y*)+2||C|I3) K x _ T
lpo = po(,Y*) |2 < VdTev =T ( T +2||C||2> HY _Y’ 7
By reinjecting theses inequalities, we obtain the desired result. O

These two results have allowed to conclude about the consistency:

o~ 2
Theorem 6.3. If conditions C1, C2bis, C3, C4 are satisfied and Y i—g Y™ in probability, then
n (oo}
for any A > F(Y™*), we have:
or £ o

Proof. Using proposition 6.2 we have the following uniform upper bound on O:

‘S(Y*; 0,\) — S(Y0, A)( (D) + D)) (Rl +1) HY - ?HL2

<
+ & (BO) + BED)) (ke + M) [y = V|

L2

We can conclude that if is ¥ is consistent we have supgce ‘S(Y*; 0, — S(}A/; 0, )\)‘ =op(1).
Application of proposition 6.1 gives us the identifiability criteria. Hence we conclude by using
the theorem 5.7 in [10]. O

7 Asymptotics proof

We obtain the asymptotic normality with y/n-rate of @\f , by proving that, as long as YeB (Y*,Q)
and A > max(\3(¢), M(¢)),

1. @T — 6 behaves like the difference I'(Y) — I'(Y*), where T is a continuous function,

~

2. T(Y) — I'(Y*) is asymptotically normal by using the plug-in properties of regression splines.

7.1 Asymptotic representation

Proposition 7.1. Let  such thatY € B (Y*,(). Under conditions 1-6 and A > max(A3(¢), A(¢)),

we have: .

RS(Y*16%, )~ -
QISOHONN G (75607, 0) + op(1)

06790

Proof. For the sake of notation we will simply denote the estimator 9. In the multidimensional

07 — o =

case the Hessian expression is cumbersome in matrician form so for the demonstration we will
consider d = 1 but the demonstration stay the same in the multidimensional case. First of all we
need to show 0 — S(Y;0,)) is C? for all Y € B(Y*,() and (0, Y) — % is continuous
on © x B(Y*, ().



7 Asymptotics proof 16

According to lemma 7.5 if X is greater than A3(¢) we have:

KﬁHYLY* L2 KoTAKs
L2 T A-FY*)-Ks||Y -v*| .
ﬁ(\/demeVdfxT-Q—l)
)\—F(Y*)—HY/—Y*HL2K5

HXQ,E(.X) — X, (L,Y)

’
o — X

_l’_

’

_|_

K
/\7F(Y*)7HY1/7Y*HL2K5 2
(E(E(Y*)+K4HY/—Y* L2)+2\|CH%)(K2+HY/—Y* o
L2 A—F(Y*)—K5||Y/—Y*
+ K (B0 + Ky v )HG o],
Ko (Fox (B )+ Ky [y =y~ +2\|cn2
+ A=Fy )=y =v+], 2K5 H

K (Foo (B(Y™ >+K4||Y -v* )+2HCH2
’ (K“ TR e e ‘

’

oY) = pyr (LY

IN

Ke+AK3) ’

HL2

L2

Hence (6,Y) — Xp5(.,Y) and (0,Y) — py(.,Y") are continuous on © x B (Y*,() and so § —
S(Y;0,)) is continuous for all Y € B (Y™, ().

We now show 6 — S(Y;6,\) is C! for all Y € B (Y*, (), the main point is to show (6, Y) —
(8)(959( Y) 8p98( Y)) is continuous. We have <8X9g9(t Y) Opelt, Y)) solution of the ODE:

J GXQgét,Y) GXQge(t,Y)
£ OpaltaY) = H(t0,Y) Ope (1Y) + G(t,0,Y) (7.1)
00 00

with:

H(t,G,Y)=< o (t Xoalt:Y).0 1aBBT )
(t Xo u(t Y),a)pg(t,Y) +2CTC _a%(thO,ﬂ(tvy)vg)

ok (t XG u(t Y) 0)po(t,Y)

Condition C1, C2bis, C5, C6 gives us the continuity of (8, Y)+— H (.,0,Y), (6,Y) — G (.,0,Y)
and [|G (.,0,Y)]| > uniform boundedness on © x B (Y*,(). Using lemma 7.6 if

1Bl d*T*

L (o (BO™) + Ka€) +2[CJ13) 2V <1

and so if A > A\4(¢), we have continuity of (6, Y) — <6X9gg"y), apea(é,y))' In particular we derive

from that  — S(Y;60,)) is C! for all Y € B (Y*,() and:

VoS(Y;0,\) = 2 [ Pexltd) DT OT (CXpa(t,Y) - Y (1)) dt

T
=0 Le(”) BBTpy(t,Y)dt

We now demonstrate § — S(Y;60,)) is C2 for all Y € B(Y*,(), again we need to prove
2 2
0,Y) — o X?);e( Y), & pgz( Y)) shares the same degree of regularity w.r.t #. Here (a X%fa(t’y), 9 pgé;’y))

is solution of the ODE:

. 82X€,§(t,Y) 62X€,§(t,y)
7| oeiv = HtO,Y)| 2270 +I(t,0,Y) (7.2)
520 920

020
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with:

_ [ htey) ) _oH XogltV) \ o

9G (1 0Y) =
00( ) aG2(tey)

9y (1,0,Y) 0
a _
UL (1,0,Y) = ( ;’,33 oY) 25 (10.y) )
( 6G1 (t,0,Y) )

where the components of %—Ig (t,0,Y) and %—g (t,0,Y) are respectively equal to:

i (60,Y) = giig(taXe,a(t,Y)ﬁ) OXon(LY) 4 P (4 X, (1Y),0)
OMa (1.9,Y) = L(t Xoa(t,Y), 9)Mp9(t Y)

(t, Xou(t,Y),0)po(t,Y)

= a—(t Xoa(t,Y),0) 2860 L

OHs (1.0Y) = —ZL(t, Xgu(t,Y),0)2XextY) _ 08 (4 Xy 0(t,Y),0)
and:
91 (1,0,Y) = maa(t Xoa(t,Y),0)2Xex®) L 8L (4 X, 0(1,Y),0)
0Xg = Y
G (1,0Y) = a?we(t Xoa(t,Y), ) 2XeztY) p( Y)
8

DLt Xoa(t,Y),0)2ebY) Oy Xy 2(t,Y),0)

Condition C1, C2bis, C5, C6 gives us the continuity of (0, Y) — I(.,60,Y) and ||I(.,0,Y)]

uniform boundedness on © x B(Y*,(). So, by using again lemma 7.6, if A > \;(¢) we have
2

continuity of (6, Y) — (a )ggfa('g’y), 828170%(5;/)). In particular we derive from that § — S(Y;6, \)

is C% for all Y € B (Y*,() and:

925(Y;0,) T o2xi_(t,y) L
FosA) — 957 | T (CT(CXpm(t,Y) — Y (1)), dt

2fT anu(t )T CTCaXm(t Y)dt

% o2 LY
= Zz 1Jo p52(9 )BBT p(t,Y)dt

1 Ta )T T 0 (tY)
5x p"a BBT %o dt

+ o+

Moreover continuity on @ x B (Y*, () of the derivative form of (6,Y) — Xp7(.,Y) and (6,Y) —
po(.,Y) ensures continuity of (6, V) — % as well.

Now we can obtain the desired asymptotic representation. According to first order optimality
condition:

VS(Y;:0,\) =

We have shown 0 — S(}/};(‘L}\) is C% on © and hence it exists a point 6 between 8 and 6* s.t
§ —» 6* when n — +oo and:

§ 1028(Y;0, ) i}
ST = 5 G (0-9°)

and thanks to the continuous mapping theorem we have:

28(Y;6, ) L PS(Yien )
96T 06 96T 00

2 .
in probability because of (4, Y) — % continuity. Since condition C6 imposes %(9*, Y* )
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non singularity, we obtain the desired asymptotic representation:

1

2 Y* * - R
FSWL0) G 5(7:6% A) + op(1)

0-0"=~- 20T 50

7.2 Linear representation of the differential of Y — V,S (Y ;0,\)

Lemma 7.2. Let us suppose C1, C2bis, C5, C6 and A > max(A3(¢), A\4(¢)). Then V0 €O, Y —
VoS(Y;0, ) is differentiable on B (Y*,(), (Y1,Ys) — D (VoS (.;0,))) (Y1).Ys is continuous on
B(Y*,¢) x B(Y*,() and can be represented as a scalar product in L? i.e:

D(VeS(.:0,0)(Y1).Ya = <V(¥1,0),Ys >

with V(17,0) € O ([0, T] ,Rwd').

Xoz(.,Y)
pe('vy)

) is differentiable on B (Y*, {) with <

Proof. Taking \ greater than \3(¢) gives us continuity of ¥ ( ) on B(Y*,(). As-

AXo(V1.Y3) | _
dPQ(YVla}/Q)

Xow(-,Y)

suming conditions C1, C2bis , Y —
po(.,Y)

( D (Xom) (Y1).Ys > solution of:
D (py) (Y1).Y2

u ( dXo(Y1, Y2)(1) ) _ H067) ( dXo(Y1, Y2)(1) ) ) ( 0 )
a4\ APy (Y1, Ya)(t) Y dPy (Y1, Ys)(t) 2CTY,(t)
dXo(Y1,Y2)(0) =0

dPy(Y1,Y2)(T) =0

with:

9L (¢, Xom(t,Y),0) 1yt
H(t,0,Y) = — 8L (t, Xom(t,Y), 0)pa(t,Y) +207C  —%L(t, Xg4(t,Y),0
P 97u( ’ )’ )p@(t, )+ ox (t7 G,U(ta )7 )

dXo(Y1,Y2)

1Py(Y,. Ya) on B(Y*,¢) x B(Y*,() as

Using lemma 7.6 we have continuity of (Y1, Ys) — (

0Xow(.,Y)
soon as A > A4((), in that case we have also continuity of ¥ ( e T) ) on B(Y* ().
20

0Xgw(.,Y)
Moreover by assuming condition C5 and C6 Y ( Ope (‘?@) ) is differentiable on B (Y*,()
a0

D Y;).Y:
with d0Xy(V3,13) = 8 )( 1)-Ye solution of:
0Py (Y1, Ya) D (%) ()Y

(‘fg)]ﬁ@f%)( ) _ H(t,e,yl)<daxam’m(”> IO, Y)(0)
0 1 2)(t) dan(YhYQ)(t)

d0Xe(Y1,Y2)(0) =
dOPy(Y1,Y2)(T) =

o~
~—



7 Asymptotics proof 19

with:
0Xe m(-Y1)

I(au Yla E)(t) = HY (t,97Y1, YQ) < 8;09(?)9/1) ) + GY(tvevylv YQ)
00

and:

HL (t,0,Y,Y 0
Hy(t,@,YhYz):( y (t,0,Y1,Y2) )

H}?)/ (taaayl,YQ) Hé/ (t797Y17Y2)
GY(+,0,71,Y2) >

GY(t797Y 7Y) =
ne G2 (t,0,Y1,Y3)

where the components of Hy and Gy are respectively equal to:

Hy (t,0,Y1,Y2)
Hy (t,0,Y1,Y2)

%(t X@,ﬂ(tv le)a H)dXQ(}/ia }/2)(t)

HE(4,60.Y1,Y2) = 5t Xou(t,Y1),0)dXe (Y1, Y2)(2)

and:

GL(t,0,1,Ys) = 2L(t, Xpz(t,Y1),0)dX,(Y1, Y2)(t)

G2(1,0,Y1,Ys) = —2L(t, Xou(t,Y1),0)dX4(Y1,Ya)(E)pa(t,Y) — L (t, X u(t, Y1), 0)dPy (Y1, YVa)(t)

doXe(Y1,Y3)

Again using lemma 7.6 we have continuity of (Y1,Ys) ——
& & y of (11, 15) (dape(yl,yg)

> on B(Y*, () x

B (Y*,() as soon as A > A\g(() -
Hence Y — VpS(Y; 0, \) is differentiable on B (Y*, () and equal to:

D (VoS (.:0,)) (V1).Ys 2 [ dOXe(Y1, Y2)(t)"CT (CXgu(t, Y1) — Ya (1)) dt
T

2 [, BRGERLCT (dXo (1, Ya)(0) = Ya(0)

35 Jo dOPy(Y1,Ya)(t) BB py(t, Y1)dt

T 9pe(t, Y1) T
o [ 2T BRT Py (Yy, Ys) (1) dt

+ o+ +

and thanks to previous regularity results we derive (Y1,Y2) — D (VoS (.50, ) (Y1).Y> continuity
on B(Y*,¢) x B(Y*,().

Using Duhamel formula we have the explicit expression respectively for (

doXe(Y1,Ya) \
dOPy(Y1,Ys) |~

ng(Yl7 Yz)
and
dPy(Y1,Ys)

dXp(vi,Y2)(t) | _ 0 _ t Ry (5.0.Y1) 0 s
(dP9<Y1,Y2><t> ) - RY“’(”Y”( 4Py (Y3, 2)(0) ) Ry (16.0) Jo Ry (5,0 70) 1( 207V (s) >d
ddXy(Y1,Y2)(t) _ 0 t -
( doPy(Y1,Y2)(1) ) B RY(t’e’Y1)< ddPy(Y1,Y2)(0) >+RY(t79»Y1)fo Ry (s,6,Y1)71(9,Y1,Y2)(s)ds

with Ry (¢,0,Y1) solution of:

{ %RY(tvgvyl) = H(t,97Y1)Ry(t,9,Y1) (7 6)

Ry (0,0,Y1) = Izq

— 0Lt Xou(t, Y1), 0)dXg (Y1, Ya) ()po(t, Y1) — L (8, X (1, Y1), 0)dPy (Y3, Ya) (£)
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In particular

( dX(V1,Y2)(T) ) _ < B3 (T,0,Y1)dPs(Y3,Y2)(0) )_Ry(T79,Y1)fOTRy(S,97Y1)1< 0 >ds

0 Ry (T,0,Y1)dPy(Y1,Y2)(0) 20T Y5 (s)
(7.7)
and
doXe(Y1,Y2)(T) _ R (T, 0,Y1)dOPy(Y1,Y2)(0) T _
( 0 > - < R%}:(T,G,Y1)d8P0(Y1,Y2)(O) )JrRY(T,&Yl)fO vl 00D THO M2 (s

(7.8)
In order to represent the gradient differential as a scalar product:

D(VQS(,Q,)\)) (Y])Y2 = <V(Y1,0)7Y2 >

with V(Y7,0) a C! function for each couple (Y7, 6), we need to demonstrate Ry (T, 6,Y;) is invert-
ible.

R (t,0,Y;
Let us choose z such that R} (T,6,Y7)r = 0. Hence ( };( O N)e
Y

respects the ODE with
Ry (t,0,Y1)x

boundary condition:

2 Y; 2 Y;
o TOTIY g (E0T0)
R (t,0, Y1)z R (t,0,Y71)x

R%/(O,H,Yl)x =0
RY(T,0,Y1)x =0

2 Y;
here Ry (t,0, Y1)
Rglf (f, 9, Yl):v
it is the only one which implies R{- (0,6, Y1)z = 0 by resolvant definition we know R$-(0,6,Y7) = I,

0 _
) = ( 0 ) is an obvious solution. Using lemma 7.6, we know for A > A4(¢)

which necessarily implies = 0, hence the invertibility of R3-(T,6,Y7).

Since R{(T,0,Y1) is invertible and t — Ry (¢,6,Y7) is C! (by using classic regularity results /
about ODE solutions), using equation (7.7) we have access to a function Vp(6,Y;) € C* ([0, T], Réxd )
such that:

R, ¥5)0) = [ V0, ) (Y ()t
and so:

( dXo(Y1,Y2)(t) )

-2 fot R%(s,0,Y1) CTYa(s)ds
dPy(Y1,Y2)(t)

= Rrt6m) < JTVe(0,Y1)(s)Ya(s)ds — 2 [ R%(s,0,¥1) "' CTYs(s)ds
_ J'(t,0,Y1) [o Ry (5,0,Y1) " CTYa(s)ds + R} (t,0,Y1) [} Ve(6,Y1)(s)Y2(s)ds
B J2(t,0,Y1) [o Ry (5,0,Y1) "' CTYa(s)ds + Ry (t,0,Y1) [} Ve(0,Y1)(s)Ya(s)ds

with:
Jl(ta 6, le) =-2 (R%/(t’ 9a }/1) + R%/(tv 97 Yl)

J3(t,0,Y1) = =2 (RY.(t,0,Y1) + R (t,0,Y1)

The same holds for Yz — ddPy(Y1,Y2)(0), hence for each (6, Y1) we know it exists an unique C*
function Vyp(0, Y1) such that:

T
dOPy(Y1, Y2)(0) = / Vop(8, Y1) (1)Ya(t)dt
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Similar computation lead us to

< dOX4(Y1,Ya)(t) )

= Ry(t,0,Y1) ( S04, ¥o) )
dOPy(Y1,Y2)(t)

J4(t7 03 Yla }6)

where J3(t,0,Y7,Ys) and J3(t,0,Y7,Ys) are continuous linear functions in Y, and differentiable in

t given by:
J(t,0,Y1,Ys) = JO(t,0,Y1) [ R (5,0,Y1) 'O Ya(s)ds — [ JO(s,0,Y1)Ya(s)ds
S TT(s,0,Y1)ds. [ Vp(8, Y1) (u)Ya(u)du
J4(t797Y17Y2) = ‘]S(tﬂ97yvl)f(;5 R%(8797Y1)710Tn(8)d57 fot Jg(S,Q,Yl)YQ(S)dS

+ [ Vap(0,Y1)(s)Ya(s)dt + JOt,0,Y1) [ Vi(0, Y1) (u)Ya(u)du

where the J, i € [5, 10] are functions differentiable in ¢ obtained from the expression (7.8). Then
using the following formula obtained by integration by part:

S ut) (f(f v(s)ds) dt S uydt [T ot)dt — [T (f(f u(s)ds) w(b)dt
= foT foT “(S)ds) v(t)dt — fOT (fot U(S)ds) w(t)dt
= Jo (Jy uls)ds — Jy u(s)ds) v(t)dt

fOT ftT u(s)ds) v(t)dt

and the gradient expression given by (7.5), we know for each couple (Y7, #) it exists a C! function
V (Y1, 0) such that:
D(VQS(,G,)\)) (Yl)YQ = < V(Yl,e),YQ >

7.3 Theorem

Theorem 7.3. Assuming that Yisa regression splines estimator and assuming conditions 1, 2bis
and 3-10 we have for A\ > F(Y*) that 67 — 0* is asymptotically normal and

67 — 6" = O0p(n~'/?)

Proof. The use of proposition 7.1 and lemma 7.2 thanks to conditions 1-6 gives us for A >
max(A3(¢), A\1(C)), the following asymptotic representation:

—1

- 92S(Y*; 0%, A -
IS0 0%, 2 (V(;S(Y;G*,)\)—VQS(Y*;G*J\)) +op(1)

0—06" =
06706
(since first order optimality condition imposes: VyS(Y*;0*, A) = 0) and continuous differentiability
of Y+ VpS(Y;6,)) on B(Y*, () with the inner product representation in L? :

D(V@S(,&)\))(Yl)yrg = <V(Y1,€>,Y2>

if ¢ is such that Y € B(Y*,¢). According to Theorem 7 in [6] ¥ is a consistent estimator of
Y*. Hence, asymptotically we can take ¢ as small as we want and the previous results holds for
A> F(Y™).

We will now use theorem 9 in [6] in order to obtain the asymptotic normality with \/n rate of



7 Asymptotics proof 22

VoS(Y;0%,)) — VoS(Y*: 6%, ). We have to prove that:
1) (t;,Y;) are i.i.d with Var(Y | t) bounded.
2) E((Y — Y*(t))" | t) is bounded, and Var(Y | t) is bounded away from 0.

3) The support of ¢ is a compact interval on which ¢ has a probability density function bounded
away from 0.

4) There is v(t) such that E(v(t)v(t)T) is finite and non-singular such that: D (VS (.;6,))) (Y*).Y* =
E(v(t)Y*(t)) and D (VoS (.;0%,0) (Y*).prx = E(v(t)prx (t)) for all k and K and there is cx with
E(v(t) — expr()]3) = 0

5) CX*(t) =E(Y | t) is derivable of order s on the support of t.

Requirement 1, 2, 3 are simple consequence of condition 8 and the fact the solution is defined
on the closed interval [0, T] and requirement 5 is a simple consequence of the condition 9. Using

proposition 7.2 for requirement 4 we can take
o(t) = V(Y™,0%)(t)
to obtain the scalar product representation:
D (VoS (.;6%,0) (Y)Y =< V(Y",0%),Ys >

In order to prove the existence of ¢k such that E(||v(t) — cKpK(t)Hg) — 0 we need to remark that
vis C* on [0, T] thanks to proposition 7.2, then we can use condition 9-10 and theorem 7.3 in [3]

to conclude. O

7.4 Auxiliary lemma

For the preceeding proofs, we need to ensure the continuity of (Y, 60) — (Xoz(.,Y), pe(.,Y)) and

of its derivatives w.r.t Y and/or 6. For this, we have

1. to uniformly control the discrepancy between two solutions of the BVP presented in theorem
3.2 (lemma 7.5),

2. to derive conditions ensuring continuity of 86 — Py where Py is the solution of a linear BVP
depending of a parameter 6 (lemma 7.6).

Lemma 7.4. Let us suppose conditions C1, C2. V6 € © let us consider (Xgz,pg) an admissible

solution of:
Xeﬂ(t) = f(t, Xoau(t),0) + 5 BBT 0 (t)

po(t) = — 5L (t, Xo(1),6)"p ()+2CT(CXe,a(t)—Y(t))
(Xom (0),p6(T)) = (0,0)

then [|pg(, Y)l, < E(Y).

Proof. Using Gronwall’s lemma we have:

p()] < 2VA|Cl, fy eVFED V(T - 5) — CXi(s)]), ds
< 2VA||C], /T 1\/f0 ¥ (T — 5) — CXi(s)| 2ds
< 2vd|c|, ﬁ EELLY - Xl < B(Y)
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Lemma 7.5. For \ such that A\ > F(Y™*), we have for all Y € L? ([O, T, Rd/) the bound

1po (. Y)lly < E(Y™) + Ky [[Y = Y7

and for all (Y, Yl) € L? ([O7 T], Rd/) and \ such that:

1 ’
A>F(Y)+ 5 <K0 HY vy

we have the discrepancy:

a7t \/(Ko 1Y = Y*le + 4VA|Clly K ) Ko Y —Y*||L2>

/ K2+HY'—Y* L Ke+AK3 ,

Xou(,Y) =X, (.Y L2 -
[Xoal V) =Xy )], < Cremmferra 201,

n \/T(\/dexcvdfwTH) /

A=F( ) =Y =Y+ 2 Ks To = Zo||,
S
+ A—F(Y*)—[[Y =Y~ K5 L2
, TFou (EYH)+K4 Y Y 2112) (Kot Y =Y*|| . Ke+2K ,
po ) = by (L Y) < il 2 - Lf)f f{( 2] PLGELD) lo-¢]
L2 A—F(Y*)—Ks||Y' -Y HLz 2
B ] I
N KQ(E(E(y*)+K4“y/7y* L2)+2\|CH§) H .
A=F ") =Y =v+[],. K5 0|l
K (Fow (BO)+Ea Y —v7|| ) +20c13) '

+ <K1°+ A—F =Y =¥+ 2 K5 HY_Y L2
with:

PE— e\/T— JR—
Ko = ||BlVar* eV T i ||Cll, [ <572 Koo = 3 ||BI; d T2 T fog Ky
Ki = d|B|3T?eVT | C, K7 = dTeV¥:"
Ko = L|B|2d?T2e2VT T EB(Y") Ks = AT fogeV =T
Ks = J,TelT Ky = VT3 foe/ T (VAT foe/ T 41)

_ 2dfzt_1 (VA|C|l K _ VdfsT

Ki = 2Vd|[Cl, <3t (YR +1) Ki =2Var||c|l, e’
Ks = L|B|2d*T?eV =" oo Ky K =+VdTeViTK,

Proof. Firstly we will bound HX.gﬂ(.,Y) — Xy (. YI)HL2 w.rt |pe(.,Y) —pa(.,Y')| 2 and HH -0

Kot Y) = Xy olt,Y)

’ <
2

+
<

+

,U

Hf(t,xm(t,Y),e) - f(t,Xarﬂ(t,Y/),Hl)H
po(t,Y) — py (?f,l/)H2

4Bl
2

2.

2

VdFf, me(t, Y) — Xy ot Y/)H

Tolo—o

vdd| B3
+ 2

) pot.Y) = py (1Y),

Gronwall lemma and Cauchy-Schwarz inequality gives us:

ng,ﬂ(t, Y) = Xy o(t,Y)

‘ 2

IN + A

+

2 ’
R /T s ¥) =y (5

o, + et (v
2 !

WL TV TET |lpy (., V) = pyr (V)|

Fov/TeYdl:T He —0 H2 + ( dfzeV =Tt + 1) on ~ &g

ool + Fo o 0], ) @

2

‘ 2
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We finally obtain:

/

Vdd| BJ|2
SAEE TN |y (,Y) = py ()

IA

HXo,ﬂ(.,Y) — Xy (Y

‘LQ

" el o vt (Vg ) o i)
(7.9)

Secondly we will bound ||pg(.,Y) —pa(.,Y")|| ;2 w.r.t

’6 — OIH and HY — Y/HLQ. For this we have
2
for the reversed time adjoint equations:

pé(ta Y) - pie’ (t7 Y/) = %(T =1, Xg,ﬂ(t7 Y)7 e)T (pé(t7 Y) - pi;’ (t> Y/))
. . ! ! T 3 !’
O(T — £, X} 4(8.Y).0) = 3L(T — £, X, (£.Y).0 )) P (1Y)

207C (Xg,ﬂ(t, Y') - Xj (1, Y))
207 (Yi(t) - Yi/(t))

+ o+

(7.10)

Taking the Frobenius norm we have the following inequality:

bty =pp Y| < V| FT -t Xp o). 0| [pie ) —p 7))
VAo Y| || 3@ - 6 Xp oY), 0) = ST -t X 6,60
+ 2VA|Cl | X LY = X oY)
+2VA||C], Y)Y ()
< Va(|phey)||, T +211C13) [ X6t 1) - X LY
+ V(T pie ) = py )|+ ||pi (6| s o= 07]|)
+ 2V, Y -y o)
By using Gronwall’s lemma we obtain:
otV =py Y|, < VeV T [ (Fes pi(s, Y| +211C13) || X as, V) = Xy (Y| ds
+ \/dfzee@T Hﬁ—ﬁl Lfot pfg(s,Yl)HQdS
+ 2O, T Y)Y (s)| ds
We need a bound for |py(s,Y)||, with uniform control w.r.t by E(Y*) and the discrepancy
|Y —Y™||,2 but so far all we have is ||py(s,Y)|, < E(Y). For finding such a bound we need
to consider the special case where Y =Yy*.
Using the previous inequality we have:
[poe ) =pp v < Ve T [ (F b (40| + 21CI5) |[Xials V) = X (5,77 ds
+  VdfpgeViT H9—9l Qf(f pé,(s7Y*)H2ds
+ V||, VYT [ Yi(s) — Y*(s)||, ds
< VATV (T E(Y*) +20|013) [ X5 (. ¥) = X5 (Y|
AT FogeV =T B(Y*) ‘9 - 9” .
+ 2VdT ||y eV T Y — Y|
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And so we obtain the L?-discrepancy:

P Y) = pyr (YN < VATVTET (T B) + 21 ) || X V) = X3 (Y
+ VAT freeVTE(Y™)
+ 2VdT|[Clly eV T Y — Y|
(7.11)
By reinjecting in (7.9) we have:
* Y* *
|Xoa( 1) =Xy (Y|, < X )HXM ()= %y u( v
+ (K2 +K3) By =Yl
+ f(\/dex VdfTT—Fl) on — )
and thus for A > F(Y™) we obtain:
[ %o = X3 2l < T2 smr o= o] Y Y
(7.12)

From this previous inequality and Gronwall’s lemma we can now obtain a bound for Hpg(t, Y)Hz:

s, < 2VAICI, fy T V(T = 5) - OXj o (.Y)| ds
< VAl \ETEE I (0~ ) X5, 1)
< 2Vd|Cl, F S IY = CXopa( V)]l e
< 2vd|cl, ﬁ 1(||Y Y*||L2+HY* CX; o, +||0X5 s - CXoal V)| )
< 2vi|cCl, F ST (Do) + (SIS 4 1) 1Y =)
< E(Y*)+K4HY Y||L2
In the last inequality, the discrepancy HCX9 = — CXoga( H has been bound by using the in-

equality (7.12).
We can now control Hpé (t,Y) —pl (t, Y/)H in the general case:
2

IN

Ve T [ (EHpé(s )
Nz ‘0 0‘ afa

2Ol V=T || vi(s) - v (o), as

VT Fer (B(Y") + Ks ) VART||XG o, Y) = Xir L (,Y)
Nﬁucn?e“muxeu( Y) v,
VAT fro ’0 0‘ VAT (E(Y )+K4HY —y* L2)
2T |Cll, V||

feidtell )ngﬁ(s,y)—xi,ﬂ
(Y H ds

P 8. ) = piy 0¥

IN + +

+ o+ o+

L2
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Taking the L? norm finally gives us:

o) =py (YO, < VAT (B + K[y =y ) e/ T || X5 0 1) - Xy (YD)
+ 2Var Ol T | X5, Y) = Xp (Y|
v VAT e ’979/’ [T (E(Y*)+K4’ LQ)
+ 2T O], T | y

(7.13)
By reinjecting in (7.9) we obtain:

F(Y*)+Ks ||Y’ _y*
)

22 | X2, Y) = Xgr oY)

HXG,E(.J”) — Xy (Y

U 2 ) 2
Koty =v+|| K ,
e N
2
+ \/T(\/dTﬁevdszJrl) H:co fxé)HQ
By taking A > F(Y™*) + HY' = Y| Ks we have:
L
, Kot |[Y' =v*| | Kot+AKs .
(Y)Y =X, (. < L2 -
HXQ’"(’W Xy al- Y|, = APV —Ks[[Y' v+ o,
VT (VAT Fre 7T 11) ,
A—F(Y )|y Y LK, |0 T O
K ’
AfF(Y*)7||Y1’7Y* oK y-v 12
and by reinjecting in (7.13) we obtain:
, (Foo (B )+ K|y =y~ >+2HC|\2) (Kot |y =y, Ko+ars)
[po V) =p (¥, = R e PR |
+ < (Y*) +K4‘Y —-Y* )’
Ko (T (BOC)+ K|y -y )+2HCH2) /
+ K[V, on_% 2
K (Foa (BO)+Ka Y =y ) +21013) :
+ <K1°+ AFO )Y Y], K HY_Y L2

Ks

We know K3 is a decreasing function w.r.t A and the condition A > F(Y™*) + HY’ -Y* L2

becomes:

1 , , ,
A>F(Y')+ 5 <K0 Y-y, + ¢ (Ko lY" = ¥*llz +4Va|Cll, K ) Ko [[Y' = Y*an)
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X (t
Lemma 7.6. Let us consider ( ZP((L" ) solution of the linear ODE with boundary condition:
a [ 0X(t,0) B Aq(t,0) Ay(t,0) 0X (t,0)
F = + B(t,0)
OP(t,0) As(t,0) Ay(t,0) OP(t,0)
0X(0,0) B 0Xo
AOP(T,0) ~ \ oprr
with 0 a (possibly infinite dimensional) parameter belonging to a normed space (S, ||.|y)-

- <A1<.,9> As(,0)
As(.,0) A4(.,0)

B(.,0) is continuous with ||B(.,0)|| > uniformly bounded on Sy and dT2A2A36‘/ET(AT+A74> <1

> is continuous with A; = supjy 7yxs, |Ai(t,0)] < 400, § —

X(.,0
then the solution ( ZP(( ’0)) is unique for each 0, is uniformly bounded on [0, T] x Sy and
0X(.,0
0 — (~6) is continuous on Sp.
OP(.,0)

Proof. We have:

a 10X (t,0)l,
i 0P (t,0)],

VAAL0X(1,0)[l, + VdAs [0P(,6)], + || B (2, 6)]l,
VdAz |0X(t,0)[l, + VdAL |0P(t,0) |, + || Ba(t, )]l

IN A

Gronwall’s lemma gives us:

|0X(8.0)l, < VT [ (VA 0P 0), + | Bi(t,0)],) ds
|OP(T = ,0)l, < V3T [ (VA5 |0X(T ~1,6)|, + | BT — 1,0)]],) ds

By taking the L? norm we obtain:

10X (.02 < VAT AseY ™M T OP(,0)] 2 + TeV T || Bi(.,0)| 2
IOP(.0)p2 < VAT AzeV4T0X(,0)|| 2 + TeV T || Ba(.,0)] -

The condition dT2A2A3e‘/3T(‘Tl+A7) < 1 implies the uniform boundedness of |0.X(.,0)|/;. on Sy
and so of ||OP(.,0)| -

The inequalities:

10X (2, 0)[l, < VAT AeY M TOP(,0)] 2 + VTV T | By (., 0)]| 2
loP(T —t.0), < VdTAze¥V AT 0X(.,0)l| 2 + VTV 4T || By, 0)] e

hence implies the existence of uniform bounds 0X and OP.
We have:

X (t,0) — 0X(t,0") Ay (t,0)0X (t,0) — A1 (t,0)0X (£,0)

+ +
%
==
!
S
“Qb
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and so:

d
dt

X (t,0) — 0X(t,0)

2

Gronwall’s lemma gives us:

a
dt

+ + IA

\/ZuTl‘ DX (t,0) — X (¢, 9’)H2 +Vdox HAl(t, 0) - As(t, )]
\/&/TQ‘ OP(t,0) — OP(t, 9/)H2 +\/doP HA2<t, 6) — As(t, 9’)H2

HBl(t,G) ~Bi(t,6)

DX (t,0) — 8X(t,9')H2

<
+
+
+

VAT T [0 44(1,0) — 411,60

.

VlAze T [H|oP(t,6

)
VADPV T 1| 451, 6
VINT [} (

By(t.0) = By(t,0)|

OP(t,
At

/

0
N
ds

ds
/) ’2ds
)’ ds

By passing through similar computations we obtain the following bound for H@P(t, 0) — OP(t, 9/) H :
2

H@P(t,&) - ap(t,e’)H2

Using Cauchy-Schwarz inequality and taking the L? norm eventually lead us to:

HaX(.,e) —9X(.0)

L2

< VdoXeVdAT fg As(s,0) — As(s,0)|| ds
+ VdAzeV AT fot H@X(S,G) —aX(s,GI)‘ st
+ VdOPeVaAT [t HA4(5,0) — Ag(s,0)_as
+ e\/ETfOt ‘ Ba(s,0) —Bg(s,ﬁl) st
< VAToX VAT ’Al(.,e)—Al(.ﬁ') .
VAT ApeVaAT ‘ OP(..0) — 9P(.,0') ‘p
+  AT8PeVaAT ‘Ag(.,a)_Ag(.,e’) ,
+ Te*/ETHBl(.,Q)fBl(.,J) )
< VAT AzeVaaT ‘ OP(.,0) — P(..0') ‘Lz +Kx |6 ¢l

with Kx a constant due to continuity and uniform boundedness on Sy of A and B. We can also

find a bound for H@P(., 0) — oP(.,0")

with Kp a constant, by reinjecting the bound found for

Hap(.,e) —9P(.,0)

L2

IN

A+ o+ +

HaX(.,e) —ax(,, 9’)HL2 we obtain:

HaX(.,e) —ox(.0)|

L2’

< dT2A2A3e\/ET(A71+A74)

VATOX eVIAT HA?,(., 6) — As(.,0
VAT AzeVaAT HaX(., 0) — 0X(.,0
VD PeV AT HA4(.,0)
TeVaAT HBQ(.,G) ~ Ba(.,0)
VAT AzeV AT HaX(.,e) "

— Ay(.,0)

2

)

’

X(.,60")

l

2

L2

2

+ (ﬁTAievdAlTKp + KX) 16— 0|

‘QX(.,G) —9X(.,0)

|, +Krlo-0|
L2

L2

aP(.,0) — 6P(.,9')HL2 in the one for
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which gives the uniqueness of the solution and the continuity of 6 — 0X(.,0) and hence of
6 — OP(.,0) using the upper bound of H@P 0) — OP(. H for dT? Ay Az efT(AlJ“A“) <1. O

8 Adjoint method for gradient Computation

8.1 Profiled cost and ODE (3.2) reformulation

In order to use adjoint method we reformulate the profiled cost under the integral form S (f/; 0,)\) =
fOT I(Rg(s), s)ds as well as the ODE (3.2) under the form: Ry(t) = F(Ry(t),0,t).
By posing:

Ro(1) = (Xoa(®)".polt )T)T
(Ro(t),t) = (CXa Y1) ) (CXoat) = V(1)) + f5p0(0) BB po (1)
- £(t, Xo a< ) 9) + 2ABBTp9() '

We also need to compute their derivatives:

. i O (1, Xpu(1), 0)
ag 0000 = ( -5, (st e X0 0,00 ) |

98t X ﬂ(t),e) L BBT )

8.2 Adjoint method

8.2.1 Known initial condition

The gradient of S (37; 0, \) is expressed under the form:
VoS(V50,0) = [if ZL(Re(s),s)2Bels) g

with a%‘;ﬂ solution of the sensitivity equation:

d ,ORy(t) oF ORy(t) OF
@( 20 ) = 8R(R‘9( ),0,t) 0 T %(Re( ),0,t).
If we premultiply the right and left term of the previous ODE by the 2d—sized adjoint vector

P(t) = (Py(t), P2(t)) and then integrate we obtain

T
/OP()jtaR" )dt = /P (t),&taRe dt+/ P(t Ro(t),0,t)dt
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Integration by part gives us

T
[P0 SO0 gy pry PRlT) ) OO [y PRl

Since 8Xf§g(0) =0 and apgiéT) = 0 by developing by block we have:

T d ORe(t), , 0Xgu(T) 8])9 aRg
/OP(t).—( yat = py(1). 22m )  py o) /p Ofe(®) 4,

So if we take P;(T) = 0 and P5(0) = 0 we obtain the variational relation:

rr. ) ORy(t) OF B
/0 (P(t)JrP()aR(Ro( ),H,t)> 699 dt+/0 P(t). 50 —(Ry(t),0,t)dt =0

and by imposing;:
oF OU(Ro(1).)

P(t) + P(). 5 (Ro(1), 0,8) = ==

we derive the expression:

/T OU(Rs(t),t) ORs(t) ,, _ /T P(t).a—F(Re(t)a 0,t)dt
0 0

OR 00 ol
and so
. T oF
VoS(Y;0,)\) = f/ P(t).%(Rg(t),G,t)dt.
0
We can now compute VgS(Y; 6, \) by considering:
VQS(Y = — [T P(t).2E (Ry(t), 0, t)dt
( ) = w P(t) gl( 9(t)79’t)
P(T) =
P(0) =

8.2.2 Unknown initial condition

In that case we have to consider the extended parameter set (0, () and the extended gradient:
v(eﬁwo)s(y; 07 Zo, >\) = (VQS(Yv 07 o, >\)7 vxos(yv 07 Zo, )‘)) :

We have already obtained VS (Y; 0,20, \) we now compute

T
VmOS(Y§9,IQ,>\) = / %(RQ(S),S)aRG(S)
0

ds

6370

using adjoint method. If we premultiply the right and left term of the sensitivity ODE w.r.t xg:

d [ ORy(t) OF ORy(1)
dt< D10 ) o (Fet).0.0)=5
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by the 2d—sized adjoint vector P(t) = (Py(t), P»(t)) and then integrate we obtain:

T d aRg ORy(t)
Pt P .
/0 05 o Nyar = / Ra(0),0,6) 5

Integration by part gives us

T
/O Py L 28D 4y _ py BeT) _ pg )'6Re()_/0 (o). 20 4,

dt (933‘0 8x0 8x0 83:0
T T
T
Reminding that 8%97(?) = M%m ,0] and aRi(O) = (I ag(;(o) ) we know if we take

Py (T) =0 and P5(0) = 0 we obtain the variational relation:

Tr. oF ORy (1) B
[) <P(t) JrP(t).aR(Rg(t),@,t)) B2o dt+ P (0)=0

and by imposing;:

we derive from that

T Ol(Ry(t),t) DR (t)
/0 SR ae, =P

and so
VoSV 0,20, \) = —P1(0).

We can now compute VIOS(?; 0,x,\) by considering:

VIOS(Y/ .20, \) = —Py(0)

< ) = 2D p(t). 8 (Ry(t),0,1)
T)=0

<o> -

3 3
3

Since the adjoint ODE has already been solved for parameter gradient computation, it does not

require any extra cost to compute V%S(Y; 0,0, \).
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