Supporting Information for the article, "A long-term copper exposure on freshwater ecosystem using lotic mesocosms: Invertebrate community responses"

by Sandrine Joachim, Hélène Roussel, Jean-Marc Bonzom, Eric Thybaud, Christopher A. Mebane, Paul Van den Brink and Laury Gauthier

This file consists of photographs of key features of the experimental stream design and tables detailing the sampling designs

Figure S1 : Overview of channels during initial establishment of stream communities, prior to extensive macrophyte growth.

Figure S2 : Coarse grain and fine sediment substrate setup in one mesocosm

Figure S3 : Different macrophyte species introduced in each channel. (A) *Nasturtium officinale*, (B) *Callitriche platycarpa*, (C) *Nymphea alba*, (D) *Myriophyllum verticillatum*, (E) *Iris pseudacorus*, (F) General view of the macrophytes in one channel in September 2003.

Figure S4 : Automatic dosing system

Two stock solutions composed of a technical grade of copper sulphate (MilliQ water and 15 % H2SO4) were placed onto two separate 500 liter tanks supplied with tap water (Tank 1 and Tank 2). Injection of the stock solution into Tank 1 was operated automatically. After a mixing period of 30 minutes, peristaltic pumps connected to the Tank 1 and the different mesocosms then delivered copper sulfate at the appropriate concentrations (the flow rates are adapted). The injection of the stock solutions, the water levels of the two tanks and the peristaltic pumps were controlled by an automatic system. When the water level of the Tank 1 was half empty, the automatic system commanded the injection in Tank 2. When Tank 1 was empty, the peristaltic pumps transferred to Tank 2. This operation was repeated every 8h to ensure a continuous contamination of the mesocosms. The stock solutions of copper sulphate were changed every 7 days.

Figure S5 : Overview of the 12 mesocom channels

Masaaaam	Concentration
Wesocosin	(µg/∟)
1	25
2	75
3	5
4	0
5	25
6	75
7	5
8	0
9	25
10	75
11	5
12	0

TableS1 : Mesocosm dosing lay-out

Figure S6 : Emergence trap in one mesocosm

Figure S7 : Example of late summer, dense macrophyte growth in the deeper, low-velocity sections of a channel.

Table S2 : Overview of all of compa	artments, populations and comm	nunities sampled throughout	the experiment.
-------------------------------------	--------------------------------	-----------------------------	-----------------

Organism/ Compartment	Endpoint	Unités	Frequency (in weeks)	References
	pH, Temperature, dissolved oxygen, conductivity	pH, °Celsius, mg/L, μmho/cm	-2, -1, 0, 1, 2, 3	
	Dissolved and labile copper	μg/L	-4,0, 2, 4, 6, 8	Labile copper, dissolved copper and total copper NF EN ISO 11885
w ater	Cl, NO ₃ , SO ₄	mg/L	-4, 0, 4, 8, 9, 10	NF EN ISO 11885 émission spectrometry
	PO ₄	mg/L	-4, 0, 12, 24	NF EN ISO 10304 : ion exchange chromatography
	Ca, Na, Mg, K, Al, Fe, Si, DOC, TOC, SM, carbonates, NH ₄ ,	mg/L	-4, 0, 4, 8	NF EN 1484, NF EN ISO 9963, NF EN 872
Sediments	TOC, Carbone, Hydrogen, nitroge, phosphorus, sulfide, Fe, Mn	mg/L	-4, 0, 12, 24	NF EN ISO 11885
	Total copper	μg/L	-4, 0, 12, 24	NF EN ISO 11885
Periphyton			-3, 0, 3, 6, 9	
Macrophytes (<i>Callitriche fluitans</i> et <i>Nasturtium officinale</i>),	Bioaccumulation	µg copper/mg dry weight	-4, 0, 4, 8,	NF EN 11885
Lymnaeidae			-4, 0, 4, 8,	
Gammaridae			-4, 0, 4, 8,	

Organism/ Compartment	Endpoint	Unités	Frequency (in weeks)	References
Poisson (foie)		µg copper/ kg dry liverc	0, 2, 18, 34,	
Fish (Gasterosteus aculeatus)	Glutathion	µmol/g prot	0, 2, 18, 34,	Vandeputte et al. 1994
	Glutathion Reductase	µmol/g prot	0, 2, 18, 34,	Carlberg, 1985
	SOD, CAT, GPx	U/g prot	0, 2, 18, 34,	Paglia and Valentine 1967; Paoletti <i>et al.</i> 1986; Babo and Vasseur 1992
	TAS	Trolox equivalent (mmol/g prot)	0, 2, 18, 34,	Miller <i>et al</i> . 1993
	Lipoperoxydation	Nmol TABRS / g prot	0, 2, 18, 34,	Armstrong, 1998
	GST	U/g prot	0, 2, 18, 34,	Habig <i>et al.</i> 1974
	EROD	pmol/min/mg prot	0, 2, 18, 34,	Flammarion 1997
	Stress proteins	ng/mg prot	0, 2, 18, 34,	Lewis et al. 1999
Phytoplankton and zooplankton	Abundance and Diversity	Number/L Diversity index	-2, -1, 0, 1, 2, 3	Van den Brink, 1999
Periphyton	Abundance and Diversity	Number/L	-3, 0, 3, 6, 9	Van den Brink, 1999
	Biomass	mg/cm ²	-3, 0, 3, 6, 9	Van den Brink, 1999

Organism/ Compartment	Endpoint	Unités	Frequency (in weeks)	References
	Chlorophylle-a	μg/cm	-3, 0, 3, 6, 9	Norme « essais des eaux » T90-117, 1984
	Chlorophylle-a (on macrophyte)	μg/cm ²	-3, 0, 3, 6, 9	Van de Brink 1999
	Coverage	m²	-8, 0, 8, 30, 42,	Van de Brink 1999
Macrophytes	Biomass	g de dry weight	-8, 0, 8, 30, 42,	Van de Brink 1999
	Diversity	Number of species	-8, 0, 8, 30, 42,	OECD, 2001
Macroinvertebrates	Abundance and Diversity	Number/L	-4, 0, 4, 8,	OECD, 2001
		Diversity index		
Macroinvertebrates in the sediment	Abundance and Diversity	Number/L	-4, 0, 4, 8,	Van den Brink, 1999
		Diversity index		
Emerging insects	Abundance and Diversity	Number/L	-1, 0, 1,2,33	Caquet, 2000
		Diversity index	50, 51,52,	
	Weight	g	0, 2, 18, 34,26, 76	Bonzom and Poulsen, 2000
Fish	Abundance	Number/mesocosm	26, 76	Bonzom and Poulsen, 2000
	Length	cm	0, 2, 18, 34,28, 76	Bonzom and Poulsen, 2000

Organism/ Compartment	Endpoint	Unités	Frequency (in weeks)	References
Aquatic Hyphomycetes	Abundance and Diversity Biomass	Number/L	-	
Macroinvertebrate decomposers	Abundance and Diversity	Number/L Diversity index	-5, -3, -1, 1	Baldy and Gessner, 1997
Litter	Mass loss	g		

...., indicates that samples were taken regularly during this time lapse

0 = first date of exposure. -3 = 3 weeks before exposure etc.

Armstrong, D. (1998). Free radical and antioxidant protocols., Humana Press, New Jersey.

Babo, S. a. V., P. (1992). "In vitro effects of Thiram on liver antioxidant enzyme activities of rainbow trout (*Oncorhynchus mykiss*)." Aquat. Toxicol., 22, 61-68.

Baldy, V., and Gessner, M. (1997). "Towards a budget of leaf litter decomposition in a first-order woodland stream." *Comptes rendus de l'academie des sciences serie III-sciences de la vie-life sciences*, 320 (9), 747-758.

Bonzom, J. M., Morin, A. (2001). "La spéciation du cuivre et les effets sur l'écosystème aquatique d'eau douce: une étude en mésocosme." BCRD Ministère de l'écologie et du développement durable, premier rapport d'avancement, 70p.

Bonzom, J. M., Pouslen-Petit, V. (2002). "Utilisation de mesocosmes comme outils d'aide à l'évaluation des risques ecotoxicologiques." 02dr0165, INERIS, 54p.

Burky, A. (1971). "Biomass turnover, respiration and interpopulation variation in the stream limpet.", Ecolo Monogr(41), 235-251.

Caquet, T. (2000). "Développement d'outils permettant l'évaluation experimentale des effets écotoxicologiques des xénobiotiques dans les milieux aquatiques." Université Paris-Sud XI, 277p.

Carlberg, I. a. M., B. (1985). Glutathion reductase. In Methods in enzymology, Academic Press, New York, 484-490.

Flammarion, P. (1997). "Mesure in situ de l'induction du cytochrome P450 1A chez des cyprinidés d'eau douce. Optimisation de l'interprétation," Thèse de l'Université de Metz.

Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). "Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation." *The Journal of Biological Chemistry*, 249, 7130-7139.

Lewis, S., Handy, R. D., Cordi, B., Billinghurst, Z. and Depledge, M. H. (1999). "Stress proteins (HSP's) : methods of detection and their use as an environmental biomarker." *Ecotoxicology*, 8, 351-368

OECD. (2001). Draft guidance document on freshwater lentic filed tests (outdoor microcosms and mesocosms), OECD environmental health and safety publications, Paris, 21p.

Paglia, D. E. a. V., W. N. (1967). "Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase." *J. Lab. Clin. Med*, 70, 158-169.

Paoletti, F., Aldinucci, D., Mocali, A. and Caparrini, A. (1986). "A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts." *Analyt. Biochem.*, 154, 536-541

Vandeputte, C., Guizon, I., Genestie-Denis, I., Vannier, B. and Lorenzon, G. (1994). "A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol." *Cell Biol. Toxicol*, 10: 415-421.

Van Den Brink, P. (1999). "Ecological and statisitical evaluation of effects of pesticides in freshwater model ecosystems," Landbouwuniversiteit Wageningen, 169p