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Abstract

This appendix contains all the proofs of the theorems in the paper.

A Proof of Theorems

A.1 Proof of Theorem 1

The consistency of the least squares estimator is standard and does not matter whether

or not the parameter value lies at a boundary value of the parameter space. Thus, we

begin with deriving the convergence rate of the estimators. Then we construct a sequence

of localized criterion functions and show their weak convergence by deriving the finite

dimensional convergence and stochastic equicontinuity. The asymptotic distribution of the

estimator then follows by the argmax continuous mapping theorem.

Notation: with a slight abuse of notation we let Sn (θ) stand for the sum of squared

residuals for a given parameter value θ = (α′, h, γ)′, while Sn (h, γ) indicates the profiled

sum of squared residuals for a given (h, γ). And we write Ki (h, γ) for K (qi, h, γ), Ii (γ)

for 1 {qi > γ}, and Xi (h, γ) = xiKi (h, γ) and Xi (γ) = xiIi (γ). The weak convergence is

signified by ⇒.
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Convergence Rate

The following two lemmas are crucial to our proof.

Lemma 1. Let

Gn (h, γ) =
1√
n

n∑
i=1

εixiKi (h, γ) .

Then, for some C <∞ and for any γ0 and η > 0,

E sup
h<η,|γ−γ0|<η

|Gn (h, γ)−Gn (0, γ0)| ≤ Cη1/2.

Proof of Lemma 1 This can be verified by means of van der Vaart and Wellner’s (1996)

Theorem 2.14.2. Specifically, we need to establish the finiteness of the bracketing integral

and the order of Ls-norm of an envelope function. For the finiteness of the entropy integral

J (1,F), note that this is an empirical process indexed by the product of εixi and bounded

monotone functions k (·). In view of Andrews’ (1994) Theorem 6 and the polynomial bounds

on the bracketing entropy of the class of monotone functions (Theorem 2.7.5 of van der

Vaart and Wellner (1996)), the entropy integral condition is satisfied. It remains to show

that the envelope has L2-norm of magnitude η1/2. Specifically, for 0 ≤ h ≤ η, |γ − γ0| < η,

we note that

|K (q;h, γ)− 1 (q > γ0)| ≤ |K (q;h, γ)− 1 (q > γ)|+ 1 (|q − γ0| ≤ η)

and

|K (q;h, γ)− 1 (q > γ)| ≤ 1 (|q − γ0| ≤ η) +K (q; η, γ0 − η) 1 (q − γ0 ≤ −η)

+ (1−K (q; η, γ0 + η)) 1 (q − γ0 > η) .

Then, a natural envelope function for the centered empirical process Gn (h, γ)−Gn (0, γ0)

is the multiple of 2 |εixi| to the right side terms in the preceding inequality. Furthermore,

since E
(
|εixi|2 |qi

)
is bounded by C,

E |εixi|2 1 (|q − γ0| ≤ η)2 ≤ Cη
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and using the change-of-variables formula

E |εixi|2K (q; η, γ0 − η)2 1 (q − γ0 ≤ −η) ≤ C

∫ γ0−η

−∞
K (q; η, γ0 − η)2 p (q) dq

= C η

∫ 0

−∞
k (x) p (ηx+ γ0 − η) dx,

where the integral is bounded since k (·) is bounded. And, the same argument applies

for the last term (1−K (q; η, γ0 + η)) 1 (q − γ0 > η). Thus, this establishes the order of

magnitude of the envelope as η1/2 in terms of L2-norm. �

Lemma 2. For each η > 0, there exist random variables {Rn} of order Op (1) and a positive

constant C such that∣∣∣∣∣ 1n
n∑
i=1

εic
′xi (Ki (h, γ)− Ii (γ0))

∣∣∣∣∣ ≤ ηn−ψ (|γ − γ0|+ h) + n−1+ψR2
n,

for any |γ − γ0|, h ≤ C. Here, γ0 can be replaced by any sequence γn → γ0.

Proof of Lemma 2 Let g = |γ − γ0| + h and define An,j = {g : (j − 1)3n−1+2ψ ≤ g <

j3n−1+2ψ} and

R2
n = n1−ψ sup

g≤C

{∣∣∣∣∣ 1n
n∑
i=1

εic
′xi (Ki (h, γ)− Ii (γ0))

∣∣∣∣∣− ηgn−ψ
}
.

There exists a positive constant C such that

P {Rn > m}

= P

{∣∣∣∣∣n−ψ
n∑
i=1

εic
′xi (Ki (h, γ)− Ii (γ0))

∣∣∣∣∣ > ηgn1−2ψ +m2 for some g ≤ C

}

≤
∞∑
j=1

P

{
n−ψ

∣∣∣∣∣
n∑
i=1

εic
′xi (Ki (h, γ)− Ii (γ0))

∣∣∣∣∣ > η(j − 1)3 +m2 for some g ∈ An,j

}

≤
∞∑
j=1

Cj3/2(
η (j − 1)3 +m2

) ,
for all m > 0, where the last equality is due to Lemma 1. Since the above sum is finite for

all m > 0, the conclusion follows. �
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We are now ready to derive the convergence rates of our estimators. To begin with,

decompose the centered sample criterion function Sn as follows

Sn(θ)− Sn(θ0)

=
−2

n

n∑
t=1

εix
′
iδ0 (Ki (h, γ)− Ii (γ0)) +

1

n

n∑
t=1

(x′iδ0)
2 |Ki (h, γ)− Ii (γ0)|︸ ︷︷ ︸

=A1n(h,γ)

+
−2

n

n∑
t=1

εiXi (h, γ)′ (α− α0)︸ ︷︷ ︸
=A2n(α,h,γ)

+
2

n

n∑
t=1t

x′iδ0 (Ki (h, γ)− Ii (γ0))Xi (h, γ)′ (α− α0)︸ ︷︷ ︸
=A3n(α,h,γ)

+ (α− α0)
′ 1

n

n∑
t=1

Xi (h, γ)Xi (h, γ)′ (α− α0)︸ ︷︷ ︸
=A4n(α,h,γ)

,

(1)

and consider each term in the η-neighborhood of (α0, 0, γ0).

First, note that for sufficiently small η there exists some c1 > 0 such that

A1n (h, γ) ≥ c1 (|γ − γ0|+ h)n−2ψ +Op

(
n−1
)
,

due to Lemma 2 and the uniform law of large numbers together with the following expan-

sion: for any η > 0 and for η/2 < h, |γ − γ0| < η,

E (x′iδ0)
2

(Ki (h, γ)− Ii (γ0))2

≥ Cn−2ψ
∫ γ0

−∞
k

(
q − γ
h

)2

p (q) dq +

∫ ∞
γ0

(
1−

(
q − γ
h

))2

p (q) dq

≥ C ′−2ψh

(∫ 0

−C′′′
k

(
x− γ − γ0

h

)2

dx+

∫ C′′′

0

(
1− k

(
x− γ − γ0

h

))2

dx

)
≥ C ′′−2ψ (h+ |γ − γ0|)

for some C ′′ > 0, C ′′′ > 2, where we applied the change-of-variables and the fact that p (x)

is bounded away from zero in a neighborhood of γ0 for the second inequality and we used
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the following fact for the last inequality that

∫ 0

−C′′′
k

(
x− γ − γ0

h

)2

dx+

∫ C′′′

0

(
1− k

(
x− γ − γ0

h

))2

dx

=

∫ − γ−γ0
h

−C′′′
k (x)2 dx+

∫ C′′′

− γ−γ0
h

(1− k (x))2 dx

= 2

∫ −| γ−γ0h |

−C′′′
k (x)2 dx+

∣∣∣∣γ − γ0h

∣∣∣∣
since 1/2 <

∣∣γ−γ0
h

∣∣ < 2. By the same reasoning,

E
∣∣(x′iδ0) (Ki (h, γ)− Ii (γ0))

(
Xi (h, γ)′ (α− α0)

)∣∣
≤ Cn−2ψ (h+ |γ − γ0|) |α− α0|

≤ c1n
−2ψ (h+ |γ − γ0|) /4

by choosing η small enough. This leads us to conclude that

|A1n|+ |A3n| ≥ c1n
−2ψ (h+ |γ − γ0|) /2 +Op

(
n−1
)

for any α, h, γ in the η-neighborhood. Turning to A2n, note that it follows from Lemma 2

and the central limit theorem

|A2n| ≤
(
n−ψ [h+ |γ − γ0|] +Op

(
n−1+ψ

)
+Op

(
n−1/2

))
|α− α0|

Finally, for the A4n note that E
(
Xi (h, γ)′ (α− α0)

)2 ≥ C |α− α0|2 and thus |A4n| ≥

C |α− α0|2 with probability arbitrarily close to one, due to the uniform law of large num-

bers.

Then, put all the bounds together with the fact that

Sn(θ)− Sn(θ0) ≤ 0
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at θ = θ̂. Namely,

Op

(
n−1
)

+
(
n−ψ [h+ |γ − γ0|] +Op

(
n−1/2

))
|α− α0|

≥ c2n
−2ψ (h+ |γ − γ0|) + C |α− α0|2 . (2)

Suppose Op (n−1) ≤
(
n−ψ [h+ |γ − γ0|] +Op

(
n−1/2

))
|α− α0|. Otherwise, |α− α0| =

Op

(
n−1/2

)
and it in turn implies that (h+ |γ − γ0|) = Op

(
n−1+2ψ

)
as we wanted.1 Then,

|α− α0| ≤ C ′
(
n−ψ [h+ |γ − γ0|] +Op

(
n−1/2

))
.

Again, if
(
n−ψ [h+ |γ − γ0|] ≤ Op

(
n−1/2

))
, we get the same conclusion. Otherwise, putting

it back to (2) yields

(c2 − c3)n−2ψ (h+ |γ − γ0|) ≤ Op

(
n−1
)

for some c3 < c2 by choosing η small enough. This in turn implies |α− α0| = Op

(
n−1/2

)
.

Thus, we considered all the possible cases, completing the proof.

Weak Convergence of localized processes

Given the convergence rate we obtained in the previous section, we may consider the weak

convergence of the localized criterion function

n
[
Sn
(
α0 + an−1/2, hn−1+2ψ, γ0 + gn−1+2ψ

)
− Sn (θ0)

]
, (3)

where (a′, h, g)′ belongs to an arbitrary compact set and a = (b′, d′)′ accordingly to β and

δ. Thus, let |a| , h, |g| ≤ C. Then, the asymptotic distribution of our estimator follows as

a consequence due to the argmax continuous mapping theorem.

It is convenient to apply the same decomposition in the previous section to the localized

process (3) and derive the weak convergence of each term. Recall the definitions in (1) and

let

Ã1n (h, g) = nA1n

(
hn−1+2ψ, γ0 + gn−1+2ψ

)
1a+ b ≤ c implies that a ≤ c when a and b are non-negative.
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and

Ãjn (a, h, g) = nAjn
(
α0 + an−1/2, hn−1+2ψ, γ0 + gn−1+2ψ

)
,

for j = 2, 3, 4. We begin by showing that

sup
a,h,g

∣∣∣Ãjn (a, h, g)− Ãjn (a, 0, 0)
∣∣∣ = op (1) ,

for j = 2, 3, 4. The case of j = 4 is a simple consequence of the uniform law of large numbers

for triangular arrays. For the case of j = 2, note that due to Lemma 1,

E sup
h,g

∣∣∣Ã2n (a, h, g)− Ã2n (a, 0, 0)
∣∣∣

= E sup
h,g

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
Ki
(
hn−1+2ψ, γ0 + gn−1+2ψ

)
− Ii (γ0)

)
x′id

∣∣∣∣∣
= 3Cn−1/2+ψ.

The case of j = 3 is similar and thus details are omitted. Also note that Ã3n (a, 0, 0) = 0

for any a.

In the meantime, the result so far yields an oracle property, namely, the asymptotic

distribution of
(
ĥ, γ̂
)

is solely determined by Ã1n (h, g) and that of α̂ solely by Ã2n (a, 0, 0)+

Ã4n (a, 0, 0) since the functions of (h, g) and those of a are separable.

By the central limit theorem and law of large numbers,

Ã2n (a, 0, 0) + Ã4n (a, 0, 0)⇒ −2Z ′a+ a′
[
EXi (γ0)Xi (γ0)′

]
a,

where Z ∼ N
(
0, Eε2iXi (γ0)Xi (γ0)

′).
Turning to Ã1n (h, g), let

G1n (h, g) =
n∑
i=1

εix
′
iδ0
(
Ki
(
hr−1n , γ0 + gr−1n

)
− Ii (γ0)

)
=

1√
n

n∑
i=1

εix
′
ic0r

1/2
n

(
Ki
(
hr−1n , γ0 + gr−1n

)
− Ii (γ0)

)
,

which is the first term of the decomposition of Ã1n (h, g). The tightness of the empirical
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process G1n can be verified by Theorem 2.11.23 of van der Vaart and Wellner (1996). As

we argued in the proof of Lemma 1, the entropy integral is uniformly bounded for all

n. Thus, it is sufficient to verify the L2-continuity condition and two conditions for the

envelope function in (2.11.21) of van der Vaart and Wellner. For the latter, first construct

an envelope as in the proof of Lemma 1 by replacing η with Cr−1n . Then, the L2-norm

of this envelope is bounded proceeding as in the proof of Lemma 1. The tail condition in

(2.11.21) is trivial as K and the indicator is bounded. Finally, the L2-continuity follows

from the monotonicity of k and the square integrability of k (x) − 1 (x > 0) and from the

dominated convergence theorem.

Turning to the finite dimensional convergence of G1n, apply the standard CLT for an in-

dependent triangular array and the Cramer-Rao device, and get the asymptotic normality

for (G1n (h1, g1) , G1n (h2, g2))
′ for arbitrary h1, h2, g1, g2. More specifically, a straightfor-

ward algebra using the change-of-variables formula yields that the asymptotic covariance

of (G1n (h1, g1) , G1n (h2, g2))
′ is given by

E (G1n (h1, g1)G1n (h2, g2))→ m1p0EW (h1, g1)W (h2, g2) ,

where m1 = E
(
ε2i (x′ic0)

2 |qi = γ0
)

= c′0V c0, p0 = p (γ0) and W is defined in Section 3.2.

Note that the same algebra shows that the covariance between G1n (h, g) and Ã2n (a, 0, 0)

goes to zero. This implies that they are asymptotically independent due to Gausianity.

Also note that its covariance kernel satisfies the following property:

Ω (ah1, ag1, ah2, ag2) =

∫ 0

−∞
k

(
x− ag1
ah1

)
k

(
x− ag2
ah2

)
dx

=

∫ 0

−∞
k

(
xa−1 − g1

h1

)
k

(
xa−1 − g2

h2

)
dx

= aΩ (h1, g1, h2, g2) .

Therefore, we can write
√
aW (h, g)

d
= W (ah, ag) .

On the other hand, a straightforward algebra and the uniform law of large numbers

yield that the second term in the decomposition of Ã1n (h, g) converges in probability to
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p0m2B (h, g), where m2 = E
(
(x′ic0)

2 |qi = γ0
)

= c′0Dc0. Note that B (ah, ag) = aB (h, g).

Therefore,

m2

m1

(2
√
p0m1W (h, g) + p0m2B (h, g))

d
= 2W (ξh, ξg) +B (ξh, ξg) ,

where ξ =
m2

2p0
m1

. The minimum of the process on the right hand side on R2 is equivalent

to that of 2W (h, g) +B (h, g) on R2 and its minimizer is equivalent to that of 2W (h, g) +

B (h, g) times ξ−1. We conclude

ξ arg min
h,g

Ã1n (h, g)⇒ arg min
h,g

(2W (h, g) +B (h, g))

due to the argmax continuous mapping theorem. �

A.2 Proof of Theorem 2

This is a straightforward corollary of the proof of Theorem 1 and the same argument as in

Hansen’s (2000) proof of Theorem 2. That is, the estimation error in the α̂ becomes negli-

gible in the QLR statistics. Then, since the minimum and the constrained minimum and

their difference is a continuous functional the result follows from the continuous mapping

theorem and the change-of-variables as in the proof of Theorem 1. �

A.3 Asymptotic Distribution of Q3n

The asymptotic distribution of Q3n under the null of δ0 = 0 is given by

Q3n ⇒ −σ−2 min
θ:c=0

(2Z (θ) + V (θ)) + σ−2 min
θ:b=0 and d=0

(2Z (θ) + V (θ)) ,

where Z (θ) be a mean zero Gaussian process with covariance kernel

κ (θ1, θ2) = Ed′1xid
′
2xiε

2
i k

(
qi − g1
h1

)
k

(
qi − g2
h2

)
+ E (b1 − c1)′ xix′i (b2 − c2) ε2i

+Ed′1xix
′
i (b2 − c2) ε2i k

(
qi − g1
h1

)
+ E (b1 − c1)′ xid′2xiε2i k

(
qi − g2
h2

)
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where θ = (b′, c′, d′, g, h)′ , and

V (θ) = E

(
d′xik

(
qi − g1
h1

)
+ b′xi

)2

− E (c′xi)
2
.

The derivation is analogous to Lee et al. (2011) in view of the tightness proof in Theorem

1. That is, due to Lee et al. (2011) we can consider the functions defined on the expanded

parameter space θ while the tightness of the process is essentially the same as that in

Theorem 1. In particular, for the finiteness of the entropy integral, recall the discussion

in the proof of Lemma 1. Here we need to consider the whole parameter space for h and

γ, not just neighborhoods of the true values of h0 and γ0. However, the class of functions

is still a class of monotone functions and thus the same argument yields the finiteness of

the entropy integral. Furthermore, the boundedness of the function K and the moment

conditions for εi and xi guarantees the envelope’s L2 norm to be bounded. The derivation

of the finite dimensional convergence is standard. �
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