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Recently, it has been shown that general theory of relativity, in fact, can be independently derived
without using Einstein’s general relativity equations. In the approach, the two most used solutions
- the Schwarzschild and Reissner Nordstrom solutions - have been derived explicitly. Here, an
easy-to-understand self-contained introduction to the material is edited.

The approach, as a matter of fact, is not an alternative to the theory, but another way demon-
strating a different understanding of the theory of gravitation. Yet, gravity through the basic ideas
of the approach is very comprehensible.

INTRODUCTION

In general relativity (GR), the curvature of spacetime
is directly related to the stress-energy tensor. This pro-
vides a rigorous geometric description for the gravita-
tional phenomena. Yet, the theory is geometrically very
complicated. Different attempts for alternatives have
been made [1–3], yet the consistency with special rela-
tivity (SR) is confused, even with the theory of general
relativity itself. In this review [4], we investigate deriving
general relativity using only SR principles.

The main result of the approach is a new formula re-
lating the spacetime interval with the stress-energy ten-
sor, which self-sufficiently reproduces the geodesics found
through GR such as the Schwarzschild and Reissner-
Nordstrom metrics [7].

The results simplify the theory of gravitation very
much, since the curvature in use is that of lines (not sur-
faces). Moreover, new insights into the quantitative de-
scription of quantum gravity are provided; the approach
we present here fundamentally based on the notion of
local coordinates, which can lead to new key-concepts
about gravitational waves.

RIEMANN GEOMETRY

Riemann manifold is the global space on which Ein-
stein equations solutions are represented. Each point,
say p, in it corresponds to the center, say Ol(p), of a lo-
cal frame. Each local frame has its own local basis with
respect to the gravity center. For a global observer at the
gravity center, say O, this basis is the coordinates basis.
The location in the global space is defined by the curved
coordinates, say {xµ}, whereas in the local frames the
flat coordinates, say {Xµ}, are used instead. At a point
M , the coordinates basis can be defined using the par-
tial derivative of the global position with respect to the
curved coordinates as eµ = ∂µOM. The coordinates ba-
sis is tangential to the lines of curved coordinates.

Einstein realized that local frames correspond to the

case of SR, whereas the general motion in the global
space (which corresponds to a continuous jumping be-
tween infinite Minkowski spaces) corresponds to the gen-
eral case of the theory, from which the title general rel-
ativity. The basic idea of the theory is that, for a local
observer in free-fall (moving along a given geodesic), the
space with respect to him is Minkowskian. This called
Einstein equivalence principle (EEP). Einstein equations
are the constraints that define the geodesics, as such, de-
fine EEP.

The result of the theory is that:energy distorts space-
time, and test particles located in spacetime follow dis-
torted paths.

GLOBAL RELATIVITY

SR is the local description of spacetime. For global
observers, local frames (associated with test particles)
change at each new point on the geodesic. This leads to
the general case of the theory: global relativity.

In a local frame Ol(p), the local observer measures the
infinitesimal interval as:

ds2 = gµν(X)dXµdXν (1)

where gµν(X) is the Minkowskian metric. With respect
to the global observer (at the gravity center), each in-
finitesimal element in the coordinates is split as:

dxµ = fµν (x)dXν (2)

where fµν (x) = ∂xµ

∂Xν . In the global space, the co-
ordinates are curved, therefore the relations between
the coordinates are not linear. Moreover, each coor-
dinate is parametrized with the parameter of the em-
bedded curve in the manifold of spacetime (geodesic)
as xµ(τ). Furthermore, each coordinate can (gener-
ally) construct three planes, e.g. for x1, we have{

(x1, x2), (x1, x3), (x1, x4)
}

, therefore, each coordinate
can generally construct three curves by eliminating the
parameter τ between the couples, e.g. for x1(τ), we have
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(x1(τ), x2(τ)), (x1(τ), x3(τ)), (x1(τ), x4(τ))

}
Each cou-

ple corresponds to a curve. We use the polar coordinates
for each couple, with the choice that the coordinate that
construct the planes plays the role of the rho-coordinate,
e.g. for

{
(x1, x2), (x1, x3), (x1, x4)

}
, the coordinate x1

plays the role of the rho-coordinate. Those planes are
used to parametrize the general form of the curve in the
global space, hence they determine the explicit form of
the curvature.

Since the coordinates Xµ are flat, we write

dXi = ωidT i, i = 1, 3. (3)

That is, the theory is described with three constants,
therefore

dxµ = fµν (x)dXν = (gµν (X) + gµ4 (X)ωρδ
ρ
ν) dXν (4)

where ωρ = 1
ωρ , ω1 = 1 (Note that {xν} locally reduce

to {Xν} and the relations between the coordinates {Xν}
are linear).

An important note to mention is that the differential
elements used here are not infinitesimal in the mathemat-
ical sense, but in the context of EEP. That is, they cor-
respond physically to sufficiently small regions of space.

Clearly, the quantities {fµ4 (x)} correspond to curva-
tures of curved lines in 2d spaces, as such, they corre-
spond to accelerations, therefore by multiplying those
with the differential element of the time coordinate dτ
we get the elements of velocity in the same/opposite di-
rection of the µ-axis.

The quatity ds
dτ is invariant, as such, the square

gµν(X)X
µ

dτ
dXν

dτ = M . Since the components of this four-
vector are the velocity, thus by adopting constants for
those components, we get a geometric stress-energy ten-
sor. The physical interpretation of that tensor is simple:
it represents locally the four-vector of impulsion-energy
(caused by gravity) of the test particle under study.

Now, let us explore the physics as seen by the global
observer. To proceed in that, we just apply SR prin-
ciples. Considering the fact that the first SR postulate
corresponds to the conservation of momentum, and the
second corresponds to the constancy of the speed of light,
one can get a generalized geometric stress-energy tensor,
say Gµν , in which the equations of gravity lie in, via the
equations

ds2 = Gµνdx
µdxν . (5)

It is clear that Gµν reduces to Mµν locally. Consider-
ing the general case by adding the stress-energy tensor of
ordinary matter gives the final form of the gravity equa-
tion:

ds2 = Ĝµνdx
µdxν (6)

where Ĝµν corresponds to the matter-geometry stress-
energy tensor as it is measured by the global observer.

FIG. 1. Local and effective velocity as seen locally and glob-
ally

Evidently, the last equation defines the metric of space-
time, together with the geodesic equations (note that the
geodesics equations are closely to the local coordinate [5])
the curved paths can be determined explicitly.

THE SPHERICAL SYMMETRIC CASE

For a static spherical gravitational field, the
parametrization of the geodesics must depend only on
the radial dimension r. The corresponding orbits are the
circular ones. Applying Einstein equivalence principle to
the motion along those orbits together with the equations
of geodesics will leads finally to the Spherical Symmetric
metric of the manifold.

We start by describing the local velocity of our test
particle v. Knowing that the velocity vector is tangent
to the orbit and the change in this vector is proportional
to −α/r (it comes from the derivation of the unit vector
tangent to the curve), one is led to consider the effective
local velocity (see Fig. 1), say vef , of the test particle.
Using the theorem of Pythagoras, one get

v2
ef = v2 − α

r
(δT )2 (7)

On the other hand, the local velocity is the derivative of
the local position with respect to the proper time, that
is

v =
δR

δT
(8)
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Which gives

(vefδT )
2

= (δR)2 − α

r
(δT )2 (9)

On the other hand, the relation between the local posi-
tion and local time is linear (local frames are flat)

vδT = δR (10)

thus

(vefδT )
2

= (δR)2

(
1− β

r

)
(11)

where α/v = β. Because vef corresponds to the effective
coordinates, which are the curved ones, one write

vef =
δr

δt
. (12)

This gives

(δr)
2

= (δR)2

(
1− β

r

)
(13)

which gives the space sector of Schwarzschild’s metric

(δR)2 =
(δr)

2

1− β
r

(14)

The time sector can be found easily from the space one.
There are two methods to find that: (a) using spacetime
diagram as in special relativity; or (b) using the con-
stancy of the speed of light postulate. For simplicity, we
follow the second choice.

Knowing that δR � δr and the fact that the starting
point (i..e the point a in Fig. 1) of the segment corre-
sponding to δR and the final one (i..e the point c in Fig.
1) is the same locally and globally in the manifold, one
can realize the only solution for time dilation that can
lead to a mathematical consistency is that defined with
the formula

(δT )2 = (δt)
2

(
1− β

r

)
(15)

The interval of the local spacetime has the form

(δS)2 = −(δT )2 + (δR)2 (16)

By substituting the above results, we get

(δS)2 = − (δt)
2

(
1− β

r

)
+ (δR)2 +

(δr)
2

1− β
r

, (17)

The last equation is exactly Schwarzschild’s interval of
the spherical symmetric spacetime.

Note that the local intervals δt and δr correspond the
Einsteinien sufficiently small regions of space mentioned
in the equivalence principle, that is globally those small
intervals look mathematically infinitesimal, thus we write

δs ≈ ds, (18)

δr ≈ dr, (19)

δt ≈ dt (20)

The above metric becomes

(dS)2 = − (dt)
2

(
1− β

r

)
+ (dR)2 +

(dr)
2

1− β
r

(21)

This completes the derivation of the spherical symmetric
spacetime interval.

REISSNER-NORDSTROM SOLUTION

In the case of gravitational field of a charged, non-
rotating, spherically symmetric gravity source, the met-
ric is extracted by taking into account the Hamiltonian
terms Tϕϕ or Tθθ of the electric charge q cosmological
constant Λ. Their Hamiltonian terms are given by [6]
Tϕϕ = −r2Λ, Tϕϕ = χ

r2 (for Λ and q respectively) where
χ is a constant.

The geometry-matter stress-energy tensor Ĝµν can be
written in its eexplicit form as

Ĝµν = Gµν + Tµν (22)

The first term (i.e. Gµν) corresponds to the contributions
of the Minkowski local frame and the induced spacetime;
the second one (i.e. Tµν) corresponds to the usual matter
stress-energy tensor. This analysis leads to the formula

(dxr)2 = (1− 1

r
+
χ

r2
−Λr2)(dXr)2 = K(r)(dXr)2 (23)

For the element of time, we proceed as above, evidently
this gives

(dxt)2 =
1

K(r)
(dXt)2 (24)

By replacing those results in Eq.(16), we get the solution
of Reissner-Nordstrom

ds2 = −(dXt)2 + (dXr)2 + (rdθ)2 + (r sin(θ)dϕ)2 = −K(r)(dxt)2 +
1

K(r)
(dxr)2 + (rdθ)2 + (r sin(θ)dϕ)2 (25)
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REISSNER-NORDSTROM SOLUTION AS A
SCHWARZSCHILD-LIKE SPACETIME

Here, we show that the Solution of Reissner-
Nordstrom, in fact, is just a Schwarzschild-like one in
different coordinates. For simplicity, let us suppose:
(a) α = 0.
(b) r = r0 where r0 is a constant.
(c) the radial dimension r is replaced with a U(1)-
variable, say ϕ́.
The Schwarzschild solution with the new coordinates
(ϕ́, t) can be written as

(dS)2 = − (dt)
2

(
1− β

ϕ́

)
+ (dϕ́)2 1

1− β
ϕ́

+ ϕ́2dϕ2 (26)

When passing to Schwarzschild’s coordinates (r, t), the
constant of the geodesic β becomes depending on the
factor 1

r , i.e. β = v
r , where v = dr

dT . Moreover, the
curvature is negative. Working with ϕ́ = r

r0
, one can get

(dS)2 = − (dt)
2

(
1 +

v
r
r
r0

)
+ (d

r

r0
)2 1

1 +
v
r
r
r0

+ (
r

r0
)2(dϕ)2

(27)

Denoting r
r0

by ŕ gives

(dS)2 = − (dt)
2
(

1 +
vr0

ŕ2

)
+ (dŕ)2 1

1 + vr0
ŕ2

+ ŕ2(dϕ)2

(28)
The last equation is exactly Reissner-Nordstrom’s space-
time interval. This proves that Reissner-Nordstrom’s
spacetime is just a Schwarzschild-like one in different co-
ordinates.

CONCLUSION

Einstein equivalence principle is the geometric realiza-
tion of special theory of relativity principles.
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