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1 Reduction to the equivalent cylinder
The key of the derivation relies on having the possibility to reduce the complex
morphology to an equivalent cylinder (Rall, 1962). We adapted this procedure
to capture the change in integrative properties of the membrane that results
from the mean synaptic bombardment during active cortical states, reviewed in
Destexhe et al. (2003).

For a set of synaptic stimulation {νep, ν
p
i , ν

d
e , ν

d
i , s}, let’s introduce the fol-

lowing stationary densities of conductances:{
gpe0 = π dDe νpe τpe Qpe ; gpi0 = π dDi νpi τ

p
i Q

p
i

gde0 = π dDe νde τde Qde ; gdi0 = π dDi νdi τdi Qdi
(1)

where De and Di are the excitatory and inhibitory synaptic densities.
We introduce two activity-dependent electrotonic constants relative to the

proximal and distal part respectively:

λp =

√
rm

ri(1 + rmg
p
e0 + rmg

p
i0)

λd =

√
rm

ri(1 + rmgde0 + rmgdi0)
(2)

For a dendritic tree of total length l, whose proximal part ends at lp and
with B evenly spaced generations of branches, we define the space-dependent
electrotonic constant:

λ(x) =
(
λp +H(x− lp)(λd − λp)

)
2−

1
3 b

B x
l c (3)

where b.c is the floor function. Note that λ(x) is constant on a given gener-
ation, but it decreases from generation to generation because of the decreasing
diameter along the dendritic tree. It also depends on the synaptic activity and
therefore has a discontinuity at x = lp.

Following Rall (1962), we now define a dimensionless length X:

X(x) =

∫ x

0

dx

λ(x)
(4)

We define L = X(l) and Lp = X(lp), the total length and proximal part
length respectively (capital letters design rescaled quantities).

2 Mean membrane potential
We derive the mean membrane potential µV (x) corresponding to the station-
ary response to constant densities of conductances given by the means of the
synaptic stimulation. We obtain the stationary equations by removing tempo-
ral derivatives in Equation, the set of equation governing this mean membrane
potential in all branches is therefore:
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1

ri

∂2µv
∂x2

=
µv(x)− EL

rm
− gpe0 (µv(x)− Ee)− g

p
0i (µv(x)− Ei) ∀x ∈ [0, lp]

1

ri

∂2µv
∂x2

=
µv(x)− EL

rm

− gde0 (µv(x)− Ee)− gd0i (µv(x)− Ei) ∀x ∈ [lp, l]

∂µv
∂x |x=0

= ri
(µv(0)− EL

Rm
+GSi0 (µv(0)− Ei)

)
µv(l

−
p , t) = µv(l

+
p , t)

∂µv
∂x l−p

=
∂µv
∂x l+p

∂µv
∂x x=l

= 0

(5)

Because the reduction to the equivalent cylinder conserves the membrane
area and the previous equation only depends on density of currents, the equation
governing µv(x) in all branches can be transformed into an equation on an
equivalent cylinder of length L. We rescale x by λ(x) (see Equation 4) and we
obtain the equation verified by µV (X):

∂2µv
∂X2

= µv(X)− vp0 ∀X ∈ [0, Lp]

∂2µv
∂X2

= µv(X)− vd0 ∀X ∈ [Lp, L]

∂µv
∂X
|X=0 = γp

(
µv(0)− V0

)
µv(L

−
p ) = µv(L

+
p )

∂µv
∂X L−

p

=
λp

λd
∂µv
∂X L+

p

∂µv
∂X X=L

= 0

(6)

where:

vp0 =
EL + rmg

p
e0Ee + rmg

p
i0Ei

1 + rmg
p
e0 + rmg

p
i0

vd0 =
EL + rmg

d
e0Ee + rmg

d
i0Ei

1 + rmgde0 + rmgdi0

γp =
riλ

p (1 +G0
iRm)

Rm

V0 =
EL +G0

iRmEi
1 + +G0

iRm

(7)
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We write the solution on the form:

{
µv(X) = vp0 +A cosh(X) + C sinh(X) ∀X ∈ [0, Lp]

µv(X) = vd0 +B cosh(X − L) +D sinh(X − L) ∀X ∈ [LpL]
(8)

• Sealed-end boundary condition at cable end implies D = 0

• Somatic boudary condition imply: C = γp (vp0 − V0 +A)

• Then v continuity imply : vp0 +A cosh(Lp) + γp (vp0 − V0 +A) sinh(Lp) =
vd0 +B cosh(Lp − L)

• Then current conservation imply: A sinh(Lp)+γ
p (vp0−V0+A) cosh(Lp) =

λp

λd B sinh(Lp − L)

We rewrite those condition on a matrix form:

(cosh(Lp) + γp sinh(Lp) − cosh(Lp − L)
sinh(Lp) + γp cosh(Lp) −λ

p

λd sinh(Lp − L)

)
·
(A
B

)
=
(
vd0 − v

p
0 − γp (v

p
0 − V0) sinh(Lp)

−γp (vp0 − V0) cosh(Lp)
)

(9)
And we solved this equation with the solve_linear_system_LU method of

sympy
The coefficients A and B are given by:

A =
α

β
B =

γ

δ
(10)

where:

α = V0γ
PλD cosh (Lp) cosh (L− Lp) + V0γ

PλP sinh (Lp) sinh (L− Lp)
− γPλDvd0 cosh (Lp) cosh (L− Lp)− γPλP vd0 sinh (Lp) sinh (L− Lp)
− λP vd0 sinh (L− Lp) + λP vp0 sinh (L− Lp)

β = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)+
λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

γ = λD
(
V0γ

P + γP vd0 cosh (Lp)− γP vd0
− γP vp0 cosh (Lp) + vd0 sinh (Lp)− v

p
0 sinh (Lp)

)
δ = γPλD cosh (Lp) cosh (L− Lp) + γPλP sinh (Lp) sinh (L− Lp)

+ λD sinh (Lp) cosh (L− Lp) + λP sinh (L− Lp) cosh (Lp)

(11)

3 Membrane potential response to a synaptic event
We now look for the response to nsrc = bB xsrc

l c synaptic events at position
xsrc on all branches of the generation of xsrc, those events have a conductance
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g(t)/nsrc and reversal potential Erev. We make the hypothesis that the initial
condition correspond to the stationary mean membrane potential µV (x). This
potential will also be used to fix the driving force at the synapse to µv(xsrc)−
Erev, this linearizes the equation and will allow an analytical treatment. To
derive the equation for the response around the mean µv(x), we rewrite Equation
9 in main text with v(x, t) = δv(x, t)+µv(x), we obtain the equation for δv(x, t):

1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

p
e0 + rm g

p
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [0, lp]

1

ri

∂2δv

∂x2
= cm

∂δv

∂t
+
δv

rm
(1 + rm g

d
e0 + rm g

d
i0)

− δ(x− xsrc)
(
µv(xsrc)− Erev

) g(t)
nsrc

, ∀x ∈ [lp, l]

1

ri

∂δv

∂x |x=0
= CM

∂δv

∂t |x=0
+
δv(0, t)

Rm
(1 +RmG

S
i0)

δv(l−p , t) = δv(l+p , t)

∂δv

∂x l−p
=
∂δv

∂x l+p

∂δv

∂x x=l
= 0

(12)

Because this synaptic event is concomitant in all branches at distance xsrc,
we can use again the reduction to the equivalent cylinder (note that the event
has now a weight multiplied by nsrc so that its conductance becomes g(t)), we
obtain: 

∂2δv

∂X2
=
(
τpm + (τdm − τpm)H(X − Lp)

)∂δv
∂t

+ δv

−
(
µv(Xsrc)− Erev

)
δ(X −Xsrc)×

g(t)

cm

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
)

∂δv

∂X |X=0
= γp

(
τSm

∂δv

∂t |X=0
+ δv(0, t)

)
δv(L−p , t) = δv(L+

p , t)

∂δv

∂X L−
p

=
λp

λd
∂δv

∂X L+
p

∂δv

∂X X=L
= 0

(13)

where we have introduced the following time constants:
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τDm =
rm cm

1 + rm gde0 + rm gdi0

τPm =
rm cm

1 + rm g
p
e0 + rm g

p
i0

τSm =
Rm Cm

1 +RmGSi0

(14)

We now use distribution theory (see Appel (2008) for a comprehensive text-
book) to translate the synaptic input into boundary conditions at Xsrc, phys-
ically this corresponds to: 1) the continuity of the membrane potential and 2)
the discontinuity of the current resulting from the synaptic input.

δv(X−src, f) = δv(X+
src, f)

∂δv

∂X X+
src

− ∂δv

∂X X−
src

= −
(
µv(Xsrc)− Erev

)
×

(τpm
λp

+ (
τdm
λd
− τpm
λp

)H(Xsrc − Lp)
) g(t)
cm

(15)

We will solve Equation 13 by using Fourier analysis. We take the following
convention for the Fourier transform:

F̂ (f) =

∫
R
F (t) e−2iπft dt (16)

We Fourier transform the set of Equations 13, we obtain:

∂2δ̂v

∂X2
=
(
αpf + (αdf − α

p
f )H(X − Lp)

)2
δ̂v

∂δ̂v

∂X |X=0
= γpf δ̂v(0, f)

δ̂v(X−src, f) = δ̂v(X+
src, f)

∂δ̂v

∂X X−
src

=
∂δ̂v

∂X X+
src

−
(
µv(Xsrc)− Erev

)
×(

rpf + (rdf − r
p
f )H(Xsrc − Lp)

) ˆg(f)

δ̂v(L−p , f) = δ̂v(L+
p , f)

∂δ̂v

∂X L−
p

=
λp

λd
∂δ̂v

∂X L+
p

∂δ̂v

∂X X=L
= 0

(17)
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where

αpf =
√
1 + 2iπfτpm rpf =

τpm
cm λp

αdf =
√
1 + 2iπfτdm rdf =

τdm
cm λd

γpf = γp (1 + 2iπfτSm)

(18)

To obtain the solution, we need to split the solution into two cases:

1. Xsrc ≤ Lp
Let’s write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L):

δ̂v(X,Xsrc, f) =

Af (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)
if :0 ≤ X ≤ Xsrc ≤ Lp ≤ L

Bf (Xsrc) cosh(α
p
f (X − Lp)) + Cf (Xsrc) sinh(α

p
f (X − Lp))

if :0 ≤ Xsrc ≤ X ≤ Lp ≤ L
Df (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Xsrc ≤ Lp ≤ X ≤ L

(19)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

M =


cosh(αpf Xsrc) + γpf sinh(αpf Xsrc) − cosh(αpf (Xsrc − Lp)) − sinh(αpf (Xsrc − Lp)) 0

αpf
(
sinh(αpf Xsrc) + γpf cosh(αpf Xsrc)

)
−αpf sinh(α

p
f (Xsrc − Lp)) −αpf cosh(α

p
f (Xsrc − Lp)) 0

0 1 0 − cosh(αdf (Lp − L))

0 0 αpf −αdf
λp

λd sinh(αdf (Lp − L))


(20)

M ·


Af
Bf
Cf
Df

 =


0

−rpfIf
0
0

 (21)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Af (Xsrc) coefficient, we obtain:

Af (Xsrc) =
a1f (Xsrc)

a2f (Xsrc)
(22)

with:
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a1f (Xsrc) = Ifr
P
f

(
−αDf λP cosh

(
LαDf − LpαDf − LpαPf +Xsα

P
f

)
+ αDf λ

P cosh
(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)
+ αPf λ

D cosh
(
LαDf − LpαDf − LpαPf +Xsα

P
f

)
+ αPf λ

D cosh
(
LαDf − LpαDf + Lpα

P
f −Xsα

P
f

)
a2f (Xsrc) = αPf

(
−αDf γPf λP cosh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf γ

P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)
−

αDf λ
P sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf λ

P sinh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf λ

D sinh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf λ

D sinh
(
LαDf − LpαDf + Lpα

P
f

)

(23)

2. Lp ≤ Xsrc

Let’s write the solution to this equation as the form (already including the
boundary conditions at X = 0 and X = L:

δ̂v(X,Xsrc, f) =

Ef (Xsrc)
(
cosh(αpf X) + γp sinh(αpf X)

)
if :0 ≤ X ≤ Lp ≤ Xsrc ≤ L

Ff (Xsrc) cosh(α
d
f (X − Lp)) +Gf (Xsrc) sinh(α

d
f (X − Lp))

if :0 ≤ Lp ≤ X ≤ Xsrc ≤ L
Hf (Xsrc) cosh(α

d
f (X − L))

if :0 ≤ Lp ≤ Xsrc ≤ X ≤ L

(24)

We write the 4 conditions correspondingto the conditions in Xsrc and Lp
to get Af , Bf , Cf , Df . On a matrix form, this gives:

We rewrite this condition on a matrix form:

M2 =


cosh(αpf Lp) + γpf sinh(αpf Lp) −1 0 0 0

αpf
(
sinh(αpf Lp) + γpf cosh(αpf Lp)

)
0 −αdf

λp

λd 0

0 cosh(αdf (Xsrc − Lp)) sinh(αdf (Xsrc − Lp)) − cosh(αdf (Xsrc − L))

0 αdf sinh(αdf (Xsrc − Lp)) αdf cosh(αdf (Xsrc − Lp)) −αdf sinh(αdf (Xsrc − L))


(25)
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M ·


Ef
Ff
Gf
Hf

 =


0
0
0

−rdfIf

 (26)

And we will solve it with the solve_linear_system_LU method of sympy.
For the Ef (Xsrc) coefficient, we obtain:

Ef (Xsrc) =
e1f (Xsrc)

e2f (Xsrc)
(27)

with:

e1f (Xsrc) = 2Ifλ
P rDf cosh

(
αDf (L−Xs)

)
e2f (Xsrc) = −αDf γPf λP cosh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf γ

P
f λ

P cosh
(
LαDf − LpαDf + Lpα

P
f

)
− αDf λP sinh

(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αDf λ

P sinh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf γ

P
f λ

D cosh
(
LαDf − LpαDf + Lpα

P
f

)
+ αPf λ

D sinh
(
−LαDf + Lpα

D
f + Lpα

P
f

)
+ αPf λ

D sinh
(
LαDf − LpαDf + Lpα

P
f

)

(28)

From this calculus, we can write the PSP at the soma on the form:

δ̂v(X = 0, Xsrc, f) = Kf (Xsrc)
(
µv(Xsrc)− Erev

) ˆg(f) (29)

where Kf (Xsrc) given by:

Kf (Xsrc) =

{
Af (Xsrc) ∀Xsrc ∈ [0, Lp]

Ef (Xsrc) ∀Xsrc ∈ [Lp, L]
(30)

This is obtained by taking a unitary current If = 1 in the previous calculus.

4 Deriving the power spectrum of the membrane
potential fluctuations

The calculus rely on the ability to obtain the power spectrum of the membrane
potential fluctuations at the soma PV (f).
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This can be obtained from shotnoise theory (Daley and Vere-Jones, 2007)
(see also El Boustani et al. (2009) for an application similar to ours), the general
form of the power spectrum density can be expressed as:

PV (f) =
∑
{syn}

Nsyn Fsynch νsyn ‖ ˆPSPsyn(f)‖2

(31)

where {syn} is the set of identical synapses, each having Nsyn synapses, a
Poisson release probability: νsyn and creating a post-synaptic event PSPsyn(t).
In addition, Fsynch is a synchrony factor (depending on the variable s in the
model), it accounts for the effects of the synchronous arrivals of presynaptic
events. Given the synchrony generator considered in the main text, the syn-
chrony factor takes the form:

Fsynch = (1− s) + (s− s2)22 + (s2 − s3)32 + s342

(32)

because single events arise with a probability 1 − s, double events with a
probability s−s2 (and the PSP are squared in Eq. 4, hence the 22 factor), etc...

Now obtaining the power spectrum density PV (f) in our situation requires
to explicit the sum over synapses:

∑
{syn}, In our cases, we need to sum over 1)

their type (excitatory/inhibitory,
∑
s∈{e,i} ), 2) their location (we will integrate

over the dendritic length
∫ L
0
dx) 3) branches.

PV (f) =
∑

s∈{e,i}

∫ L

0

dxπDs
(
dt 2
− 2

3 b
B x
l c
)
2b

B x
l c Fsynch νs(x) ‖δ̂vs(0, x, f)‖2

+ πDi lS dS Fsynch νi(0) ‖δ̂vi(0, 0, f)‖2

(33)

where δ̂vs(0, x, f) is given by Eq. 29 (note that the dependency on synaptic
type s comes from the reversal potential term Erev in Eq. 29). The factor
2b

B x
l c corresponds to the sum of the synapses over the different branches at

the distance x. The term
(
dt 2
− 2

3 b
B x
l c
)
is the diameter of the branches at the

distance x.
The last term in Eq. 33 corresponds to the contribution of somatic inhibitory

synapses (number of somatic inhibitory synapses: πDi lS dS .

5 Deriving the fluctuations properties (µV , σV , τV )

The final expressions for the fluctuation propeorties as a function of (νpe , ν
p
i , ν

d
e , ν

d
i , s)

are thus given by:
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• µV : we obtain the mean of the fluctuations at the soma by taking µV (0)
in Equation 8.

• σV : we obtain the standard deviation of the fluctuations from the power
spectrum density in Equation 33 and the expression:

σ2
V =

∫
R
PV (f) df (34)

This integral expression was discretized and evaluated numerically

• τV : we obtain the autocorrelation time of the fluctuations from the power
spectrum density in Equation 33 and the expression (Zerlaut et al., 2016):

τV =
1

2

(∫R PV (f) df
PV (0)

)−1 (35)

This integral expression was discretized and evaluated numerically
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