
Appendices

A Proofs

Proof of Theorem 1

Lemma 1. Let h : Rp → R+ be a strictly convex function, and let g : R+ → R+ be a convex

and strictly increasing function. Then the composition g ◦ h : Rp → R+ is strictly convex.

Proof. (Lemma 1) This is easy to show using first principles. Let α ∈ (0, 1) and let z 6= z′

be two points in Rp. By strict convexity, we have:

h(αz + (1− α)z′) < αh(z) + (1− α)h(z′).

Moreover, since g is strictly increasing and convex, it follows that:

(g ◦ h)(αz + (1− α)z′) < g(αh(z) + (1− α)h(z′)) ≤ α(g ◦ h)(z) + (1− α)(g ◦ h)(z′),

which proves the strict convexity of g ◦ h.

Proof. (Theorem 1) Let g(x) = xq/2 and h(z) = ‖z − zi‖2
2. It is easy to verify that h is

strictly convex, and g is convex and strictly increasing on R+. By Lemma 1, it follows that

(g ◦ f)(x) = ‖z − zi‖q2 is strictly convex. Hence, for any α ∈ (0, 1) and z, z′ ∈ Rp, z 6= z′,

we have:

Dq(αz + (1− α)z′;Z) =
1

mq

n∑
i=1

‖ {(αz + (1− α)z′)− zi} ‖q2

<
1

mq

n∑
i=1

{α‖z− zi‖q2 + (1− α)‖z′ − zi‖q2}

= αDq(z;Z) + (1− α)Dq(z
′;Z),

so the objective Dq(z;Z) is strictly convex in z.

Using this fact, we show that (5) has a unique minimizer. Note that the objective

Dq(z;Z) is continuous and coercive on the closed set Rp, where the latter term implies

that for all sequences {zk}∞k=1 satisfying ‖zk‖2 → ∞, limk→∞Dq(zk;Z) = ∞. It follows
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from Proposition A.8 in Bertsekas (1999) and the strict convexity of Dq(z;Z) that there

exists exactly one one global minimum of (5), so Cq(Z) is uniquely defined.

To prove that the unique minimizer Cq(Z) is contained in conv(Z), note that by first-

order optimality conditions, Cq(Z) must satisfy:

∇Dq(Cq(Z);Z) =
1

n

m∑
i=1

{
‖Cq(Z)− zi‖q−2

2 (Cq(Z)− zi)
}

= 0

⇔ Cq(Z) =
m∑
i=1

{
‖Cq(Z)− zi‖q−2

2∑n
j=1 ‖Cq(Z)− zj‖q−2

2

zi

}
≡

m∑
i=1

αizi.

Since the weights {αi}mi=1 satisfy αi ≥ 0 and
∑m

i=1 αi = 1, it follows by definition that

Cq(Z) ∈ conv(Z), which is as desired.

Proof of Theorem 2

Lemma 2. Let Z = {zi}mi=1 be a set of points in Rp. Then there exists some point zj ∈ Z

such that Dq(zj;Z) ≥ Dq(z;Z) for all z ∈ conv(Z).

Proof. (Lemma 2) Since conv(Z) is a compact set, the set of maximizers in:

M = argmaxz∈conv(Z)Dq(z;Z)

is non-empty, so an equivalent claim is that zj ∈ M for some j = 1, · · · ,m. Suppose,

for contradiction, that zj /∈ M for all j = 1, · · · ,m, and let z′ =
∑m

i=1 αjzj /∈ Z be a

maximizer in M, with αj ≥ 0 and
∑m

j=1 αj = 1. Then, by convexity, we have:

Dq(z
′;Z) =

1

mq

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

αj(zj − zi)

∥∥∥∥∥∥
q

2

≤ 1

mq

m∑
i=1

m∑
j=1

αj‖zj − zi‖q2 =
1

mq

m∑
j=1

αj

(
m∑
i=1

‖zj − zi‖q2

)

=

m∑
j=1

αjDq(zj ;Z),

which implies that Dq(z
′;Z) ≤ Dq(zj;Z) for at least one j = 1, · · · ,m. Since z′ ∈M, this

implies that zj ∈M, which is a contradiction. The lemma therefore holds.

Proof. (Theorem 2) Since Dq(z;Z) is twice-differentiable, it is β-smooth on conv(Z) if and

only if:

∇2Dq(z;Z) � βI for all z ∈ conv(Z). (A.1)
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Letting λmax{A} denote the largest eigenvalue of A, it follows that:

λmax{∇2Dq(z;Z)} = λmax

{
q − 2

m

m∑
i=1

{
‖z− zi‖q−4

2 (z− zi)(z− zi)
T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 I

}

≤ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 λmax

{
(z− zi)(z− zi)

T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 λmax{I}

=
q − 2

m

m∑
i=1

‖z− zi‖q−4
2 · ‖z− zi‖2

2 +
1

m

m∑
i=1

‖z− zi‖q−2
2

=
q − 1

m

m∑
i=1

‖z− zi‖q−2
2 ≤ q − 1

m
max

j=1,··· ,m

m∑
i=1

‖zj − zi‖q−2
2 = β̄,

where the last inequality holds by Lemma 2. Hence, ∇2Dq(z;Z) � β̄I for all z ∈ conv(Z),

so Dq(z;Z) is β̄-smooth on conv(Z) by (A.1).

Likewise, since Dq(z;Z) is twice-differentiable, it is µ-strongly convex on conv(Z) if

and only if:

µI � ∇2Dq(z;Z) for all z ∈ conv(Z). (A.2)

Letting λmin{A} denote the smallest eigenvalue of A, we have:

λmin{∇2Dq(z;Z)} = λmin

{
q − 2

m

m∑
i=1

{
‖z− zi‖q−4

2 (z− zi)(z− zi)
T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 I

}

≥ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 λmin

{
(z− zi)(z− zi)

T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 λmin{I}

≥ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 · 0 +

1

m

m∑
i=1

‖z− zi‖q−2
2 ≥ 1

m

m∑
i=1

‖Cq−2(Z)− zi‖q−2
2 = µ̄,

where the last inequality holds by definition of Cq−2(Z). Hence by (A.2), Dq(z;Z) is

µ̄-strongly convex.

Proof of Corollary 1

Consider a β-smooth and µ-strongly convex function h with unique minimizer u∗. It can

be shown (Nesterov, 2007) that an iteration upper bound of t = O
(√

β
µ

log 1
εin

)
guarantees

an εin-accuracy in objective, i.e. |h(u[t]) − h(u∗)| < εin. Combining this iteration bound

with the result in Theorem 2, and using the fact that each update requires O(mp) work,

we get the desired result.
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Proof of Theorem 3

The three parts of this theorem are individually easy to verify. For finite termination, we

showed in Section 3.1 that the objective in (7) strictly decreases after each loop iteration of

Algorithm 1. Moreover, there are exactly Nn possible assignments of the sample {yj}Nj=1 to

the design points {mi}ni=1. Suppose, for contradiction, that Algorithm 1 does not terminate

after Nn iterations. Then there exists at least two iterations which begin with the same

assignment of {yj}Nj=1. This, in turn, generates the same design {mi}ni=1 at the end of

both iterations, which presents a contradiction to the strictly decreasing objective values

induced by each loop iteration of Algorithm 1. The first claim therefore holds.

Next, regarding running time, consider the two updates in a single loop iteration of

Algorithm 1. The first update assigns each sample point in {yj} to its closest design

point, which requires O(Nnp) work. The second update computes, for each design point,

the Cq-center of samples assigned to it. Let Z = {zj}mi
j=1 be the mi points assigned

to the i-th design point. From Corollary 1, the computation of its Cq-center requires

O(mip
√

(q − 1)κq−2(Z) log(1/εin)) work. Letting z̃ = argmaxj=1,··· ,mi
Dq(zj;Z), it follows

that for any q ≥ 2:

κq(Z) =
Dq(z̃;Z)

Dq(Cq(Z);Z)
≤
∑mi

i=1 ‖zi − Cq(Z)‖q2 +mi‖z̃− Cq(Z)‖q2∑mi

i=1 ‖zi − Cq(Z)‖q2

≤ 1 +
mi‖z̃− Cq(Z)‖q2∑mi

i=1 ‖zi − Cq(Z)‖q2
≤ mi + 1.

Hence, updating Cq-centers for all n design points require a total work of:

n∑
i=1

O(mip
√

(q − 1)κq−2(Z) log(1/εin)) ≤ O

({
n∑
i=1

m
3/2
i

}
p
√
q − 1 log

1

εin

)

≤ O

{ n∑
i=1

mi

}3/2

p
√
q − 1 log

1

εin


= O

(
N3/2p

√
q − 1 log

1

εin

)
.

Finally, since n ≤ N1/2, the running time of the second step dominates the first, which

completes the argument.

Finally, assume that the Cq-center updates in (5) are exact. By the termination con-

ditions of Algorithm 1, the converged design is optimal given fixed assignments, and the
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converged assignment variables are optimal given a fixed design. Hence, the converged

design (as well as its corresponding assignment) are locally optimal for (7).

Proof of Proposition 1

This can be shown by a simple application of the triangle inequality. Let D = {mi}ni=1 be

the design at the current iteration, and without loss of generality, suppose the first design

point m1 is to be updated. Also, let {di}ni=1 be the minimax distances for each design point

(defined in (15)), with d∗ = maxi di being the overall minimax distance of D.

Let m̃1 be the optimal design point in (16), and note that, by optimization constraints,

‖m̃1 − m1‖ ≤ d∗ − d1. Denoting d̃∗ as the overall minimax distance of the new design

D̃ = {m̃1,m2, · · · ,mn}, the claim is that d̃∗ ≤ d∗. To prove this, let x be the point in X

achieving the minimax distance d̃∗, and consider the following three cases:

• If Q(x, D̃), the closest design point to x in D̃, equals m̃1, then:

d̃∗ = ‖x− m̃1‖ ≤ ‖x−m1‖+ ‖m1 − m̃1‖ ≤ d1 + (d∗ − d1) = d∗.

• If Q(x, D̃) = mi for some i = 2, · · · , n, and Q(x,D) = m1, then:

d̃∗ = ‖x−mi‖ ≤ ‖x− m̃1‖ ≤ ‖x−m1‖+ ‖m1 − m̃1‖ ≤ d1 + (d∗ − d1) = d∗.

• If Q(x, D̃) = mi for some i = 2, · · · , n, and Q(x,D) = mj for some j = 1, · · · , n,

then it must be the case that i = j, since the only change from D to D̃ is the first

design point. Hence:

d̃∗ = ‖x−mi‖ ≤ di ≤ d∗.

This proves the proposition.
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B Minimax designs on [0, 1]p

Figure B.1: Minimax criterion on [0, 1]p for p = 2, 4, 6 and 8.
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Figure B.2: 20-, 40-, 60-, 80- and 100-point designs on the unit hypercube [0, 1]2.
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C Minimax designs on Ap and Bp

Figure C.1: Minimax criterion on Ap and Bp for p = 2, 4, 6 and 8.

8



Figure C.2: 20-, 40-, 60-, 80- and 100-point designs on the unit simplex A2.
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Figure C.3: 20-, 40-, 60-, 80- and 100-point designs on the unit ball B2.
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D Minimax designs on Georgia

Figure D.1: 20-, 40-, 60-, 80- and 100-point designs on Georgia.
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