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Abstract

The hetnet awakens: understanding complex diseases

through data integration and open science

By Daniel S. Himmelstein

Human disease is complex. However, the explosion of biomedical data is providing new

opportunities to improve our understanding. My dissertation focused on how to harness the

biodata revolution. Broadly, I addressed three questions: how to integrate data, how to extract

insights from data, and how to make science more open.

To integrate data, we pioneered the hetnet — a network with multiple node and relationship

types. After several preludes, we released Hetionet v1.0, which contains 2,250,197 relationships

of 24 types. Hetionet encodes the collective knowledge produced by millions of studies over the

last half century.

To extract insights from data, we developed a machine learning approach for hetnets. In

order to predict the probability that an unknown relationship exists, our algorithm identi-

fies influential network patterns. We used the approach to prioritize disease–gene associations

and drug repurposing opportunities. By evaluating our predictions on withheld knowledge, we

demonstrated the systematic success of our method.

After encountering friction that interfered with data integration and rapid communication,

I began looking at how to make science more open. The quest led me to explore realtime open

notebook science and expose publishing delays at journals as well as the problematic licensing
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of publicly-funded research data.
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Chapter 1

Introduction

The amount of available data is growing astronomically. This growth is especially visible in

genomics [1,2], bioinformatics [3], and medicine [4]. Much of the data explosion consists of more

data of the same type, such as genomic sequence. However, we’re also seeing new types of data

arise [5]. The challenges resulting from the data explosion fall into two categories: too much

data and too diverse of data. Big data refers to when the quantity of data becomes large leading

to the challenge of too much. Heterogeneous data refers to when datasets contain many different

components or types and leads to the challenge of too diverse. Solutions for too much are in a

constant arms race with the unbridled production of data [6, 7]. My thesis focuses instead on

the too diverse problem, where solutions, especially in biomedicine, have been late to the race.

One fundamental characteristic of the data explosion is that each unit of data becomes less

and less informative. At any given time, storage and analysis capacity is filled with the most

meaningful information available. For example, imagine if each individual got to choose 10

photos to commemorate their existence. Each photo would be highly commemorative. Now

imagine if instead every photo an individual has ever taken is retained. Under this later regime,

a random photo would rarely be highly commemorative. The same trend applies to the modern

expansion in data availability: computational advances have allowed us to store and analyze

more data but do not inherently create more valuable data. In addition, diminishing marginal
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informativeness emerges from the greater ease of generating less informative content. For ex-

ample, new techniques in biology tend to generate more data but less information per unit. For

example, an individual nucleotide uncovered by sequencing is generally of no value. A gene’s

transcriptional abundance, which can now be easily measured for all genes in a human, often

has little phenotypic relevance.

Nonetheless, the advent of high-throughput technologies to assess genetic sequence and ex-

pression are incredibly valuable. Their value comes in providing a systematic exploration of a

certain aspect of biology. By offering a comprehensive view of a previously inaccessible level of

biology, data from these technologies offers novel insight [8]. However, a subset of diseases have

been highly resilient to complete insights. These diseases are called complex and are caused by

a multitude of genetic and environmental factors. For these diseases, signals in high-throughput

datasets tend to be weak. While this should not come as a surprise given the complexity of

biology, the result is that the data explosion has yet to crack complex disease.

So we face an onslaught of heterogeneous data where each individual type tends to be only

weakly informative. Analyzing each dataset in isolation yields weak findings. For example,

genotyping data predicts complex disease susceptibility but only weakly informs a patient of

their risk compared to the general population [9]. The motivation behind my dissertation is

that combining many weak datasets of different types can yield strong findings. As stated by a

2015 review [10], “a comprehensive understanding of a biological system can come only from a

joint analysis of all omics layers.”

Our journey to understand human disease using heterogeneous data led us to five fields:

data integration, hetnets, machine learning, data visualization, and open science. Data inte-

gration means combining data from multiple sources and is thus a prerequisite to analyzing

heterogeneous data [11]. Hetnets, short for heterogeneous networks, are networks with multiple

types of nodes or relationships. We adopted hetnets as a data structure to encode heterogeous

information. Machine learning allows us to extract insights on data that is poorly suited for

human cognitive understanding. For example, we use machine learning to identify patterns and
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make predictions from datasets that are too diverse and large for human learning. We use data

visualization to understand our data and express our findings. Open science is a movement to

make all aspects of research more accessible. Specifically, open data has been the bedrock of my

dissertation by providing compendia of information ripe for the integration.

Chapter 2, describes our study to integrate genetic studies into a single network of disease

similarity. This study leverages genome-wide data to assess disease similarity free from the

biases of existing knowledge. However, this disease network contains only a single type of

relationship. Chapter 3 details our adoption of hetnets and lessons along the way. Chapter 4

describes our study to prioritize gene–disease associations using a hetnet. In Chapter 5, we use

a similar approach to predict repurposed drug therapies. Chapter 6 discusses our use of and

contributions to open science. Finally, Chapter 7 concludes my dissertation.

To close my introduction, I will show my Facebook friendship network as it existed in 2014.

The network visualization below was produced using only friendship (Figure 1.1). In other

words, the graph doesn’t contain any identifying information about my friends. However, both

the layout and community detection algorithms were able to finely characterize my past social

experience. Networks make grand simplifications. Here all friendships are represented equally

as a single unweighted edge. There is no attribute for how long two users have been friends,

how many times they’ve posted on each other’s wall, or whether they have even met in person.

Successful applications of network science require the right simplification for the problem. My

Facebook network could be algorithmically understood using just mutual friendship information.

However, for disease biology where the problems are more complex and the datasets more

imperfect, my dissertation will argue that a powerful simplification is combining heterogeneous

data into a single network while retaining type.
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Figure 1.1. My network of friends on Facebook. Each of my 1,278 Facebook friends are
nodes. The edges represent the 40,255 friendships amongst my friends. Node size indicates
degree (number of mutual friends). I applied a force-directed layout to organize the network:
highly connected nodes are pulled together, while distantly connected nodes are repulsed [12].
Ideally, I would have manually categorized my friends into communities. However, to save
time, I classified friends using a community detection algorithm [13]. The algorithm succeeded
in partitioning my friends into communities (denoted by color) that coincided with my past
social experiences.
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Chapter 2

GWAS gives rise to a new breed of

homonet

This chapter describes a disease similarity network I created from published GWAS findings.

The analysis was part of a larger study which assessed the genetic overlap of Hodgkin lymphoma

and multiple sclerosis [14]:

Khankhanian P, Cozen W, Himmelstein DS, Madireddy L, Din L, et al. (2016)

Meta-analysis of genome-wide association studies reveals genetic overlap

between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol. DOI:

10.1093/ije/dyv364

Rather than include this study as a chapter, I’m including a post I wrote for the International

Journal of Epidemiology blog. The post focuses on my portion of the larger study and describes

our method in the context of alternative approaches.

2.1 A puzzling similarity

Researchers have long noted puzzling similarities between Hodgkin lymphoma and multiple

sclerosis. Although the first is a cancer and the second is an autoimmune disease, risk for both
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diseases appears to increase due to the Epstein–Barr virus and a lack of sunlight. In fact having

a family member with multiple sclerosis may place you at increased risk for Hodgkin lymphoma

and vice versa. Now, a recent study, on which I am a co-author, has identified genetic similarities.

Our analysis compared two studies designed to pinpoint the genetic variants behind disease

susceptibility. Together these studies, referred to as genome-wide association studies or GWAS,

analyzed 1,816 Hodgkin lymphoma patients, 9,772 multiple sclerosis patients, and 25,255 healthy

individuals. The prevalence of 404,069 genetic variants were compared between patients and

healthy individuals for each disease. We found a large number of variants that appeared to

affect susceptibility in both diseases. Additionally, a genetic risk model designed for multiple

sclerosis also predicted Hodgkin lymphoma.

2.2 Building a network

We were excited to find common genetic signals, but the similarity lacked context. For example,

is Hodgkin lymphoma more similar to other cancers than to multiple sclerosis? To answer these

questions, we needed GWAS results for many diseases. We turned to the GWAS Catalog, whose

team of curators reads through GWAS publications and extracts the associated variants into a

public database.

For 82 diseases, we identified associated regions of the genome, called loci. Then for each

disease pair, we calculated a similarity score based on the number of overlapping loci. The score

adjusts for the number of loci per disease which can vary widely — multiple sclerosis has 55

loci, whereas Hodgkin lymphoma has 7. Of the 3,321 possible disease pairs, 433 had at least

one overlapping locus.

Next, we calculated the network proximity of disease pairs. Proximity is calculated by trans-

mitting similarity scores between related diseases. By leveraging the same insight as PageRank

— the founding algorithm behind Google’s web search — the approach helps improve the ro-

bustness and connectedness of our network.

Below we display our network of disease proximities (Figure 2.1). See these tables for disease
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abbreviations and specific proximity scores (plotted with edge thickness). We applied a layout

that pushes proximal diseases together and distant diseases apart.

Figure 2.1. Disease proximity network from GWAS loci.

Autoimmune diseases form a distinct cluster. Solid cancers cluster as well but less co-

hesively. And the three blood cancers span from the solid cancer to autoimmune extremes.

Multiple myeloma sits in solid cancer territory; chronic lymphocytic leukemia rests in between;

and Hodgkin lymphoma resides with the autoimmune. We interpret these findings as evidence

that Hodgkin lymphoma is special amongst cancers in that its genetics align primarily with

autoimmune disease.

Why is this important? Complex human diseases, such as Hodgkin lymphoma and multi-

ple sclerosis, are often poorly understood, complicating prevention and treatment efforts. We

hypothesize that genetically similar diseases will share more than just genetics. As lead author

Dr. Khankhanian explains, “genetic similarity between diseases may have clinical implications.

Drugs that treat one disease may be repurposed to treat a genetically similar disease.” Likewise,
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two diseases with similar genetics may also share risk factors, as we see with Hodgkin lymphoma

and multiple sclerosis.

2.3 Three examples of the new breed

Why do we consider our approach a new breed of disease network? Many early approaches, such

as this prominent example [15], were exposed to two biases. First, the genetic profiles used to

describe each disease relied on targeted studies of disease association. Such studies are biased by

researchers’ existing knowledge. GWAS offers a systematic, comprehensive, and hypothesis-free

alternative. However, the early GWAS-based approaches suffered from a second bias. As Dr.

Ben Voight — Assistant Professor of Systems Pharmacology and Translational Therapeutics

at the University of Pennsylvania — explains, “for many loci we just don’t know what the

causal variant(s) are, and we certainly don’t know the causal gene(s) linked to these variants.”

Approaches which require converting GWAS variants to genes introduce bias and potentially

obscure signals.

Here, we investigate the new breed of approaches that avoid the two biases. The disease

networks we mention below use only GWAS data and do not operate in gene space. Our

method operates on loci rather than genes. To define loci, we identify a region around each lead

variant uncovered by GWAS. The region boundaries are calculated by looking at the patterns

of variation across the human genome. Farh et al. 2015 took a similar approach [16], which also

used the GWAS Catalog loci (see their Figure 1a and the “Shared genetic loci” section).

Both Farh et al. and our approach faced the same hurdles. We both applied p-value filters

to remove low-confidence associations. We both condensed multiple studies on the same disease.

Additionally, some GWAS studies lack statistical power and should thus be discarded. Accord-

ingly, Farh et al. excluded studies with fewer than 6 significant variants, while we excluded

studies on fewer than 1000 individuals. Consequently, the Farh network is considerably smaller

with just 39 diseases. However, both networks offer a genome-wide glimpse into the genetic

similarities between complex disease.
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Nonetheless, these methods are not without limitations. As Dr. Voight notes, oftentimes

there may be “multiple associations at the same locus arising from different variants.” Our

approaches interpret variant co-localization as shared genetic architecture, which is not always

the case. Dr. Voight continues that even if two diseases associate with the same variant, “the risk

allele for one disease may be protective for the other.” Bulik-Sullivan et al. 2015 sidestepped

these concerns by analyzing trends in summary statistics across all variants [17]. The drawback

is that genome-wide summary statistics are lamentably not always available. Hence, the Bulik-

Sullivan analysis focused on only 24 traits with poor disease coverage. The study uncovered

several cases where the genetic profiles of two diseases were anti-correlated (see red in Figure

2). These cases are particularly interesting as our method would overlook the opposing genetic

nature of the two diseases.

In closing, GWAS has given rise to a new breed of disease similarity network. These networks

offer unbiased insights into commonalities between diseases. Here we explored three approaches

and their trade-offs. While we initially constructed the disease network to contextualize the

similarity between Hodgkin lymphoma and multiple sclerosis, we created a general resource

covering 82 diseases. And we’ve dedicated the code and data for our network, available on

GitHub [18], to the public domain.
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Chapter 3

The rise of the hetnet

The previous chapter discussed creating a network of disease similarity. The network was ho-

mogeneous: it had only one node type (diseases) and one relationship type (genetic similarity).

However, the data extracted from the GWAS Catalogue contained several types of entities in-

cluding SNPs, genes, diseases, and studies. For a simple visualization of genetic similarity

between diseases, coercing these entities into a homonet made sense. However, Dr. Baranzini

and I became interested in applications where projecting data onto a single axis would discard

essential information.

The first application was an interactive browser offering a systems-level view of human

complex traits. By displaying the different types of nodes and relationships, the goal was to

allow researchers to explore whatever networks components interested them. In addition, we

hoped to facilitate observations that span multiple domains to provide a more immersive systems

experience. The user-facing product was a Cytoscape application called iCTNet2. I constructed

the hetnet underlying the project but did not work on the application. This work is published

in [19]:

Wang L, Himmelstein DS, Santaniello A, Parvin M, Baranzini SE (2015) iCT-

Net2: integrating heterogeneous biological interactions to understand

complex traits. F1000Research. DOI: 10.12688/f1000research.6836.2
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iCTNet2 contained six different types of entities and nine different types of relationships. The

entities (nodes) consisted of phenotypes, genes, miRNAs, tissues, drugs, and side effects. This

project was a learning experience. I became acquainted with the challenges of biomedical data

integration. Specifically, mapping entities between vocabularies and eliminating duplication was

a major challenge which necessitated using controlled vocabularies and ontologies. At that time

in 2012, tools for data manipulation, such as dplyr in R and pandas in Python, were still in

their infancy. Each resource took between several days to several weeks to integrate.

Even after a dataset was processed and ready for inclusion into the hetnet, I struggled with

storing and operating on the hetnet. What we needed was a data structure for storing hetnets

and an API for manipulating and analyzing them. I evaluated the networkx package, but it had

poor support for type, especially with respect to nodes. I also tried out several graph databases

but found them unwieldy. Therefore I began development of hetio, a Python package for

hetnets. Unlike most existing network software, which was built for homonets and may have

had some hetnet support, hetio exclusively supports hetnets. Designing a framework for hetnets

made me reflect on what properties hetnets should possess. Deviating from precedent, I decided

to support both directed and undirected edges in the same hetnet. One potential use case

would be to have an undirected interaction edge for when two genes produce proteins that bind

together while having a directed transcription factor edge for when a gene’s protein product

binds to the promoter or enhancer region of another gene.

Development of hetio was initially driven by our study to prioritize disease-associated genes

(Chapter 4). In this project, we extracted features from the hetnet that quantified the relation-

ship between a specific gene and disease. I implemented the algorithm for extracting features,

named degree-weighted path count (DWPC ), in hetio. This algorithm must traverse the hetnet

to find all paths of a specified type between two nodes, which can be computationally intensive.

One drawback of our implementation was that the hetnet must be loaded entirely into memory

before performing analysis. This limits network size by system RAM and led to several minute

wait times to read our hetnet into Python. For our project to repurpose drugs (Chapter 5), I
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began exploring database alternatives.

While I had tried out the Neo4j graph database in 2012, we revisited the technology which had

improved substantially. Specifically, a complete implementation of the Cypher query language

for interacting with hetnets was released in 2013. Cypher is like SQL for hetnets, but several

decades newer. We migrated to Neo4j for storing and operating on our hetnets [20]. We’ve

been porting more and more functionality to Neo4j, such as network permutation [20]. We

created an interactive GraphGist to exhibit our project and use of Neo4j. We submitted our

GraphGist to the 2016 Neo4j Challenge, where it won the Open/Government Data and Politics

category. The migration to Neo4j allowed us to tap into a larger hetnet ecosystem and focus our

development more on applications. For this reason, I suspect the adoption of graph databases in

bioinformatics, which has so far been limited [21], will see considerable gains in the next several

years.

Once data has been integrated into a hetnet, new applications became manageable that

would otherwise be too laborious. Our algorithm for relationship prediction is one example. For

our drug repuporposing project, we built a predictive classifier that incorporates information

from 24 types of relationships and captures connectivity spanning many types of relationships.

After a new relationship type is added to a hetnet, no new implementation work is required to

incorporate that information into the predictions. Another example of how our hetnets allow

analysis at scale is [22]:

Greene CS, Himmelstein DS (2016) Association-guided analysis of gene net-

works to discover the genetic basis of complex traits. Circulation: Cardio-

vascular Genetics. DOI: 10.1161/CIRCGENETICS.115.001181

For this review, I used a prerelease of Hetionet (our drug repurposing hetnet) to characterize

a potential bias affecting network biology. Many network approaches convert from SNP-level

to gene-level input as part of their analysis pipeline. Then the approaches construct a gene

network and analyze the topology. Such approaches go awry when an unequal dispersion of

SNPs creates spurious signals in the network. We found that genes with more SNPs tend to also
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be more connected in common networks (Figure 3.1). The correlation affected genotyping arrays

as well as sequencing indicating that effects were not solely due to biased coverage of genotyping

arrays. Physical protein interactions — a popular input for GWAS prioritization techniques —

showed less correlation than other types. However, GO annotations — a community favorite for

gene set enrichment techniques — increased sharply with SNP abundance. We conclude that

the potential for erroneous conclusions when gene scores are biased by SNP abundance is high.

Ideally, permutation testing should be applied on the SNP level to ensure that SNP to gene

conversion biases are not the cause of any positive results. Since access to the raw SNP level

data needed for permutation is often impractical or unavailable, care should be taken to use

unbiased SNP to gene conversion methods.

While hetnets reduce the obstacles to analyzing heterogeneous information, they do require

substantial integration efforts. The majority of the time spent on the studies in Chapters 4 and 5

was dedicated to processing, merging, and integrating different resources. Going forward I hope

to spend more time analyzing rather than creating hetnets. As knowledge becomes more stan-

dardized, the integration burden should decrease. Another inhibiting factor to hetnet science has

been fragmentation by discipline. A 2014 analysis identified 78 studies using multilayer networks

(hetnets with an optional time dimension). However, these studies relied on 26 different terms

to describe their data structures, 9 of which had multiple definitions [23]. We began an effort to

standardize terminology across disciplines [20]. On January 26, 2016, we officially adopted the

term hetnet. Hetnet is short for heterogeneous network or heterogeneous information network.

We hope that a common nomenclature will help bring the study of hetnet together and assist

cross-field interoperability.
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Figure 3.1. Genes with more SNPs tend to have higher network degree. The
number of SNPs per gene was calculated for 3 genotyping arrays (Affymetrix 500K Set,
Illumina HumanHap550, Illumina HumanOmni1), exome sequencing (ExAC), and whole
genome sequencing (1000 Genomes Phase 3). The network degree (number of edges) for each
gene was calculated on Rephetio, a network containing multiple types of nodes and edges.
Models drawn as 95% confidence bands show the relationship between SNP abundance and
network connectivity for 8 types of edges. For most edge types and platforms, genes with more
measured SNPs tend to be more connected.
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Chapter 4

Prioritizing disease-associated genes

This chapter contains our project to prioritize gene-disease associations. This research was

the main focus of years 2–4 of my PhD. The study was covered by Kristin Sainani in her

article Unlocking the Genetics of Complex Diseases: GWAS and Beyond for the Biomedical

Computation Review. The content of this chapter is reprinted from [20]:

Himmelstein DS, Baranzini SE (2015) Heterogeneous Network Edge Pre-

diction: A Data Integration Approach to Prioritize Disease-Associated

Genes. PLOS Computational Biology. DOI: 10.1371/journal.pcbi.1004259

4.1 Abstract

The first decade of GenomeWide Association Studies (GWAS) has uncovered a wealth of disease-

associated variants. Two important derivations will be the translation of this information into

a multiscale understanding of pathogenic variants, and leveraging existing data to increase the

power of existing and future studies through prioritization. We explore edge prediction on

heterogeneous networks—graphs with multiple node and edge types—for accomplishing both

tasks. First we constructed a network with 18 node types—genes, diseases, tissues, pathophys-

iologies, and 14 MSigDB (molecular signatures database) collections—and 19 edge types from
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high-throughput publicly-available resources. From this network composed of 40,343 nodes and

1,608,168 edges, we extracted features that describe the topology between specific genes and

diseases. Next, we trained a model from GWAS associations and predicted the probability

of association between each protein-coding gene and each of 29 well-studied complex diseases.

The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any

individual domain, highlighting the benefit of integrative approaches. We identified pleiotropy,

transcriptional signatures of perturbations, pathways, and protein interactions as influential

mechanisms explaining pathogenesis. Our method successfully predicted the results (with AU-

ROC = 0.79) from a withheld multiple sclerosis (MS) GWAS despite starting with only 13

previously associated genes. Finally, we combined our network predictions with statistical ev-

idence of association to propose four novel MS genes, three of which (JAK2, REL, RUNX3 )

validated on the masked GWAS. Furthermore, our predictions provide biological support high-

lighting REL as the causal gene within its gene-rich locus. Users can browse all predictions

online (http://het.io). Heterogeneous network edge prediction effectively prioritized genetic as-

sociations and provides a powerful new approach for data integration across multiple domains.

4.2 Author Summary

For complex human diseases, identifying the genes harboring susceptibility variants has taken

on medical importance. Disease-associated genes provide clues for elucidating disease etiology,

predicting disease risk, and highlighting therapeutic targets. Here, we develop a method to

predict whether a given gene and disease are associated. To capture the multitude of biological

entities underlying pathogenesis, we constructed a heterogeneous network, containing multiple

node and edge types. We built on a technique developed for social network analysis, which

embraces disparate sources of data to make predictions from heterogeneous networks. Using the

compendium of associations from genome-wide studies, we learned the influential mechanisms

underlying pathogenesis. Our findings provide a novel perspective about the existence of per-

vasive pleiotropy across complex diseases. Furthermore, we suggest transcriptional signatures
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of perturbations are an underutilized resource amongst prioritization approaches. For multiple

sclerosis, we demonstrated our ability to prioritize future studies and discover novel susceptibil-

ity genes. Researchers can use these predictions to increase the statistical power of their studies,

to suggest the causal genes from a set of candidates, or to generate evidence-based experimental

hypothesis.

4.3 Introduction

In the last decade, genome-wide association studies (GWAS) have been established as the main

strategy to map genetic susceptibility in dozens of complex diseases and phenotypes. Despite

the success of this approach in mapping variation in thousands of loci to hundreds of complex

phenotypes, researchers are now confronted with the challenge of maximizing the scientific con-

tribution of existing GWAS datasets, whose undertakings represented a substantial investment

of human and monetary resources from the community at large.

A central assumption in GWAS is that every region in the genome (and hence every gene)

is a-priori equally likely to be associated with the phenotype in question. As a result, small

effect sizes and multiple comparisons limit the pace of discovery. However, rational prioritization

approaches may afford an increase in study power while avoiding the constraints and expense

related to expanded sampling. One such a way forward is the current trend on analyzing the

combined contribution of susceptibility variants in the context of biological pathways, rather

than single SNPs [24]. For example, Yaspan et al described an approach that aggregates variants

of interest from a GWAS into biological pathways using genomic randomization to control for

multiple testing and minimize type I error [25]. The popular software PLINK also includes

an option to evaluate groups of associations at the gene level, thus enabling pathway analysis

by computing enriched gene sets [26]. A less explored but potentially revealing strategy is the

integration of diverse sources of data to build more accurate and comprehensive models of disease

susceptibility.

Several strategies have been attempted to identify the mechanisms underlying pathogenesis
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and use these insights to prioritize genes for genetic association analyses. Gene-set enrichment

analyses identify prevalent biological functions amongst genes contained in disease-associated

loci [27,28]. Gene network approaches search for neighborhoods of genes where disease-associated

loci aggregate [29, 30]. Jia et al. reported dmGWAS, a strategy to integrate association signals

from GWAS into the human protein interaction network [31]. A similar approach was developed

by our group and tested in two large studies comprising more than 15,000 cases [32]. Literature

mining techniques aim to chronicle the relatedness of genes to identify a subset of highly-related

associated genes. For example, Raychaudhuri et al. reported the Gene Relationships Among

Implicated Loci (GRAIL) algorithm, an approach to assess relationships among genomic disease

regions by text mining of PubMed abstracts [33].

Prioritization strategies generally rely on user-provided loci as the sole input and do not incor-

porate broader disease-specific knowledge. Typically, the proportion of genome-wide significant

discoveries in a given GWAS is low, thus leaving little high-confidence signal for seed-based ap-

proaches to build from. To overcome this limitation, here we aimed at characterizing the ability

of various information domains to identify pathogenic variants across the entire compendium

of complex disease associations. Using this multiscale approach, we developed a framework to

prioritize both existing and future GWAS analyses and highlight candidate genes for further

analysis.

To approach this problem, we resorted to a method that integrated diverse information

domains naturally. Heterogeneous (or multipartite) networks are a class of networks which

contain multiple types of entities (nodes) and relationships (edges or links), and provide a data

structure capable of expressing diversity in an intuitive and scalable fashion. Most existing

techniques available for network analysis have been developed for homogeneous networks [34–

36] and are not directly extensible to heterogenous networks. Accordingly, the early network

analyses in disease biology concentrated on homogeneous networks [37]. However in the last half-

decade, the complexity of biological systems has spurred interest in heterogeneous approaches.

While still a developing field, network-based biological data integration has been pursued us-
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ing a variety of techniques. Approaches such as GeneMANIA, weight and then project individual

data sources onto a single dimension, enabling homogeneous network algorithms to be used to

characterize the resulting graphs [38–40]. Other techniques operate on multi-relational (single

node type, multiple edge type) networks, for example by taking into account relationships among

local clusters and considering the full topology of weighted gene association networks [30,39,41].

Bipartite networks contain two node types and therefore work well for predicting relationships

between entities of two different types (such as disease-gene associations or drug-disease in-

dications) following a ‘guilt-by-association’ paradigm [42–44]. Other approaches incorporate

greater-dimension heterogeneous networks as input but conflate types and, while improving

predictions compared to simpler approaches, cannot effectively identify influential network com-

ponents [45, 46]. Heterogeneous networks of arbitrary complexity have also been applied for

edge prediction without a formalized feature extraction methodology, which requires manual

descriptor determination for each new network design [47]. Recently, new types of edge predic-

tion methods were reported that naturally accommodate any size heterogeneous network. These

include data fusion by matrix-factorization [48–51] and metapath-based techniques [52,53]. This

type of intermediate data fusion can treat all data sources directly (i.e. without transforming

data into “disease space”) and has been successfully used to infer disease similarities [50] and

predict gene function in slime mold and baker’s yeast [49]. A metapath-based approach was

recently developed by researchers studying social sciences to predict future coauthorship [52]

and provides an intuitive framework and interpretable models and results. An advantage of

metapath-based approaches is that they preserve the network structure and provide the flexibil-

ity to explore a diverse set of descriptors. In this work, we extended this methodology to predict

the probability that an association between a gene and disease exists.
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4.4 Results

4.4.1 Constructing a heterogeneous network to integrate diverse information

domains

Using publicly-available databases and standardized vocabularies, we constructed a heteroge-

neous network with 40,343 nodes and 1,608,168 edges (Fig. 4.1). Databases were selected based

on quality, reusability, throughput, and their aggregate ability to provide a diversified, multiscale

portrayal of biology. The network was designed to encode entities and relationships relevant to

pathogenesis. The network contained 18 node types (metanodes) and 19 edge types (metaedges),

displayed in Fig. 4.2A. Entities represented by metanodes consisted of diseases, genes, tissues,

pathophysiologies, and gene sets for 14 MSigDB collections [54, 55] including pathways [56, 57],

perturbation signatures, motifs [58, 59], and Gene Ontology (GO) domains [60] (Table 4.1).

Relationships represented by metaedges consisted of gene-disease association, disease patho-

physiology, disease localization, tissue-specific gene expression, protein interaction, and gene-set

membership for each MSigDB collection (Table 4.2).

Gene-disease associations were extracted from the GWAS Catalog [67] by overlapping asso-

ciations into disease-specific loci. Loci were classified as low or high-confidence based on p-value

and sample size of the corresponding GWAS. When possible, for each loci, the most-commonly

reported gene across studies was designated as primary and subsequently considered responsible

for the association. Additional genes reported for the loci were considered secondary. Only high-

confidence primary associations were included in the network yielding 938 associations between

99 diseases and 711 genes.

4.4.2 Features quantify the network topology between a gene and disease

To describe the network topology connecting a specific gene and disease, we computed 24 fea-

tures, each describing a different aspect of connectivity. Each feature corresponds to a type

of path (metapath) originating in a given source gene and terminating in a given target dis-
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Metanode Count Source References

Disease 99 Disease Ontology [61]
Gene 19,116 HGNC (coding) [62]
Tissue 77 BRENDA (BTO) [63]
Pathophysiology 8 manual –
Positional 326 MSigDB (C1) [62]
Perturbation 3,402 MSigDB (C2) [54,55]
BioCarta 217 MSigDB (C2) –
KEGG 186 MSigDB (C2) [56]
Reactome 674 MSigDB (C2) [57]
miRNA Target 221 MSigDB (C3) [58]
TF Target 615 MSigDB (C3) [58,59]
Cancer Hood 427 MSigDB (C4) [64]
Cancer Module 431 MSigDB (C4) [65]
GO Process 825 MSigDB (C5) [60]
GO Component 233 MSigDB (C5) [60]
GO Function 396 MSigDB (C5) [60]
Oncogenic 189 MSigDB (C6) [66]
Immunologic 1,910 MSigDB (C7) [66]

Table 4.1. Metanodes. The kind, number of corresponding nodes, and data source for each
type of node.

ease. The biological interpretation of a feature derives from its metapath, and features simply

quantify the prevalence of a specific metapath between any gene-disease pair. To quantify meta-

path prevalence, we adapted an existing method originally developed for social network analysis

(PathPredict) [52], and developed a new metric called degree-weighted path count (DWPC,

Fig. 4.2D), which we employed in all but two features. The DWPC downweights paths through

high-degree nodes when computing metapath prevalence. The strength of downweighting de-

pends on a single parameter (w), which we optimized to w = 0.4 and that outperformed the top

metric resulting from PathPredict [52]. We calculated DWPC features for the 22 metapaths of

length 3 or less that originated with a gene and terminated with disease. Two non-DWPC fea-

tures were included to assess the pleiotropy of the source gene and the polygenicity of the target

disease. Referred to as ‘path count’ features, they respectively equal the number of diseases

associated with the source gene and the number of genes associated with the target disease.

For all features, paths with duplicate nodes were excluded, and, if present, the association edge
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Metaedge Count Source References

Disease - association - Gene 938 GWAS Catalog [67]
Disease - membership - Pathophysiology 90 manual –
Disease - localization - Tissue 1,086 CoPub 5.0 [68]
Gene - expression - Tissue 251,366 GNF BodyMap [69]
Gene - interaction - Gene 97,938 iRefIndex [70]
Gene - membership - Positional 18,343 MSigDB (C1) [62]
Gene - membership - Perturbation 366,211 MSigDB (C2) [54,55]
Gene - membership - BioCarta 4,456 MSigDB (C2) –
Gene - membership - KEGG 12,656 MSigDB (C2) [56]
Gene - membership - Reactome 35,597 MSigDB (C2) [57]
Gene - membership - miRNA Target 33,455 MSigDB (C3) [58]
Gene - membership - TF Target 161,258 MSigDB (C3) [58,59]
Gene - membership - Cancer Hood 41,913 MSigDB (C4) [64]
Gene - membership - Cancer Module 48,220 MSigDB (C4) [65]
Gene - membership - GO Process 75,155 MSigDB (C5) [60]
Gene - membership - GO Component 34,880 MSigDB (C5) [60]
Gene - membership - GO Function 23,578 MSigDB (C5) [60]
Gene - membership - Oncogenic 30,166 MSigDB (C6) [66]
Gene - membership - Immunologic 370,862 MSigDB (C7) [66]

Table 4.2. Metaedges. The kind, number of corresponding edges, and data source for each
type of edge.

between the source gene and target disease was masked.

4.4.3 Machine learning approach to predict the probability of association of

gene-disease pairs

Further analysis focused on the 29 diseases with at least ten associated genes (Table 4.3). The 698

high-confidence primary associations of these 29 diseases were considered positives—gene-disease

pairs with positive experimental relationships. The remaining 551,823 (i.e. unassociated) gene-

disease pairs were considered negatives. Low-confidence or secondary associations were excluded

from either set. We partitioned gene-disease pairs into training (75%) and testing (25%) sets

and created a training network with the testing associations removed.

To learn the importance of each feature and model the probability of association of a given

gene-disease pair, we used regularized logistic regression which is designed to prevent overfit-
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Figure 4.1. Heterogeneous network integrates diverse information domains. We
constructed a heterogeneous network with 18 metanodes (denoted with labels) and 19
metaedges (denoted by color). For each metanode, nodes are laid out circularly. Incorporating
type information adds structure to a network which would otherwise appear as an
undecipherable agglomeration of 40,343 nodes and 1,608,168 edges.

ting and accurately estimate regression coefficients when models include many features. Elastic

net regression is a regression method that balances two regularization techniques: ridge (which

performs coefficient shrinkage) and lasso (which performs coefficient shrinkage and variable se-
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Disease Pathophysiology HC-P HC-S LC-P LC-S

Crohn’s disease immunologic 67 179 4 2
multiple sclerosis immunologic 50 43 38 29
type 2 diabetes mellitus immunologic 49 49 20 15
breast carcinoma neoplastic 43 65 2 6
ulcerative colitis immunologic 40 96 2 3
prostate carcinoma neoplastic 34 202 3 4
type 1 diabetes mellitus immunologic 33 56 9 6
rheumatoid arthritis immunologic 30 27 20 11
coronary artery disease metabolic 29 43 15 9
obesity metabolic 28 22 34 18
celiac disease immunologic 24 32 9 8
systemic lupus erythematosus immunologic 22 35 14 8
refractive error degenerative 21 11 2 1
primary biliary cirrhosis immunologic 20 16 2 0
vitiligo immunologic 20 27 4 0
age related macular degeneration degenerative 18 30 11 18
metabolic syndrome X metabolic 17 11 1 0
asthma immunologic 17 23 13 4
psoriasis immunologic 16 14 5 5
schizophrenia psychiatric 15 27 20 13
chronic lymphocytic leukemia neoplastic 14 16 3 4
migraine unspecific 13 15 38 58
Alzheimer’s disease degenerative 12 11 27 18
Graves’ disease immunologic 12 15 1 1
Parkinson’s disease degenerative 12 21 8 13
atopic dermatitis immunologic 11 15 5 1
bipolar disorder psychiatric 11 34 26 74
lung carcinoma neoplastic 10 14 6 6
ankylosing spondylitis immunologic 10 5 6 6

Table 4.3. Diseases. Associations were predicted for 29 diseases with at least 10 positives.
For these diseases, the number of high-confidence primary (HC-P), high-confidence secondary
(HC-S), low-confidence primary (LC-P), and low-confidence secondary associations (LC-S)
that were extracted from the GWAS Catalog is indicated.
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Figure 4.2. Heterogeneous network edge prediction methodology. A) We constructed
the network according to a schema, called a metagraph, which is composed of metanodes
(node types) and metaedges (edge types). B) The network topology connecting a gene and
disease node is measured along metapaths (types of paths). Starting on Gene and ending on
Disease, all metapaths length three or less are computed by traversing the metagraph. C) A
hypothetical graph subset showing select nodes and edges surrounding IRF1 and multiple
sclerosis. To characterize this relationship, features are computed that measure the prevalence
of a specific metapath between IRF1 and multiple sclerosis. D) Two features (for the GeTlD
and GiGaD metapaths) are calculated to describe the relationship between IRF1 and multiple
sclerosis. The metric underlying the features is degree-weighted path count (DWPC ). First,
for the specified metapath, all paths are extracted from the network. Next, each path receives
a path-degree product (PDP) measuring its specificity (calculated from node-degrees along the
path, Dpath). This step requires a damping exponent (here w = 0.5), which adjusts how
severely high-degree paths are downweighted. Finally, the path-degree products are summed to
produce the DWPC.
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lection) [71]. On the training set, we optimized the elastic net mixing parameter, a single

parameter behind the DWPC metric, and two edge-inclusion thresholds. While cross-validated

performance was similar across elastic net mixing parameters, ridge demonstrated the great-

est consistency, and thus we proceeded with logistic ridge regression as the primary model for

predictions.

4.4.4 Method prioritizes associations withheld for testing

We extracted network-based features for gene-disease pairs from the training network and mod-

eled the training set. We next evaluated performance on the 25% of gene-disease pairs (175 pos-

itives, 137,956 negatives) withheld for testing. Our predictions achieved an area under the ROC

curve (AUROC) of 0.83 (Fig. 4.3A) demonstrating an excellent performance in retrieving hidden

associations. Importantly, we did not observe any significant degradation of performance from

training to testing (Fig. 4.3A), indicating that our disciplined regularization approach avoided

overfitting and that predictions for associations included in the network were not biased by

their presence in the network. Furthermore, we observed that at 10% recall (the classification

threshold where 10% of true positives were predicted as positives), our predictions achieved

16.7% precision (the proportion of predicted positives that were correct). Since the prevalence

of positives in our dataset was 0.13%, the observed precision represents a 132-fold enrichment

over the expected probability under a uniform distribution of priors (as in GWAS).

4.4.5 Predicting associations on the complete network

As a next step in our analysis, we recomputed features on the complete network, which now

included the previously withheld testing associations. On all positives and negatives, we fit a

ridge model (the primary model for predictions) and a lasso model (for comparison). Standard-

ized coefficients (Fig. 4.4) indicate the effect attributed to each feature by the models. The

lasso highlighted features that captured pleiotropy (4 features), pathways (2), transcriptional

signatures of perturbations (1) and protein interactions (1). Despite the parsimony of the lasso,
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Figure 4.3. Predicting associations withheld for testing. Performance was evaluated
on 25% of gene-disease pairs withheld for testing. A) Testing and training ROC curves. At top
prediction thresholds, associated gene-disease pairs are recalled at a much higher rate than
unassociated pairs are incorrectly classified as positives. The testing area under the curve
(AUROC) is slightly greater than the training AUROC, demonstrating the method’s lack of
overfitting. Performance greatly exceeds random denoted by gray line. B) The precision-recall
curve showing performance in the context of the low prevalence of associated gene-disease
pairs (0.13%). Nevertheless, at top prediction thresholds, a high percentage of pairs classified
as positives are truly associated. Prediction thresholds, shown as points and colored by value,
align with the observed precision at that threshold.

performance was similar between models with training AUROCs of 0.83 (ridge) and 0.82 (lasso).

However, since multiple features from a correlated group may be causal, the lasso model risks

oversimplifying. Ridge regression disperses an effect across a correlated group of features, provid-

ing users greater flexibility when interpreting predictions. From the ridge model, we predicted

the probability that each protein-coding gene was associated with each analyzed disease and

built a webapp to display the predictions (http://het.io/disease-genes/browse).

4.4.6 Degree-preserving network permutations highlight the importance of

edge-specificity for top predictions and ten features

Using Markov chain randomized edge-swaps, we created 5 permuted networks. Since metaedge-

specific node degree is preserved, features extracted from the permuted network retain unspecific
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Figure 4.4. Feature selection identifies a parsimonious yet predictive model. Ridge
and lasso models were fit from the complete network. The resulting standardized coefficients
(y-axis) assess the effect size of each feature (x-axis). Brackets indicate features from
MSigDB-traversing metapaths (Gm{}mGaD). The ridge model disperses effects amongst
features whereas the lasso concentrates effects. The lasso identifies an 8-feature model with
minimal performance loss compared to the ridge model. Besides KEGG, gene-set based
features were largely captured by Perturbations. The lasso retains several measures of
pleiotropy as well as the one-step interactome feature (GiGaD).

effects. These effects include general measures a disease’s polygenicity and a gene’s pleiotropy,

multifunctionality, and tissue-specificity. On the first permuted network, we partitioned associa-

tions into training and testing sets. Testing associations were masked from the network, features

were computed, and a ridge model was fit on the training gene-disease pairs.

Compared to the unpermuted-network model, testing performance was noticeably inferior:

the AUROC declined from 0.83 (Fig. 4.3A) to 0.79 and the AUPRC (area under the precision-

recall curve) declined from 0.06 (Fig. 4.3B) to 0.02. We interpret the modest decline in AUROC

but marked reduction in AUPRC as a direct consequence of the permutation’s particularly

detrimental effect on top predictions. In other words, edge-specificity was crucial for top predic-

tions, while general effects gleaned from node degree performed reasonably well when ranking
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the entire spectrum of protein-coding genes for association. A commonly-overlooked finding is

that the discriminatory ability of gene networks largely relies on node-degree rather than the

edge-specificity [72]. However, we found that for top predictions—which are the only predictions

considered by many applications—edge-specificity was critical.

Interestingly, predictions from the permuted-network model displayed a reduced dynamic

range with none exceeding 4%, while predictions from the unpermuted-network model exceeded

75%. Therefore, even though they achieve reasonable AUROC, the permuted-network predic-

tions would have little utility as prior probabilities in a bayesian analysis where dynamic range is

crucial. Furthermore, the signal present in permuted-network features was greatly diminished:

few features survived the lasso’s selection resulting in an average lasso AUROC of 0.70 versus

0.80 for ridge. Permuting the network significantly reduced the predictiveness of features based

on pleiotropy (2 features), protein interactions (2), transcriptional signatures of perturbations

(1), tissue-specificity (1), pathways (3), and immunologic signatures (1). Six of the eight features

selected by the lasso and eight of the top ten ridge features (ranked by standardized coefficients)

were negatively affected by the permutation. Since our modeling technique preferentially se-

lected/weighted features affected by permutation, we can infer that network components where

edge-specificity matters underlie a large portion of predictions.

4.4.7 Feature importance identifies the mechanisms underlying associations

We assessed the informativeness of each feature by calculating feature-specific AUROCs. Feature-

specific AUROCs universally exceeded 0.5, indicating that network connectivity, regardless of

type, positively discriminates associations. However, performance varied widely by feature and

within feature from disease to disease (Fig. 4.5). Top performing domains consisted of tran-

scriptional signatures of perturbations (AUROC = 0.74), immunologic signatures (0.70), and

pleiotropy (0.68, 0.67, 0.64, 0.63). Notably, the models greatly outperformed any individual

feature, highlighting the importance of an integrative approach.

Features whose metapaths originate with an association (GaD) metaedge measure pleiotropy.
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Figure 4.5. Decomposing performance shows the superiority of the integrative
model and compares individual features. Disease, feature, and model-specific
performance on the complete network. The AUROC (y-axis) was calculated for each classifier
(x-axis). In addition to the ridge and lasso models (rightmost panels), each feature was
considered as a classifier. Line segments show the classifier’s global performance (average
performance across permuted networks shown in violet as opposed to dark gray). Points
indicate disease-specific performance and are colored by the disease’s pathophysiology. Grey
rectangles show the 95% confidence interval for mean disease-specific performance. A)
Features from metapaths that traverse an MSigDB collection. B) Features from
non-MSigDB-traversing metapaths. Metapaths are abbreviated using first letters of metanodes
(uppercase) and metaedges (lowercase).
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The four pleiotropic features were among the top performing features that did not rely on set-

based gene categorization (Fig. 4.5). Of the four features, GaD (any disease) had the highest

AUROC despite its lack of disease-specificity, reflecting both the sparsity of disease-specific

features and the existence of genetic overlap between seemingly disparate diseases. GaDmPmD

and GaDaGaD performed best for immunologic diseases and were affected by permutation,

indicating that genetic overlap was greatest between immunologic diseases. On the other hand,

the performance of GaDlTlD did not decrease after permutation indicating disease colocalization

was not a primary driver of genetic overlap.

We also observed that the lasso regression model discarded the majority of features with a

minimal performance deficit, suggesting redundancy among features. Indeed, pairwise feature

correlations showed moderate collinearity among features. Collinearity was especially pervasive

with respect to the Perturbations feature, explaining its threefold increase in standardized co-

efficient in the lasso versus ridge model. The disappearance of all but one other MSigDB-based

feature in the lasso model indicated that Perturbations—the feature traversing chemical and

genetic transcriptional signatures of perturbations—exhausted meaningful gene-set characteri-

zation. In other words, the faulty molecular processes behind pathogenesis align with and are

encapsulated by the processes perturbed by chemical and genetic modifications. The Immuno-

logic signatures feature—traversing gene-sets characterizing “cell types, states, and perturba-

tions within the immune system”—was highly predictive and correlated with Perturbations. As

expected this feature performed best for diseases with an immune pathophysiology. The one

well-performing neoplastic disease (Fig. 4.5) was chronic lymphocytic leukemia, a hematologic

cancer with a strong immune component [73]. Additionally, the performance of both the Per-

turbation and Immunologic features was affected by permutation indicating information beyond

the extent of a gene’s multifunctionality was encoded.

Existing network-based gene-prioritization methods, frequently rely solely on protein-protein

interactions. Our results supported incorporating protein interactions as the two interactome-

based features were discriminatory (AUROCs = 0.65, 0.56) and affected by permutation. How-
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ever, when compared to the integrative models or other top-performing features, performance

of features that relied solely on the interactome was severely limited. Pathways, another found-

ing resource for many approaches, proved important with KEGG selected by the lasso and all

three pathway resources (AUROCs = 0.61 for KEGG, 0.60 for Reactome, 0.55 for BioCarta)

affected by permutation. The GeTlD feature—measuring to what extent a gene is expressed in

tissues affected by the disease in question—peaked in performance around AUROC = 0.58, was

affected by permutation, and required no preexisting knowledge of associated genes. In other

words, while approaches based on tissue-specificity may have limited predictive ability on their

own, they are broadly applicable (i.e. less susceptible to knowledge bias) and provide orthogonal

information that could enhance the overall performance of a model.

Gene set robustness. For each type of gene set, we evaluated the effect of increased sparsity

on performance by randomly subsampling gene set nodes or edges and measuring the resulting

AUROC of the affected feature. Robustness refers to a gene set collection’s ability to withstand

a high extent of masking with little performance deficit. Several of the top gene sets had this

property, especially GO processes (where supersets are common), which may indicate nodal

redundancy. Contrastingly, the MSigDB gene set with the fewest nodes, KEGG, experienced

a more immediate and linear decline in performance. Since KEGG avoids duplication and is

stringently and manually curated, this finding is expected. To investigate whether the high

predictivity of certain gene set collections was due only to size, we compared performance when

subsampling nodes to the KEGG level. The two top performing collections, perturbations

and immunologic signatures, which also happen to be large, continued to perform better than

the majority of complete collections. While performance benefited from increasing densities,

a resource’s sparsity often reflects an intrinsic property of the underlying information type.

Therefore, when identifying influential mechanisms of pathogenesis, we prefered unadjusted

comparisons using the complete network.
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4.4.8 Case study: prioritizing multiple sclerosis associations

The WTCCC2 multiple sclerosis (MS) GWAS tested 465,434 SNPs for 9,772 cases and 17,376

controls and identified over 50 independently associated loci [74]. Since the GWAS Catalog

excludes targeted arrays (such as ImmunoChip), this study remains the largest MS GWAS in

the Catalog. To evaluate our method’s ability to prioritize associations identified in a future

study, we masked the WTCCC2 MS study from the GWAS Catalog and created a pre-WTCCC2

network. The number of high-confidence primary MS associations was thus reduced from 50

to 13, with the 37 novel genes identified by WTCCC2 available to evaluate performance. On

the pre-WTCCC2 network, we extracted features, fit a ridge model, and predicted each gene’s

probability of association with MS. Amongst all 18,993 potentially novel genes, the 37 WTCCC2

genes were ranked highly (AUROC = 0.79, Fig. 4.6).

Figure 4.6. Prioritizing multiple sclerosis associations identified by a masked
GWAS. From a network with the WTCCC2 MS associations omitted, we predicted
probabilities of association for all potentially novel genes. The 37 novel genes identified by the
WTCCC2 GWAS were considered positives, and the resulting performance was plotted. The
ROC (A) and precision-recall (B) curves show performance, with AUCs in line with the testing
performance across all diseases (Fig.˜4.3). A prediction threshold (black cross) that resulted in
high performance was selected as the discovery threshold for further analysis. As the
classification threshold decreases along the precision-recall curve, the advent of each true
positive is denoted by its gene symbol.
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4.4.9 Prioritizing statistical candidates with network-based predictions iden-

tifies novel multiple sclerosis genes

Finally, we designed a framework for discovering and validating novel MS genes that incorpo-

rates our network-based predictions. Meta2.5 is a meta-analysis of all MS GWAS prior to the

WTCCC2 study [75]. We calculated genewise p-values for Meta2.5 using VEGAS [76] and ob-

served a large enrichment in nominally significant (p < 0.05) genes, suggesting multiple potential

associations. We combined this set of experimental candidates with the top predictions from

the pre-WTCCC2 network to discover genes with both strong statistical and biological evidence

of association. To ensure novelty, we excluded genes from GWAS-established MS loci and the

extended MHC region. We chose a threshold for network-based predictions that performed well

in prioritizing the genes identified by WTCCC2 (Fig. 4.6).

This strategy discovered four genes, three of which—JAK2, REL, RUNX3—achieved Bon-

ferroni validation on VEGAS-converted WTCCC2 p-values (Table 4.4). The probability of the

observed validation rate occurring under random prioritization is 0.01, demonstrating that in-

corporating our network-based predictions as a prior increased study power. JAK2 displays

overexpression in MS-affected Th17 cells [77] and was implicated in an interactome-based prior-

itization of GWAS [32]. RUNX3, a transcription factor influencing T lymphocyte development,

has been associated with celiac disease [78] and ankylosing spondylitis [79] and was hypermethy-

lated in systemic lupus erythematosus patients [80]. The region containing REL was uncovered

in a recent MS ImmunoChip-based study with 14,498 cases [81, p. S40]. For the gene-dense

region containing REL, the ImmunoChip study reported a long non-coding RNA, LINC01185,

overlapping the lead-SNP, rs842639. However, since greater than 80% of the genome shows

evidence of transcription [82], the probability of incidental overlap with long non-coding RNA

is high. REL, however, is an essential transcription factor for lymphocyte development [83]

and plays a critical role in autoimmune inflammation [84]. Hence, gene prioritization through

integrative analyses offers not only to streamline loci discovery but also subsequent causal gene

identification.

34



Gene Meta2.5 HNEP WTCCC2

JAK2 0.047 0.102 0.0015
REL 0.001 0.040 0.0003
SH2B3 0.012 0.034 0.0130
RUNX3 0.016 0.025 0.0073

Table 4.4. Multiple sclerosis gene discovery. Four genes showed nominal statistical
evidence of association (Meta2.5 column) and exceeded the network prediction threshold
(HNEP column). Three genes achieved Bonferroni validation (bold) in an independent GWAS
(WTCCC2 column).

4.5 Discussion

In this work, we developed a framework to predict the probability that each protein-coding

gene is associated with each of 29 complex diseases. Our predictions draw on a diverse set

of pathogenically-relevant relationships encoded in a heterogeneous network. The predictions

successfully prioritized associations hidden from the network. Using MS as a representative

example, we were able to combine our predictions with statistical evidence of association to

increase study power and identify three novel susceptibility genes in this disease. The disease-

specific performance (measured by the AUROC) for MS was exceeded by twelve other diseases

suggesting that our predictions have broad applicability for prioritizing genetic association anal-

yses. Prioritization can range from a genome-wide scale to a single loci where this approach

can highlight the causal gene from several candidates within the same association block. For

researchers focused on a specific disease, these predictions can be used to propose genes for ex-

perimental investigation. Inversely, researchers focused on a specific gene can use this resource

to find suggestions for relevant complex disease phenotypes.

Most previous explorations of the factors underlying pathogenicity have focused on a single

domain such as tissue-specificity [85], protein interactions [15], pathways [24], or disease similar-

ity [86]. The method presented here integrates disparate data sources, learns their importance,

and unifies them under a common framework enabling comparison. Therefore, we can conclude

that perturbation gene sets—the core of our top-performing feature—are an underutilized re-

source for disease-associated gene prioritization. Not only did perturbations encompass other
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set-based gene categorizations, but they greatly outperformed features based on protein interac-

tions, pathways, and tissue-specificity, which form the basis of several prominent prioritization

techniques. In addition to characterizing the overall importance of each feature, our online

prediction browser visually decomposes an individual prediction into its components.

We observed a prominent influence of pleiotropy, consistent with previous studies that iden-

tified pervasive overlap of susceptibility loci across complex diseases [87], especially those of

autoimmune nature [88]. Since many existing prioritization techniques are agnostic to the com-

pendia of GWAS associations, they fail to adequately leverage pleiotropy. Unlike approaches

initiated from a user-provided gene list, our study only provides predictions for 29 diseases. By

not relying on user-provided input, our predictions can serve as independent priors for future

analyses. By predicting probabilities, we provide an extensible and interpretable assessment

of association that circumvents the limitations inherent to frequentist analyses [89]. Many ap-

proaches return no assessment for the majority of genes which fall outside of their set of predicted

positives. Here, we overcome this issue and provide a comprehensive and genome-wide output

by returning a probability of association for each protein-coding gene.

High-throughput biological data is frequently noisy and incomplete [90]. Combining orthog-

onal resources can help overcome these issues. Accordingly, we found that our integrative model

outperformed any individual domain. While this method has shown encouraging performance,

some limitations are worth noticing. For example, many biological networks preferentially cover

well-studied vicinities [91]. Knowledge biases that span multiple, presumably-orthogonal re-

sources could diminish the benefits of integration. Here, several of the literature-derived domains

were removed by the lasso, suggesting redundancy. In addition, biases in network completeness

can lead to high-quality predictions for well-studied vicinities and low-quality predictions for

poorly-studied vicinities. The permutation analysis provided evidence of this disparity: edge-

specificity was critical for top predictions yet only moderately beneficial for the remainder.

Subsequently, we caution users to avoid overinterpreting predictions for poorly-characterized

genes. To help place predictions in context, the online browser provides a gene’s mean predic-
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tion across all diseases and a disease’s mean prediction across all genes. However, we recognize

that false negatives will continue to persist in our predictions, and users should be mindful of

this limitation when interpreting results. As more systematic and unbiased resources become

available [90], high-quality predictions will emerge for more network vicinities.

We reason that the desirable qualities of our predictions are the consequence of the het-

erogenous network edge prediction methodology. The approach is versatile (most biological

phenomena are decomposable into entities connected by relationships), scalable (no theoretical

limit to metagraph complexity or graph size), and efficient (low marginal cost to including an

additional network component). We have extended the previous metapath-based framework set

forth by PathPredict [52], by: 1) incorporating regularization allowing coefficient estimation for

more features without overfitting; 2) designing a framework for predicting a metaedge that is

included in the network; 3) developing an improved metric for assessing path specificity; and

4) implementing a degree-preserving permutation. Metapath-based heterogeneous network edge

prediction provides a powerful new platform for bioinformatic discovery.

4.6 Methods

4.6.1 Ethics Statement

This study was approved by the UCSF institutional review board on human subjects under

protocol #10-00104.

4.6.2 Heterogeneous networks

We created a general framework and open source software package for representing heteroge-

neous networks. Like traditional graphs, heterogeneous networks consist of nodes connected

by edges, except that an additional meta layer defines type. Node type signifies the kind of

entity encoded, whereas edge type signifies the kind of relationship encoded. Edge types are

comprised of a source node type, target node type, kind (to differentiate between multiple edge
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types connecting the same node types), and direction (allowing for both directed and undirected

edge types). The user defines these types and annotates each node and edge, upon creation,

with its corresponding type. The meta layer itself can be represented as a graph consisting of

node types connected by edge types. When referring to this graph of types, we use the prefix

‘meta’. Metagraphs—called schemas in previous work [52,53]—consist of metanodes connected

by metaedges. In a heterogeneous network, each path, a series of edges with common inter-

mediary nodes, corresponds to a metapath representing the type of path. A path’s metapath

is the series of metaedges corresponding to that path’s edges. The possible metapaths within

a heterogeneous network can be enumerated by traversing the metagraph. We implemented

this framework as an object-oriented data structure in python and named the resulting package

hetio. Users are free to browse, use, or contribute to the software, through the online repository

(https://github.com/dhimmel/hetio).

4.6.3 Network construction

Resource selection. The included resources, and hence the metaedges and metanodes com-

posing our network, were selected empirically based on a balance among the following properties:

1) quality – relevance to human pathogenesis; high accuracy and an optimal trade-off between

false positives and false negatives. In some cases, quality concerns prevented the inclusion of a

desired metaedge. For example, we omitted ontology-based disease similarly due to an inaccurate

Disease Ontology hierarchy [61], and we omitted disease comorbidity due to high measurement

error for uncommon diseases [92]. For included metaedges, we attempted to select the highest

quality resource in that domain. 2) reusability – easily retrievable and parsable; mapped to

controlled vocabularies; well documented; amenable to reproducible (scripted) analysis; free of

prohibitive reuse stipulations. 3) throughput – broad domain-specific coverage generated using

systematic platforms that minimize bias. While genetic interactions have previously proven in-

formative [50], their sparse characterization in humans was deemed unfavorable for our approach.

4) diversified, multiscale portrayal of biology – capturing, in aggregate, many aspects of
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pathophysiology across multiple levels of biological complexity. Levels of the hierarchical ar-

chitecture of biological complexity include the genome, transcriptome, proteome, interactome,

metabolome, cell and tissue organization, and phenome. Balancing these considerations, we

integrated as many resources as possible within our computational runtime constraints.

Nodes. Protein-coding genes were extracted from the HGNC database [62]. Resources were

mapped to HGNC terms via gene symbol (ambiguous symbols were resolved in the order: ap-

proved, previous, synonyms) or Entrez identifiers. Disease nodes were taken from the Disease

Ontology (DO) [61]. Due to the limited number of diseases with GWAS, relevant disease refer-

ences were manually mapped to the DO. Tissues were taken from the BRENDA Tissue Ontol-

ogy (BTO) [63]. Only tissues with profiled expression were included enabling manual mapping.

Nodes for the 14 MSigDB metanodes were directly imported from the Molecular Signature

Database version 4.0 [54, 55]. All MSigDB collections were included except those that were

supersets of other collections. For example, ‘C3: motif gene sets’ was the union of two disjoint

collections (‘C3: microRNA targets’ and ‘C3: transcription factor targets’) and was therefore

excluded. Diseases were classified manually into 10 categories according to pathophysiology.

The ‘idiopathic’ and ‘unspecific’ categories were not included as pathophysiology nodes, since

they do not signify meaningful similarities between member diseases.

Associations. Disease-gene associations were extracted from the GWAS Catalog [67], a com-

pilation of GWAS associations where p < 10−5. First, associations were segregated by disease.

GWAS Catalog phenotypes were converted to Experimental Factor Ontology (EFO) terms using

mappings produced by the European Bioinformatics Institute. Associations mapping to multiple

EFO terms were excluded to eliminate cross-phenotype studies. We manually mapped EFO to

DO terms (now included in the DO as cross-references) and annotated each DO term with its

associations.

Associations were classified as either high or low-confidence, where exceeding two thresholds

granted high-confidence status. First, p ≤ 5× 10−8 corresponding to p ≤ 0.05 after Bonferroni
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adjustment for one million comparisons (an approximate upper bound for the number of inde-

pendent SNPs evaluated by most GWAS). Second, a minimum sample size (counting both cases

and controls) of 1,000 was required, since studies below this size are underpowered [93]—i.e. any

discovered associations are more likely than not to be false—for the majority of true effect size

distributions commonly assumed to underlie complex disease etiology [89].

Lead-SNP were assigned windows—regions wherein the causal SNPs are assumed to lie—

retrieved from the DAPPLE server [29]. Windows were calculated for each lead-SNP by finding

the furthest upstream and downstream SNPs where r2 > 0.5 and extending outwards to the next

recombination hotspot. Associations were ordered by confidence, sorting on following criteria:

high/low confidence, p-value (low to high), and recency. In order of confidence, associations

were overlapped by their windows into disease-specific loci. By organizing associations into loci,

associations from multiple studies tagging the same underlying signal were condensed. A locus

was classified as high-confidence if any of its composite associations were high-confidence and

low-confidence otherwise.

For each disease-specific loci, we attempted to identify a primary gene. The primary gene

was resolved in the following order: 1) the mode author-reported gene; 2) the containing gene

for an intragenic lead-SNP; 3) the mode author-reported gene for an intragenic lead-SNP (in

the case of overlapping genes); 4) the mode author-reported gene of the most proximal up and

downstream genes. Steps 2–4 were repeated on each association composing the loci, in order

of confidence, until a single gene resolved as primary. Loci where ambiguity was unresolvable

or where no genes were returned did not receive a primary gene. All non-primary genes—genes

that were author-reported, overlapping the lead-SNP, or immediately up or downstream from

the lead-SNP—were considered secondary.

Accordingly, four categories of processed associations were created: high-confidence primary,

high-confidence secondary, low-confidence primary, and low-confidence secondary. We assume

that our primary gene annotation for each loci represents the single causal gene responsible for

the association. To investigate the validity of this assumption, we evaluated the performance
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of our predictions separately using each category of association as positives. For both confi-

dence levels, primary associations outperformed secondary associations suggesting our method

succeeded at categorizing causal genes as primary. However, for high-confidence secondary as-

sociations, the AUROC equaled 0.74, which could result from multiple causal genes per loci or

categorizing sole causal genes as secondary. The performance decline from high to low confi-

dence associations was severe, pointing to a preponderance of falsely identified loci in the GWAS

Catalog when p > 5× 10−8 or sample size drops below 1000.

Protein interactions. Physical protein-protein interactions were extracted from iRefIndex

12.0, a compilation of 15 primary interaction databases [70]. The iRefIndex was processed

with ppiTrim to convert proteins to genes, remove protein complexes, and condense duplicated

entries [94].

Tissue-specific gene expression. Tissue-specific gene expression levels were extracted from

the GNF Gene Expression Atlas [69]. Starting with the GCRMA-normalized and multisample-

averaged expression values, 44,775 probes were converted to 16,466 HGNC genes and 84 tissues

were manually mapped and converted to 77 BTO terms. For both conversions, the geometric

mean was used to average expression values. The log base 10 of expression value was used as

the threshold criteria for GeT edge inclusion.

Disease localization. Disease localization was calculated for the 77 tissues with expression

profiles. Literature co-occurrence was used to assess whether a tissue is affected by a disease.

We used CoPub 5.0 to extract R-scaled scores between tissues and diseases measuring whether

two terms occurred together in Medline abstracts more than would be expected by chance [68].

DO terms for diseases with GWAS and BTO tissues with expression profiles were manually

mapped to the ‘biological identifier’ terminology used by CoPub. The R-scaled score was used

as the threshold criteria for TlD edge inclusion.
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Feature computation metrics. The simplest metapath-based metric is path count (PC ):

the number of paths, of a specified metapath, between a source and target node. However, PC

does not adjust for the extent of graph connectivity along the path. Paths traversing high-

degree nodes will account for a large portion of the PC, despite high-degree nodes frequently

representing a biologically broad or vague entity with little informativeness. The previous work

evaluated several metrics that include a PC denominator to adjust for connectivity and reported

that normalized path count (NPC ) performed best [52]. The denominator for NPC equals the

number of paths from the source to any target plus the number of paths from any target to the

source.

NPCm(s, t) =
PCm(s, t)∑

ti∈Tm

PCm(s, ti) +
∑

si∈Sm
PCm(si, t)

,

where m is the metapath, s is the source node, t is the target node, Sm is the set of nodes

corresponding to the source metanode of m, and Tm is the set of nodes corresponding to the

target metanode of m. We adopt the any source/target concept to compute the two GaD

features. However, dividing the PC by a denominator is flawed because each path composing

the PC deserves a distinct degree adjustment. If two paths—one traversing only high-degree

nodes and one traversing only low-degree nodes—compose the PC, the network surrounding the

high-degree path will monopolize the NPC denominator and overwhelm the contribution of the

low-degree path despite its specificity. Therefore, we developed the degree-weighted path count

(DWPC ) which individually downweights each path between a source and target node. Each

path receives a path-degree product (PDP) calculated by: 1) extracting all metaedge-specific

degrees along the path (Dpath), where each edge composing the path contributes two degrees;

2) raising each degree to the −w power, where w ≥ 0 and is called the damping exponent; 3)

multiplying all exponentiated degrees to yield the PDP.

PDP (path) =
∏

d∈Dpath

d−w
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The DWPC equals the sum of PDPs.

DWPCm(s, t) =
∑

path∈Pathsm(s,t)

PDP (path)

See Fig. 4.2C–D for a visual description of the DWPC.

4.6.4 Machine learning approach

PathPredict relied on basic logistic regression to predict coauthorship status from features cor-

responding to nine distinct metapaths [52]. However, faced with fewer positives to train our

model and a large number of features, we adopted a regularized approach, which aims to con-

tain the overfitting tendencies inherent to regression. Regularization penalizes complexity, a

trademark of overfitting. We chose the elastic net technique of regularization [71], which is

efficiently implemented for logistic regression by the R glmnet package [95].

Regularized logistic regression requires a parameter, λ, setting the strength of regularization.

We optimized λ separately for each model fit. Using 10-fold cross-validation and the “one-

standard-error” rule to choose the optimal λ from deviance, we adopted a conservative approach

designed to prevent overfitting [95].

On the training set of gene-disease pairs, we optimized the elastic net mixing parameter

(α), the DWPC damping exponent (w), and two edge inclusion thresholds. First, we optimized

α and w on the 20 features whose metapaths did not include threshold-dependent metaedges.

For each combination of α and w, we calculated average testing AUROC using 20-fold cross-

validation repeated for 10 randomized partitionings. After setting α and w, we jointly optimized

the two edge-inclusion thresholds using the AUROC for the GeTlD feature, whose metapath is

composed from the two edges requiring thresholds.

We adopt standardized coefficients as a measure of feature effect size. Standardized coeffi-

cients refer to the coefficients from logistic regression when all features have been transformed

to z -scores. Standardization provides a common scale to assess feature effect, both within and
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across models [96].

4.6.5 Degree-preserving permutation

Starting from the complete network, a permuted network was created by swapping edges sep-

arately for each metaedge. Edge swaps were performed by switching the target nodes for two

randomly selecting edges. For each metaedge, the number of attempted swaps was ten times

the corresponding edge count. We adopted a Markov Chain strategy where additional rounds

of permutation were initiated from the most-recently permuted network. A training network

was generated from the first permuted network by masking 25% of the associations for test-

ing. When contrasting this performance with the unpermuted-network model, we employed the

Condensed-ROC curve to magnify the importance of top predictions [97]. Using the exponen-

tial transformation with a magnification factor of 460—the value which maps a FPR of 0.01

to 0.99—we concentrated on the top 1% of predictions. A one-sided unpaired DeLong test [98]

was used to assess whether feature-specific AUROCs from the complete network exceeded those

from the first permuted network.

4.6.6 Gene Set Subsampling

We performed a subsampling analysis for 15 gene sets—the 14 MSigDB gene sets and tissues—to

assess the effect of sparsity on feature-specific performance. Two without-replacement subsam-

pling schemes were investigated: node masking and edge masking. For a specific gene set and

scheme, we masked a percentage of the gene set and calculated the corresponding feature’s AU-

ROC. We evaluated a range of percentages and performed ten subsampling repetitions for each

percentage.

4.6.7 Multiple sclerosis gene discovery

We excluded 588 genes from the discovery phase of the multiple sclerosis analysis. First we

excluded genes in the extended MHC region (spanning from SCGN to SYNGAP1 on chromo-
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some 6 [99]) due to the complex pattern of linkage characterizing this region containing several

highly-penetrant MS-risk alleles [74]. Second, we excluded putative MS genes: high-confidence

primary genes from the GWAS Catalog and reported genes for the WTCCC2-replicated loci.

We omitted genes in linkage disequilibrium with the putative genes by excluding: 1) consecutive

sequences of nominally significant genes (using the WTCCC2-VEGAS p-values) that included

a putative gene; and 2) high-confidence secondary genes from the GWAS catalog. Post exclu-

sion, 1211 genes were nominally significant in Meta2.5, four of which exceeded the network-based

discovery threshold. Using a hypergeometric test for overrepresentation, we calculated the prob-

ability of randomly selecting 4 of the 1211 genes and Bonferroni validating at least 3 of the 4

on WTCCC2.
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Chapter 5

Identifying drug repurposing

candidates

This chapter contains our project to predict drug repurposing. I proposed this project for my

qualifying exam. However, I decided to pursue disease-associated gene prediction first. For the

final project of my PhD, I returned to the project. This chapter is reprinted from the preprint:

Himmelstein DS, Lizee A, Khankhanian P, Brueggeman L, Chen SL, Hadley D,

Hessler CS, Green AJ, Baranzini SE (2016) Rephetio: Repurposing drugs on a

hetnet. Thinklab.

5.1 Abstract

This study describes Project Rephetio – a systematic investigation of drug efficacy. We con-

structed Hetionet v1.0, an integrative network for drug repurposing. Hetionet consists of 47,031

nodes of 11 types and 2,250,197 relationships of 24 types. Data was integrated from 29 pub-

lic resources to connect compounds, diseases, genes, anatomies, pathways, biological processes,

molecular functions, cellular components, perturbations, pharmacologic classes, drug side effects,

and disease symptoms. In the process, we created PharmacotherapyDB – a physician-curated
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catalog of medical indications, which differentiates between disease-modifying and symptomatic

therapy. We used the 755 disease-modifying treatments to ground our analysis and enable a sys-

tematic inspection of pharmacology. First, we identified network patterns that were predictive of

treatment. Then we predicted the probability of treatment for 209,168 compound–disease pairs.

Our predictions performed well in two external validations, suggesting that our predictions will

help prioritize drug repurposing candidates. Project Rephetio was open notebook and included

contributions from 35 community members who provided feedback in realtime.

5.2 Introduction

The cost of developing a new therapeutic drug has been estimated at 1.4 billion dollars [100],

the process typically takes 15 years from lead compound to market [101], and the likelihood

of success is stunningly low [102]. Strikingly, the costs have been doubling every 9 years since

1970 [103]. Drug repurposing – identifying novel uses for existing therapeutics – can drastically

reduce the duration, failure rates, and costs of approval [104]. These benefits stem from the rich

preexisting information on approved drugs, including extensive toxicology profiling performed

during development, clinical trials, and postmarketing surveillance.

Drug repurposing is poised to become more efficient as mining of electronic medical records

(EMRs) to retrospectively assess the effect of drugs gains feasibility [19, 105–107]. However,

systematic approaches to repurpose drugs based on mining EMRs alone will likely lack power

due to multiple testing. Similar to the approach followed to increase the power of genome-

wide association studies (GWAS) [89, 93], integration of biological knowledge to prioritize drug

repurposing will help overcome limited EMR sample size and data quality.

In addition to repurposing, several other paradigm shifts in drug development have been

proposed to improve efficiency. Since small molecules tend to bind to many targets, polyphar-

macology aims to find synergy in the multiple effects of a drug [108]. Network pharmacology

assumes diseases consist of a multitude of molecular corruptions resulting in a robust disease

state. Network pharmacology seeks to uncover multiple points of intervention into a specific
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pathophysiology that together rehabilitate an otherwise recalcitrant disease state [109,110]. Al-

though target-centric drug discovery has dominated the field for decades, phenotypic screens have

more recently resulted in a comparatively higher number of first-in-class small molecules [111].

Recent technological advances have enabled a new paradigm in which mid- to high-throughput

assessment of intermediate phenotypes, such as the molecular response to drugs, is replacing

the classic target discovery approach [112–114]. Modern computational approaches offer a con-

venient platform to tie these developments together as the reduced cost and increased velocity

of in silico experimentation massively lowers the barriers to entry and price of failure [115,116].

Hetnets (short for heterogeneous networks) are networks with multiple types of nodes and

relationships. They offer an intuitive, versatile and powerful structure for data integration. In

this study, we developed a heterogeneous network (Hetionet v1.0) to prioritize drug indications

and facilitate their repurposing. Specifically, we integrated knowledge and experimental findings

from decades of biomedical study spanning millions of publications. We adapted an algorithm

originally developed for social network analysis and applied it to the network to identify patterns

of efficacy and predict new uses for drugs. The algorithm performs hetnet edge prediction

through a machine learning framework that accommodates the multitude of types in a hetnet

[52, 117]. Our approach represents an in silico implementation of network pharmacology that

natively incorporates polypharmacology and high-throughput phenotypic screening.

One fundamental characteristic of our method is that it learns and evaluates itself on ex-

isting medical indications. Here we’ll introduce previous approaches that also performed com-

prehensive evaluation on existing treatments. A 2011 study, named PREDICT, compiled 1,933

treatments between 593 drugs and 313 diseases [118]. Starting from the premise that similar

drugs treat similar diseases, PREDICT trained a classifier that incorporates 5 types of drug-drug

and 2 types of disease-disease similarity. A 2014 study compiled 890 treatments between 152

drugs and 145 diseases with transcriptional signatures [119]. The authors found that compounds

triggering an opposing transcriptional response to the disease were more likely to be treatments,

although this effect was weak and limited to cancers. A 2016 study compiled 402 treatments
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between 238 drugs and 78 diseases and used a single proximity score – the average shortest path

distance between a drug’s targets and disease’s associated proteins on the interactome – as a

classifier [120].

We build on these successes by creating a framework for incorporating the effects of any

biological relationship into the prediction of whether a drug treats a disease. Thus, we’re able

to capture a multitude of effects that have been suggested as influential for drug repurposing

including drug-drug similarity [46, 118], disease-disease similarity [118, 121], transcriptional sig-

natures [113,114,119,122,123], protein interactions [120], genetic association [124,125], drug side

effects [126, 127], disease symptoms [128], and molecular pathways [129]. Our ability to create

such an integrative model of drug efficacy relies on the hetnet data structure to unite diverse

information. On the hetnet, our algorithm learns which types of compound–disease paths dis-

criminate treatments from non-treatments in order to predict the probability that a compound

treats a disease.

5.3 Results

5.3.1 Hetionet v1.0

We obtained and integrated data from 29 publicly-available resources to create Hetionet v1.0

(Figure 5.1). The hetnet contains 47,031 nodes of 11 types (Table 5.1) and 2,250,197 relationships

of 24 types (Table 5.2). The nodes consist of 1,552 small molecule compounds and 137 complex

diseases, as well as genes, anatomies, pathways, biological processes, molecular functions, cellular

components, perturbations, pharmacologic classes, drug side effects, and disease symptoms.

The edges represent relationships between these nodes and encompass the collective knowledge

produced by millions of studies over the last half century.

For example, Compound–binds–Gene edges represent when a compound binds to a pro-

tein encoded by a gene. This information has been extracted from the literature by human

curators and compiled into databases such as DrugBank, ChEMBL, DrugCentral, and Bind-
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Figure 5.1. Hetionet v1.0 A) The metagraph, a schema of the network types. B) The
hetnet visualized. Nodes are drawn as dots and laid out orbitally, thus forming circles. Edges
are colored by type. C) Metapath counts by path length. The number of different types of
paths of a given length that connect two node types is shown. For example, the top-right tile in
the Length 1 panel denotes that Anatomy nodes are not connected to themselves (i.e. no edges
connect nodes of this type between themselves). However, the bottom-left tile of the Length 4
panel denotes that 88 types of length-four paths connect Symptom to Anatomy nodes.

ingDB. We combined these databases to create 11,571 binding edges between 1,389 compounds

and 1,689 genes. These edges were compiled from 10,646 distinct publications, which Hetionet

binding edges reference as an attribute. Binding edges represent a comprehensive catalog con-

structed from low throughput experimentation. However, we also integrated findings from high

throughput technologies – many of which have only recently become available. For example, we

generated consensus transcriptional signatures for compounds in LINCS L1000 and diseases in

STARGEO.
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Metanode Abbr Nodes Disconnected Metaedges

Anatomy A 402 2 4
Biological Process BP 11,381 0 1
Cellular Component CC 1,391 0 1
Compound C 1,552 14 8
Disease D 137 1 8
Gene G 20,945 1,800 16
Molecular Function MF 2,884 0 1
Pathway PW 1,822 0 1
Pharmacologic Class PC 345 0 1
Side Effect SE 5,734 33 1
Symptom S 438 23 1

Table 5.1. Metanodes. Hetionet v1.0 includes 11 node types (metanodes). For each
metanode, this table shows the abbreviation, number of nodes, number of nodes without any
edges, and the number of metaedges connecting the metanode.

While Hetionet v1.0 is ideally suited for drug repurposing, the network has broader biological

applicability. Among the 11 metanodes, there are 66 possible source–target pairs. However, only

11 of them have at least one direct connection. In contrast, for paths of length 2, 50 pairs have

connectivity (paths types that start on the source node type and end on the target node type, see

Figure 5.1C). At length 3, all 66 pairs are connected. At length 4, the source–target pair with the

fewest types of connectivity (Side Effect to Symptom) has 13 metapaths, while the pair with the

most connectivity types (Gene to Gene) has 3,542 pairs. This high level of connectivity across

a diversity of biomedical entities forms the foundation for automated translation of knowledge

into biomedical insight.

Hetionet v1.0 is available online in JSON, Neo4j, and TSV formats. The JSON and Neo4j

database formats include node and edge properties – such as URLs, source and license infor-

mation, and confidence scores – and are thus recommended. In addition, a read-only Neo4j

Browser is available at http://neo4j.het.io, providing users an installation-free method to query

and visualize the network.
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Metaedge Abbr Edges Sources Targets

Anatomy–downregulates–Gene AdG 102,240 36 15,097
Anatomy–expresses–Gene AeG 526,407 241 18,094
Anatomy–upregulates–Gene AuG 97,848 36 15,929
Compound–binds–Gene CbG 11,571 1,389 1,689
Compound–causes–Side Effect CcSE 138,944 1,071 5,701
Compound–downregulates–Gene CdG 21,102 734 2,880
Compound–palliates–Disease CpD 390 221 50
Compound–resembles–Compound CrC 6,486 1,042 1,054
Compound–treats–Disease CtD 755 387 77
Compound–upregulates–Gene CuG 18,756 703 3,247
Disease–associates–Gene DaG 12,623 134 5,392
Disease–downregulates–Gene DdG 7,623 44 5,745
Disease–localizes–Anatomy DlA 3,602 133 398
Disease–presents–Symptom DpS 3,357 133 415
Disease–resembles–Disease DrD 543 112 106
Disease–upregulates–Gene DuG 7,731 44 5,630
Gene–covaries–Gene GcG 61,690 9,043 9,532
Gene–interacts–Gene GiG 147,164 9,526 14,084
Gene–participates–Biological Process GpBP 559,504 14,772 11,381
Gene–participates–Cellular Component GpCC 73,566 10,580 1,391
Gene–participates–Molecular Function GpMF 97,222 13,063 2,884
Gene–participates–Pathway GpPW 84,372 8,979 1,822
Gene–regulates–Gene GrG 265,672 4,634 7,048
Pharmacologic Class–includes–Compound PCiC 1,029 345 724

Table 5.2. Metaedges. Hetionet v1.0 contains 24 edge types (metaedges). For each
metaedge, the table reports the abbreviation, the number of edges, the number of source nodes
connected by the edges, and the number of target nodes connected by the edges.

5.3.2 Systematic mechanisms of efficacy

One aim of Project Rephetio was to systematically evaluate why drugs work. To address

this question, we created a gold standard of 755 disease-modifying indications, which form the

Compound–treats–Disease edges in Hetionet v1.0. Next, we identified types of paths (metapaths)

that occurred more frequently between treatments than non-treatments (any compound–disease

pair that is not a treatment). The advantage of this approach is that metapaths naturally cor-

respond to mechanisms of pharmacological efficacy. For example, the Compound–binds–Gene–

associates–Disease (CbGaD) metapath identifies when a drug binds to a protein corresponding
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to a gene involved in the disease.

We evaluated all 1,206 metapaths that go from compound to disease and have length of

2–4 (Figure 5.2A). To control the different degrees of nodes, we used the degree-weighted path

count (DWPC ) – which downweights paths through high degree nodes [117] – to assess path

prevalence. In addition, we compared the performance of each metapath to a baseline computed

from permuted networks. Hetnet permutation preserves node degree while eliminating edge

specificity, allowing us to isolate the portion of unpermuted metapath performance resulting

from actual network paths. We refer to the permutation-adjusted performance measure as ∆

AUROC.

709 of the 1,206 metapaths exhibited a statistically significant ∆ AUROC at a false discovery

rate cutoff of 5%. These 709 metapaths included all 24 metaedges, suggesting that each type of

relationship we integrated had some pharmacological utility. However, not all metaedges were

equally present in significant metapaths: 259 significant metapaths included a Compound–binds–

Gene metaedge, whereas only 4 included a Gene–participates–Cellular Component metaedge.

Table 5.3 provides the predictiveness of several interesting metapaths. Refer to the Discussion

for our interpretation of these findings.

5.3.3 Predictions of drug efficacy

We implemented a machine learning approach to translate the network connectivity between a

compound and disease into a probability of treatment. The approach relies on the 755 treatments

as positives and 29,044 non-treatments as negatives to train a logistic regression model. The

features consisted of a prior probability of treatment, node degrees for 14 metaedges, and DWPCs

for 123 metapaths that were well suited for modeling. A cross-validated elastic net was used to

prevent overfitting, yielding a model with 31 features (Figure 5.2B). The DWPC features with

negative coefficients appear to be included as node-degree-capturing covariates. However, the

11 DWPC features with non-negligible positive coefficients embody the most salient types of

connectivity for systematically modeling pharmacology.
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Figure 5.2. Performance by type and model coefficients. A) The performance of the
DWPCs for 1,206 metapaths, organized by their composing metaedges. The larger dots
represent metapaths that were significantly affected by permutation (false discovery rate
< 5%). Metaedges are ordered by their best performing metapath. Since a metapath’s
performance is limited by its least informative metaedge, the best performing metapath for a
metaedge provides a lower bound on the pharmacologic utility of a given domain of
information. B) Barplot of the model coefficients. Features were standardized prior to model
fitting to make the coefficients comparable [130].

These 11 features correspond to the following types of connectivity: whether the compound

binds to the same genes as compounds which treat the disease (CbGbCtD); whether the com-

pound binds to genes that are associated with the disease (CbGaD); whether the compound

belongs to the same pharmacologic classes as compounds that treat the disease (CiPCiCtD);

whether the compound chemically resembles compounds that treat the disease (CrCtD); whether
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Metapath ∆ AUROC -log10(p)

CbGaD 14.5% 6.2
CbGiGaD 9.0% 4.4
CbGiGiGaD 7.0% 5.1
CbGpPWpGaD 7.6% 7.9
CbGpBPpGaD 4.9% 3.8
CcSEcCtD 14.0% 6.8
CtDpSpD 13.9% 6.1
CbGeAlD 8.4% 5.2
CtDlAlD 12.4% 6.0
CuGdD 1.1% 2.6
CdGuD 1.7% 4.5
CuGuCtD 4.4% 3.5
CdGdCtD 3.8% 4.6
CuGdCtD -1.6% 2.9
CdGuCtD -2.1% 2.4
CtDuGuD 1.1% 1.4
CtDdGdD 4.2% 3.9
CtDdGuD 0.5% 1.0
CtDuGdD 0.7% 1.3

Table 5.3. The predictiveness of select metapaths. The performance of several
interesting metapaths is shown.

the compound treats diseases which resemble the disease (CtDrD); whether the compound resem-

bles compounds that resemble compounds that treat the disease (CrCrCtD); whether the com-

pound causes the same side effects as compounds that treat the disease (CcSEcCtD); whether

the compound palliates the same diseases as compounds that treat the disease (CpDpCtD);

whether the compound binds to genes that participate in the same pathways as genes associated

with the disease (CbGpPWpGaD); whether the compound binds to genes that are expressed in

the anatomies affected by the disease (CbGeAlD).

We applied the model to predict the probability of treatment between each of 1,538 connected

compounds and each of 136 connected diseases, resulting in predictions for 209,168 compound–

disease pairs [131]. The 755 known disease-modifying indications were highly ranked (AUROC

= 97.4%, Figure 5.3). The predictions also successfully prioritized two external validation sets:

novel indications from DrugCentral (AUROC = 85.5%) and novel indications in clinical trial
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(AUROC = 70.0%).

Figure 5.3. Predictions performance on four indication sets. We assess how well our
predictions prioritize four sets of indications. A) The y-axis labels denote the number of
indications (+) and non-indications (-) composing each set. Violin plots with quartile lines
show the distribution of indications when compound–disease pairs are ordered by their
prediction. In all four cases, the actual indications were ranked highly by our predictions. B)
ROC Curves with AUROCs in the legend. C) Precision–Recall Curves with AUPRCs in the
legend.

Predictions were scaled to the overall prevalence of treatments (0.36%). Hence a compound–

disease pair that received a prediction of 1% shows a 3-fold enrichment over random. Of the

3,980 predictions over 1%, 586 were disease-modifying indications leaving 3,394 repurposing

candidates. One such example is the application of clofarabine to treat multiple sclerosis (Figure

5.4). Clofarabine is chemically similar to cladribine [132], which showed promising phase 3

results and was approved in Australia and Russia before being withdrawn due to safety concerns
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[133, 134]. Our method picked up on the similarities between cladribine and clofarabine, both

in terms of structure and targets. In addition, clofarabine is a nucleic acid synthesis inhibitor

like azathioprine – an effective multiple sclerosis treatment [135].

Figure 5.4. Visualizing the prediction that Clofarabine treats multiple sclerosis.
Clofarabine was the top prediction for multiple sclerosis that wasn’t already a known
treatment. It received a probability of 8.80%, representing a 24-fold enrichment in probability
over random. The ten paths that provide the greatest support for the efficacy of clofarabine in
treating multiple sclerosis are shown.

5.4 Discussion

We created Hetionet v1.0, which integrates 29 resources into a single hetnet. Consisting of 11

types of nodes and 24 types of relationships, Hetionet brings more types of information together

than previous leading-studies in biological data integration [10]. Moreover, we strove to create
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a reusable, extensible, and property-rich network.

As data has grown more plentiful and diverse, so have the applications for hetnets. Unfor-

tunately, network science has been fragmented by discipline and slow to adapt. A 2014 analysis

identified 78 studies using multilayer networks – a superset of hetnets with the potential for

a time dimension. However, the studies relied on 26 different terms, 9 of which had multiple

definitions [23]. Nonetheless, core infrastructure and algorithms for hetnets are emerging. One

goal of our project has been to unite hetnet research across disciplines [20]. We approached

this goal by making Project Rephetio entirely available online and inviting community feedback

throughout the process.

Integrating every resource into a single interconnected data structure allowed us to as-

sess systematic mechanisms of drug efficacy. Using the max performing metapath to assess

the pharmacological utility of a metaedge (Figure 5.2A), we can divide our relationships into

tiers of informativeness. The top tier consists of the types of information traditionally con-

sidered by pharmacology: Compound–treats–Disease, Pharmacologic Class–includes–Compound,

Compound–resembles–Compound, Disease–resembles–Disease, and Compound–binds–Gene. The

upper-middle tier consists of types of information that have been the focus of substantial med-

ical study, but have only recently started to play a bigger role in drug development: Disease–

associates–Gene, Compound–causes–Side Effect, Disease–presents–Symptom, Disease–localizes–

Anatomy, and Gene–interacts–Gene metaedges.

The lower-middle tier contains the transciptomics metaedges such as Compound–downregulates–

Gene, Anatomy–expresses–Gene, Gene–regulates–Gene, andDisease–downregulates–Gene. Much

excitement surrounds these resources due to their high throughput and genome-wide scope,

which offers a route to drug discovery that is less biased by existing knowledge. Our find-

ings suggest that these resources are weakly informative of drug efficacy. Other lower-middle

tier metaedges were the product of time-intensive biological experimentation, such as Gene–

participates–Pathway, Gene–participates–Molecular Function, and Gene–participates–Biological

Process. However, unlike the top tier resources, this knowledge was historically pursued for basic
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science rather than primarily medical applications. The weak yet appreciable performance of

the Gene–covaries–Gene suggests the synergy between the fields of evolutionary genomics and

disease biology. The lower tier included the Gene–participates–Cellular Component metaedge,

which may reflect that the relevance of cellular location to pharmacology is highly case dependent

and not amenable to systematic profiling.

5.5 Methods

Hetionet was built entirely from publicly-available resources with the goal of integrating a broad

diversity of information types of medical relevance, ranging in scale from molecular to organ-

ismal. Practical considerations such as data availability, licensing, reusability, documentation,

throughput, and standardization informed our choice of resources. We abided by a simple litmus

test for determining how to encode information in a hetnet: nodes represent nouns, relationships

represent verbs [136,137].

Our method for relationship prediction creates a strong incentive to avoid redundancy, which

increases the computational burden without improving performance. In a previous study to

predict disease–gene associations using a hetnet of pathophysiology [117], we found that different

types of gene sets contributed highly redundant information. Therefore, in Hetionet v1.0 we

reduced the number of gene set node types from 14 to 3 by omitting several gene set collections

and aggregating all pathway nodes.

5.5.1 Nodes

Nodes encode entities. We extracted nodes from standard terminologies, which provide curated

vocabularies to enable data integration and prevent concept duplication. The ease of mapping

external vocabularies, adoption, and comprehensiveness were primary selection criteria. Het-

ionet v1.0 includes nodes from 5 ontologies – which provide hierarchy of entities for a specific

domain – selected for their conformity to current best practices [138].

We selected 137 terms from the Disease Ontology [61,139] (which we refer to as DO Slim [140,
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141]) as our disease set. Our goal was to identify complex diseases that are distinct and specific

enough to be clinically relevant yet general enough to be well annotated. To this end, we included

diseases that have been studied by GWAS and cancer types from TopNodes DOcancerslim [142].

We ensured that no DO Slim disease was a subtype of another DO Slim disease. Symptoms

were extracted from MeSH by taking the 438 descendants of Signs and Symptoms [143,144].

Approved small molecule compounds with documented chemical structures were extracted

from DrugBank version 4.2 [145–147]. Unapproved compounds were excluded because our focus

was repurposing. In addition, unapproved compounds tend to be less studied than approved

compounds making them less attractive for our approach where robust network connectivity is

critical. Finally, restricting to small molecules with known documented structures enabled us

to map between compound vocabularies (see Mappings).

Side effects were extracted from SIDER version 4.1 [148–150]. SIDER codes side effects using

UMLS identifiers [151], which we also adopted. Pharmacologic Classes were extracted from the

DrugCentral data repository (olegursu/drugtarget) [152].

Protein-coding human genes were extracted from Entrez Gene [153–155]. Anatomical struc-

tures, which we refer to as anatomies, were extracted from Uberon [156]. We selected a subset

of 402 Uberon terms by excluding terms known not to exist in humans and terms that were

overly broad or arcane [157,158].

Pathways were extracted by combining human pathways from WikiPathways [159,160], Re-

actome [161], and the Pathway Interaction Database [162]. The latter two resources were re-

trieved from Pathway Commons [163], which compiles pathways from several providers. Du-

plicate pathways and pathways without multiple participating genes were removed [164, 165].

Biological processes, cellular components, and molecular functions were extracted from the Gene

Ontology [60]. Only terms with 2–1000 annotated genes were included.
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5.5.2 Mappings

Before adding relationships, all identifiers needed to be converted into the vocabularies matching

that of our nodes. Oftentimes, our node vocabularies included external mappings. For example,

the Disease Ontology includes mappings to MeSH, UMLS, and the ICD, several of which we

submitted during the course of this study [166]. In a few cases, the only option was to map

using gene symbols, a disfavored method given that it can lead to ambiguities.

When mapping external disease concepts onto DO Slim, we used transitive closure. For

example, the UMLS concept for primary progressive multiple sclerosis (C0751964) was mapped

to the DO Slim term for multiple sclerosis (DOID:2377).

Chemical vocabularies presented the greatest mapping challenge [146], since these are poorly

standardized [167]. UniChem’s [168] Connectivity Search [169] was used to map compounds,

which maps by atomic connectivity (based on First InChIKey Hash Blocks [170]) and ignores

small molecular differences.

5.5.3 Edges

Anatomy–downregulates–Gene and Anatomy–upregulates–Gene edges [171–173] were extracted

from Bgee [174], which computes differentially expressed genes by anatomy in post-juvenile adult

humans. Anatomy–expresses–Gene edges were extracted from Bgee and TISSUES [175–177].

Compound–binds–Gene edges were aggregated from BindingDB [178, 179], DrugBank [145,

180], and DrugCentral.

Only binding relationships to single proteins with affinities of at least 1 M (as determined

by Kd, Ki, or IC50) were selected from the October 2015 release of BindingDB [181, 182].

Target, carrier, transporter, and enzyme interactions with single proteins (i.e. excluding protein

groups) were extracted from DrugBank 4.2 [147, 183]. In addition, all mapping DrugCentral

target relationships were included [152].

Compound–treats–Disease (disease-modifying indications) and Compound–palliates–Disease

(symptomatic indications) edges are from PharmacotherapyDB as described in Intermediate re-
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sources. Compound–causes–Side Effect edges were obtained from SIDER 4.1 [148–150], which

uses natural language processing to identify side effects in drug labels. Compound–resembles–

Compound relationships [147,184,185] represent chemical similarity and correspond to a Dice co-

efficient≥ 0.5 [186] between extended connectivity fingerprints [187,188]. Compound–downregulates–

Gene and Compound–upregulates–Gene relationships were computed from LINCS L1000 as de-

scribed in Intermediate resources.

Disease–associates–Gene edges were extracted from the GWAS Catalog [189], DISEASES

[190, 191], DisGeNET [192, 193], and DOAF [194, 195]. The GWAS Catalog compiles disease–

SNP associations from published GWAS [67]. We aggregated overlapping loci associated with

each disease and identified the mode reported gene for each high confidence locus [196,197]. DIS-

EASES integrates evidence of association from text mining, curated catalogs, and experimental

data [198]. Associations from DISEASES with integrated scores ≥ 2 were included after remov-

ing the contribution of DistiLD. DisGeNET integrates evidence from over 10 sources and reports

a single score for each association [199]. Associations with scores ≥ 0.06 were included. DOAF

mines Entrez Gene GeneRIFs (textual annotations of gene function) for disease mentions [200].

Associations with 3 or more supporting GeneRIFs were included. Disease–downregulates–Gene

and Disease–upregulates–Gene relationships [201, 202] were computed using STARGEO as de-

scribed in Intermediate resources.

Disease–localizes–Anatomy, Disease–presents–Symptom, andDisease–resembles–Disease edges

were calculated from MEDLINE cooccurrence [143, 203]. MEDLINE is a subset of 21 million

PubMed articles for which designated human curators have assigned topics. When retrieving

articles for a given topic (MeSH term), we activated two non-default search options as speci-

fied below: majr for selecting only articles where the topic is major and noexp for suppressing

explosion (returning articles linked to MeSH subterms). We identified 4,161,769 articles with

two or more disease topics; 696,252 articles with both a disease topic (majr) and an anatomy

topic (noexp) [204]; and 363,928 articles with both a disease topic (majr) and a symptom topic

(noexp). We used a Fisher’s exact test [205] to identify pairs of terms that occurred together
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more than would be expected by chance in their respective corpus. We included cooccuring

terms with p < 0.005 in Hetionet v1.0.

Gene–covaries–Gene edges represent evolutionary rate covariation ≥ 0.75 [206–208]. Gene–

interacts–Gene edges [209, 210] represent when two genes produce physically-interacting pro-

teins. We compiled these interactions from the Human Interactome Database [90,211–213], the

Incomplete Interactome [214], and our previous study [117]. Gene–participates–Biological Pro-

cess, Gene–participates–Cellular Component, and Gene–participates–Molecular Function edges

are from Gene Ontology annotations [215]. As described in Intermediate resources, annotations

were propagated [216,217].

5.5.4 Intermediate resources

In the process of creating Hetionet, we produced several datasets with broad applicability that

extended beyond Project Rephetio. These resources are referred to as intermediate resources

and described below.

Transcriptional signatures of disease using STARGEO STARGEO is a nascent platform

for annotating and meta-analyzing differential gene expression experiments. The STAR acronym

stands for Search-Tag-Analyze Resources, while GEO refers to the Gene Expression Omnibus

[218, 219]. STARGEO is a layer on top of GEO that crowdsources sample annotation and

automates meta-analysis.

Using STARGEO, we computed differentially expressed genes between healthy and diseased

samples for 49 diseases [201,202]. First, we and others created case/control tags for 66 diseases.

After combing through GEO series and tagging samples, 49 diseases had sufficient data for case-

control meta-analysis: multiple series with at least 3 cases and 3 controls. For each disease,

we performed a random effects meta-analysis on each gene to combine log2 fold-change across

series. These analyses incorporated 27,019 unique samples from 460 series on 107 platforms.

Differentially expressed genes (false discovery rate ¡ 0.05) were identified for each disease.
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The median number of upregulated genes per disease was 351 and the median number of down-

regulated genes was 340. Endogenous depression was the only disease without any significantly

dysregulated genes.

Transcriptional signatures of perturbation from LINCS L1000 LINCS L1000 profiled

the transcriptional response to small molecule and genetic interference perturbations. To in-

crease throughput, expression was only measured for 978 genes, which were selected for their

ability to impute expression of the remaining genes. A single perturbation was often assayed un-

der a variety of conditions including cell types, dosages, timepoints, and concentrations. Each

condition generates a single signature of dysregulation z -scores. We further processed these

signatures to fit into our approach [220,221].

First we computed consensus signatures – which meta-analyze multiple signatures to con-

dense them into one – for DrugBank small molecules, Entrez genes, and all L1000 perturba-

tions [222, 223]. First, we discarded non-gold (non-replicating or indistinct) signatures. Then

we meta-analyzed z -scores using Stouffer’s method. Each signature was weighted by its average

Spearman’s correlation to other signatures, with a 0.05 minimum, to de-emphasize discordant

signatures. Our signatures include the 978 measured genes and the 6,489 imputed genes from

the “best inferred gene subset”. To identify significantly dysregulated genes, we selected genes

using a Bonferroni cutoff of p = 0.05 and limited the number of imputed genes to 1,000.

The consensus signatures for genetic perturbations allowed us to assess various characteristics

of the L1000 dataset. First, we looked at whether genetic interference dysregulated its target

gene in the expected direction [224]. Looking at measured z-scores for target genes, we found

that the knockdown perturbations were highly reliable, while the overexpression perturbations

were only moderately reliable with 36% of overexpression perturbations downregulating their

target. However, imputed z-scores for target genes barely exceeded random at responding in

the expected direction to interference. Hence, we concluded that the imputation quality of

LINCS L1000 is poor. However, when restricting to significantly dyseregulated targets, 22 out

of 29 imputed genes responded in the expected direction. This provides some evidence that the
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directional fidelity of imputation is higher for significantly dysregulated genes. Finally, we found

that the transcriptional signatures of knocking down and overexpressing the same gene were

positively correlated 65% of the time, suggesting the presence of a general stress response [225].

Based on these findings, we performed additional filtering of signifcantly dysregulated genes

when building Hetionet v1.0. Compound–down/up-regulates–Gene relationships were restricted

to the 125 most significant per compound-direction-status combination (status refers to mea-

sured versus imputed). For genetic interference perturbations, we restricted to the 50 most

significant genes per gene-direction-status combination and merged the remaining edges into a

single Gene–regulates–Gene relationship type containing both knockdown and overexpression

perturbations.

PharmacotherapyDB: physician curated indications We created PharmacotherapyDB,

an open catalog of drug therapies for disease [226–228]. Version 1.0 contains 755 disease-

modifying therapies and 390 symptomatic therapies between 97 diseases and 601 compounds.

This resource was motivated by the need for a gold standard of medical indications to

train and evaluate our approach. Initially, we identified four existing indication catalogs [229]:

MEDI-HPS which mined indications from RxNorm, SIDER 2, MedlinePlus, and Wikipedia

[230]; LabeledIn which extracted indications from drug labels via human curation [231–233];

EHRLink which identified medication–problem pairs that clinicians linked together in electronic

health records [234, 235]; and indications from PREDICT, which were compiled from UMLS

relationships, drugs.com, and drug labels [118]. After mapping to DO Slim and DrugBank Slim,

the four resources contained 1,388 distinct indications.

However, we noticed that many indications were palliative and hence problematic as a gold

standard of pharmacotherapy for our in silico approach. Therefore, we recruited two practicing

physicians to curate the 1,388 preliminary indications [236]. After a pilot on 50 indications, we

defined three classifications: disease modifying meaning a drug that therapeutically changes the

underlying or downstream biology of the disease; symptomatic meaning a drug that treats a

significant symptom of the disease; and non-indication meaning a drug that neither therapeu-
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tically changes the underlying or downstream biology nor treats a significant symptom of the

disease. Both curators independently classified all 1,388 indications.

The two curators disagreed on 444 calls (Cohen’s = 49.9%). We then recruited a third

practicing physician, who reviewed all 1,388 calls and created a detailed explanation of his

methodology. We proceeded with the third curator’s calls as the consensus curation. The first

two curators did have reservations with classifying steroids as disease modifying for autoim-

mune diseases. However, we were convinced that these indications met our definition of disease

modifying, which is based on a pathophysiological rather than clinical standard. Accordingly,

therapies we consider disease modifying may not be used to alter long-term disease course in

the modern clinic due to a poor risk–benefit ratio.

User-friendly Gene Ontology annotations We created a browser to provide straightfor-

ward access to Gene Ontology annotations [216,217]. Our service provides annotations between

Gene Ontology terms and Entrez Genes. The user chooses propagated/direct annotation and

all/experimental evidence. Annotations are currently available for 37 species and downloadable

as user-friendly TSV files.

5.5.5 Data copyright and licensing

We committed to openly releasing our data and analyses from the origin of the project [237].

Our goals were to contribute to the advancement of science [238,239], maximize our impact [240],

and enable reproducibility [241–243]. All three of these objectives require publicly distributing

Hetionet. In addition, all three benefit if our hetnet and analyses are openly licensed [244,245].

Since we integrated only public resources, which were overwhelmingly funded by academic

grants, we had assumed that our project and open sharing of our network would not be an

issue. However, upon releasing a preliminary version of our hetnet [246], a community reviewer

informed us of legal barriers to integrating public data. In essence, both copyright (rights of

exclusivity automatically granted to original works) and terms of use (rules that users must
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agree to in order to use a resource) place legally-binding restrictions on data reuse.

Of the 29 resources we integrated, only 12 had licenses that met the Open Definition with

respect to knowledge. 9 did not have a license, which equates to all rights reserved and by default

forbids reuse. Several resources had incompatible licenses caused primarily by non-commercial

and share-alike stipulations. One resource included terms which explicitly forbid redistribution.

In addition, it was often unclear who owned the data [247]. Therefore, we sought input from

legal experts and chronicled our progress [248–251].

Ultimately, we did not find an ideal solution. We had to choose between absolute com-

pliance and our hetnet: strictly adhering to copyright and licensing arrangements would have

decimated our network. Hence we choose a path forward which balanced legal, normative, eth-

ical, and scientific considerations. If a resource was in the public domain, for example works

of the US Government, we licensed any derivatives as CC0 1.0. For resources licensed to allow

use, redistribution, and modification, we transmitted their licenses as properties on the specific

nodes and relationships in our hetnet. For all other resources – for example, resources without

licenses or with licenses that forbid redistribution – we sent permission requests to their cre-

ators. The median time till first response to our permission requests was 16 days, with only

2 resources affirmatively granting us permission. We did not receive any responses asking us

to remove a resource. However, we did voluntarily remove MSigDB [54], since its license was

highly problematic [249].

5.5.6 Permuted Hetnets

From Hetionet, we derived five permuted hetnets [252]. The permutations preserve node degree

but eliminate edge specificity by employing an algorithm called XSwap to randomly swap edges

[253]. Permuted networks are useful for computing the baseline performance of meaningless

edges while preserving node degree [254].
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5.5.7 Neo4j

While in a previous project, we developed hetio – a Python package for hetnets [255] – for

this work, we migrated to the Neo4j graph database for storing and operating on hetnets [256].

However, hetio was still used to create the network and prepare Neo4j queries. Graph database

adoption in bioinformatics has thus far been limited [21]. Nonetheless, we noticed major benefits

by tapping into a larger open source ecosystem. Persistent storage with immediate access and

the Cypher query language – a sort of SQL for hetnets – were two of the biggest draws. We

created an interactive GraphGist on our project, which introduces our approach and showcases

our Cypher queries.

5.5.8 Machine learning approach

We made several refinements to metapath-based hetnet edge prediction compared to previous

studies [52,117]. First, we transformed DWPCs to make them more amenable to modeling [257]

by mean scaling and then taking the inverse hyperbolic sine [258]. Second, we bifurcated the

workflow into an all-features stage and an all-observations stage [259]. The all-features stage

assesses feature performance and does not require computing features for all negatives. Here we

selected a random subset of 3,020 negatives. Little error was introduced by this optimization,

since the predominant limitation to performance assessment was the small number of positives

(755) rather than negatives. Based on the all-features performance assessment [260], we selected

142 DWPCs to compute on all observations (all 209,168 compound–disease pairs). The feature

selection was designed to remove uninformative features (according to permutation) and guard

against edge-dropout contamination [261]. Third, we included 14 degree features, which assess

the degree of a specific metaedge for either the source compound or target disease.

Prior probability of treatment The 755 treatments in Hetionet v1.0 are not evenly dis-

tributed between all compounds and diseases. For example, methotrexate treats 19 diseases

and hypertension is treated by 68 compounds. We estimated a prior probability of treatment
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– based only on the treatment degree of the source compound and target disease – on 744,975

permutations of the bipartite treatment network [262]. Methotrexate received a 79.6% prior

probability of treating hypertension, whereas a compound and disease that both had only one

treatment received a prior of 0.12%.

Across the 209,168 compound–disease pairs, the prior predicted the known treatments with

AUROC = 97.9%. The strength of this association threatened to dominate our predictions.

However, not modeling the prior can lead to omitted-variable bias and confounded proxy vari-

ables. To address the issue, we included the logit-transformed prior, without any regularization,

as a term in the model. This restricted model fitting to the 29,799 observations with a nonzero

prior – corresponding to the 387 compounds and 77 diseases with at least one treatment. To

enable predictions for all 209,168 observations, we set the prior for each compound–disease pair

to the overall prevalence of positives (0.36%).

This method succeeded at accommodating the treatment degrees. The prior probabilities

performed poorly on the validation sets with AUROC = 54.1% on DrugCentral indications and

AUROC = 62.5% on clinical trials. This performance dropoff compared to training shows the

danger of encoding treatment degree into predictions. The benefits of our solution are highlighted

by the superior validation performance of our predictions compared to the prior (Figure 3).

5.5.9 Indication sets

We evaluated our predictions on four sets of indications as shown in Figure 3.

• Disease Modifying – the 755 disease modifying treatments in PharmacotherapyDB v1.0.

These indications are included in the hetnet as treats edges and used to train the logistic

regression model. Due to edge dropout contamination and self-testing [261, 263], overfit-

ting could potentially inflate performance on this set. Therefore, for the three remaining

indication sets, we removed any observations that were positives in this set.

• DrugCentral – We discovered the DrugCentral database after completing our physi-

cian curation for PharmacotherapyDB. This database contained 210 additional indica-
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tions [152]. While we didn’t curate these indications, we observed a high proportion of

disease modifying therapy.

• Clinical Trial – We compiled indications that have been investigated by clinical trial

from ClinicalTrials.gov [264]. This set contains 5,594 indications.

• Symptomatic – 390 symptomatic indications from PharacotherapyDB. These edges are

included in the hetnet as palliates edges.

Only the Clinical Trial and DrugCentral indication sets were used for external validation,

since the Disease Modifying and Symptomatic indications were included in the hetnet.

5.5.10 Realtime open science & Thinklab

We conducted our study using Thinklab – a platform for realtime open collaborative science –

on which this study was the first project. We began the study by publicly proposing the idea

and inviting discussion [265]. We continued by chronicling our progress via discussions. We used

Thinklab as the frontend to coordinate and report our analyses and GitHub as the backend to

host our code, data, and notebooks. On top of our Thinklab team consisting of core contributors,

we welcomed community contribution and review. In areas where our expertise was lacking or

advice would be helpful, we sought input from domain experts and encouraged them to respond

on Thinklab where their comments would be CC BY licensed and their contribution rated and

rewarded.

In total, 35 non-team members commented across 77 discussions, which generated 452 com-

ments and 152 notes. The Thinklab content for this project totaled 101,501 words or 635,151

characters [266]. Using an estimated 7,000 words per academic publication as a benchmark,

Project Rephetio generated written content comparable in volume to 14.5 publications prior

to its completion. We noticed several other benefits from using Thinklab including forging a

community of contributors [267]; receiving feedback during the early stages when feedback is

the most actionable [268]; disseminating our research without delay [269,270]; opening avenues

for external input [271]; facilitating problem-oriented teaching [272, 273]; and improving our
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documentation by maintaining a publication-grade digital lab notebook [274].
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Chapter 6

Open science

The entirety of my dissertation was exclusively based on publicly-available data. Hetnets thrive

by integrating data of many types, which comes from many sources. The breadth and diversity

of the data our hetnets integrate means no one proprietary collection contains all the data.

Hence, public data was the only option to achieve our desired scale. Additionally, public data

has the benefit of being immediately available. Were we dependent on 30 different collaborating

research groups rather than 30 public databases to compile our data, our projects would not

have been possible. As discussed in Chapter 5, there are still legal barriers to data reuse that

consumed substantial time. However, I’m hoping our experience will spur progress in this area.

Sharing my research as soon as possible and as openly as possible has been a guiding principle

of my PhD. This chapter discusses other open science projects and efforts to improve science, I

undertook during my PhD.

6.1 Elevation, Oxygen, and Lung Cancer

During the second year of my PhD in early 2013, my roommate and soon-to-be colleague,

Kamen Simeonov, mentioned his observation that lung cancer rates were lower at high altitude.

He theorized that breathing oxygen causes cancer. We began designing an epidemiological

study to interrogate his hypothesis. As two early career scientists not affiliated with any lung
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cancer research programs, we were dependent solely on public data. We compiled data from 11

publicly-available databases. The study was published in [275]:

Simeonov KP, Himmelstein DS (2015) Lung cancer incidence decreases with

elevation: evidence for oxygen as an inhaled carcinogen. PeerJ. DOI:

10.7717/peerj.705

Figure 6.1 shows the inverse association between lung cancer and elevation we observed. The

abstract of this study follows:

The level of atmospheric oxygen, a driver of free radical damage and tumorigene-

sis, decreases sharply with rising elevation. To understand whether ambient oxygen

plays a role in human carcinogenesis, we characterized age-adjusted cancer incidence

(compiled by the National Cancer Institute from 2005 to 2009) across counties of

the elevation-varying Western United States and compared trends displayed by res-

piratory cancer (lung) and non-respiratory cancers (breast, colorectal, and prostate).

To adjust for important demographic and cancer-risk factors, 8–12 covariates were

considered for each cancer. We produced regression models that captured known

risks. Models demonstrated that elevation is strongly, negatively associated with

lung cancer incidence (p < 10−16), but not with the incidence of non-respiratory

cancers. For every 1,000 m rise in elevation, lung cancer incidence decreased by

7.23 99% CI [5.18–9.29] cases per 100,000 individuals, equivalent to 12.7% of the

mean incidence, 56.8. As a predictor of lung cancer incidence, elevation was second

only to smoking prevalence in terms of significance and effect size. Furthermore,

no evidence of ecological fallacy or of confounding arising from evaluated factors

was detected: the lung cancer association was robust to varying regression models,

county stratification, and population subgrouping; additionally seven environmen-

tal correlates of elevation, such as exposure to sunlight and fine particulate matter,

could not capture the association. Overall, our findings suggest the presence of an
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inhaled carcinogen inherently and inversely tied to elevation, offering epidemiological

support for oxygen-driven tumorigenesis. Finally, highlighting the need to consider

elevation in studies of lung cancer, we demonstrated that previously reported inverse

lung cancer associations with radon and UVB became insignificant after accounting

for elevation.

While our study was not the first to suggest oxygen-driven tumorigenesis in lung cancer

etiology [276, 277], our study turned out to be provocative. Cancer Research UK ridiculed the

study, but we addressed their criticism in a blog post. George Johnson, in his Raw Data column

for the New York Times, would later summarize the controversy writing:

Skeptics were quick to strike back, though not very effectively. A would-be debunking

on the Cancer Research UK website was quickly followed by a debunking of the

debunking.

In addition to the Times, our study was covered by over 100 news outlets. It was also

named a Top Cancer Biology Paper by PeerJ and won the Abramson Cancer Center 2015 Basic

Research Prize at the University of Pennsylvania.

We made our entire analysis available online. I designed the codebase so the study could

be replicated with a single command. One highlight was post publication when we received a

GitHub issue reporting an error running our code. Debugging the code led me to discover that

a few values in our publication were incorrect. The PeerJ Question/Comment feature allowed

me to issue a corrigendum in realtime, which traced the error back to the specific line of faulty

code. The experience illustrates how the self-correction of science will accelerate from openness.

6.2 Publishing Delays

While waiting for the contents of Chapter 4 to be published in PLOS Computational Biology,

I grew restless and frustrated by the glacial pace of scientific publishing. Our paper had been
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Figure 6.1. Adjustment for covariates sharpens lung cancer’s association with
elevation. Points represent counties shaded by their regression weight based on population.
Bivariate (red) and partial (blue) regression lines are displayed with 99% confidence bands.
(A) Bivariate plot of county lung cancer incidence (age-adjusted per 100,000) and elevation
(km). (B) Partial regression plot for elevation based on the optimal best subset lung model.
Association sharpens after adjustment for covariates, illustrated by the tighter confidence band
and higher R2 in the partial plot.

accepted for 68 days but was still not published. I began researching publishing delays for the

PLOS family of journals. I initially started by scraping the PLOS website for article timestamps.

However, I soon began downloading the history dates in PubMed for all articles since 2014. I

visualized the delays for several open access titles in my field. I posted the findings on my blog

(Figure 6.2) and added a table of median delays for the 3,475 journals that submitted PubMed

history data [278]. My tweet introducing the analysis received hundreds of retweets and Nature

News soon covered the story [279].

Later Kendall Powell, writing a feature for Nature News, contacted me with additional

questions. Her investigation had uncovered a widespread belief that delays were worsening with

time. But she wanted data, and the existing data was field specific or anecdotal [280]. So I

set out to uncover the history of publishing delays. Using PubMed, I extracted delays for over
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Figure 6.2. Publication delay distributions for 16 journals in my field. Quartiles are
drawn as horizontal lines. The two journals where we submitted Chapter 4 for publication had
the highest median publication delays.

3 million articles since 1965. I posted my findings in a blog post released in tandem with the

feature [269,281]. The feature drew considerably from my analysis and is available at:

Powell K (2016) Does it take too long to publish research?. Nature. DOI:

10.1038/530148a

In short, I found that the median time from submission to acceptance has hovered around

100 days since 1981 (Figure 6.3). However, the median time from acceptance to online publica-

tion has decreased over 50 days in the early 2000s to under 25 days in 2015. One caveat with my

analysis of acceptance delays is that journals may be resetting the clock (reporting subsequent

manuscript receival datas rather than the data of first submission). However, users can select

a journal of their choosing and see its specific delay history. I am hoping this increased trans-

parency will help eliminate deceptive timestamping. My goal with this research has been to help

researchers avoid excessive delays while replacing anecdote with evidence in the contemporary
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discussion of scientific publishing.

Figure 6.3. 35 years of acceptance delays. The time between submission and acceptance
encapsulates editorial decision, peer review, and revision. This figure visualize 35 years of
acceptance delays. Each year, the green lines indicate delay percentiles, spaced every 2.5
points with quartiles bolded. The gray band displays a curve fitted for all articles over time.
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Chapter 7

Conclusion

My dissertation imagines a future where vast amounts of information are encoded using hetnets.

A hetnet is to artificial intelligence what an encyclopedias is to human intelligence. Hetnets

provide a medium for integrating diverse information. Structured vocabularies, ontologies, and

terminology mappings have enabled large scale biomedical hetnets, such as Hetionet.

Now that the data structure is gaining momentum, there is a large opportunity to create

algorithms for extracting insights from hetnets. Our experience indicates machine learning on

networks is a complex task. Particularly, it’s difficult to assign causality to any observed signals.

Great care must be taken to avoid potential confounding factors. We found that permutation

is an invaluable tool when analyzing hetnets. However, designing the appropriate permutation

is not always trivial and is usually computationally intensive. I hope to continue developing a

conceptual framework for handling hetnets.

With respect to hetnet edge prediction, there are many unexplored possibilities. One idea is

complex metapaths that mandate several conditions. For example, finding compounds that affect

the same genes as a disease, but only considering genes that are expressed in disease-relevant

anatomies. Or another example, allowing query-time transitive closure to address hierarchical

concepts. Another enhancement would be to support edge weights. Currently, our feature

extraction paradigm assumes binary (absent or present) edges. However, performance could
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improve if we could account for edge confidence scores or probabilities. Finally, we would like

to begin comparing our method to potential alternatives [10].

There is also opportunity to grow the hetnet to include additional domains. For example, we

could include SNPs, allowing us to integrate an enormous amount of high-throughput genomic

data. Another idea would be to differentiate proteins and genes to achieve a more nuanced

encoding of the central dogma. For nodes already in Hetionet, there are several promising

additional edge types such as disease comorbidity and drug interactions. When adding new

edges, we should focus on domains that will contribute orthogonal information. As the hetnet

community grows and software solutions such as Neo4j advance, we expect to be able to operate

on hetnets with greater efficiency and accommodate larger analyses.
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[198] Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ (2015) DISEASES:

Text mining and data integration of disease–gene associations. Methods. DOI:

10.1016/j.ymeth.2014.11.020

[199] Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, et al. (2015) Dis-

GeNET: a discovery platform for the dynamical exploration of human diseases

and their genes. Database. DOI: 10.1093/database/bav028

[200] Xu W, Wang H, Cheng W, Fu D, Xia T, et al. (2012) A framework for annotating

human genome in disease context. PLoS ONE. DOI: 10.1371/journal.pone.0049686

101

https://doi.org/10.5281/zenodo.48425
https://doi.org/10.5281/zenodo.48425
https://doi.org/10.15363/thinklab.d105
https://doi.org/10.15363/thinklab.d105
https://doi.org/10.5281/zenodo.48426
https://doi.org/10.5281/zenodo.48426
https://doi.org/10.15363/thinklab.d94
https://doi.org/10.5281/zenodo.48427
https://doi.org/10.5281/zenodo.48427
https://doi.org/10.15363/thinklab.d80
https://doi.org/10.15363/thinklab.d80
https://doi.org/10.15363/thinklab.d71
https://doi.org/10.15363/thinklab.d71
https://doi.org/10.1016/j.ymeth.2014.11.020
https://doi.org/10.1016/j.ymeth.2014.11.020
https://doi.org/10.1093/database/bav028
https://doi.org/10.1093/database/bav028
https://doi.org/10.1093/database/bav028
https://doi.org/10.1371/journal.pone.0049686
https://doi.org/10.1371/journal.pone.0049686


[201] Himmelstein D, Bastian F, Hadley D, Greene C (2015). STARGEO: expression

signatures for disease using crowdsourced GEO annotation. Thinklab. DOI:

10.15363/thinklab.d96

[202] Himmelstein D, Hadley D, Schepanovski A (2016). dhimmel/stargeo v1.0: dif-

ferentially expressed genes for 48 diseases from stargeo. Zenodo. DOI:

10.5281/zenodo.46866

[203] Himmelstein DS (2016). dhimmel/medline v1.0: Disease, symptom, and anatomy

cooccurence in medline. Zenodo. DOI: 10.5281/zenodo.48445

[204] Himmelstein D (2015). Disease similarity from MEDLINE topic cooccurrence.

Thinklab. DOI: 10.15363/thinklab.d93

[205] Fisher RA (1922) On the interpretation of chi-squared from contingency tables,

and the calculation of p. Journal of the Royal Statistical Society. DOI: 10.2307/2340521

[206] Priedigkeit N, Wolfe N, Clark NL (2015) Evolutionary signatures amongst disease

genes permit novel methods for gene prioritization and construction of infor-

mative gene-based networks. PLoS Genet. DOI: 10.1371/journal.pgen.1004967

[207] Himmelstein D, Partha R (2015). Selecting informative ERC (evolutionary rate

covariation) values between genes. Thinklab. DOI: 10.15363/thinklab.d57

[208] Himmelstein DS (2016). dhimmel/erc v1.0: Processing human evolutionary rate

covaration data. Zenodo. DOI: 10.5281/zenodo.48444

[209] Himmelstein D, Hadley D, Strokach A (2015). Creating a catalog of protein interac-

tions. Thinklab. DOI: 10.15363/thinklab.d85

[210] Himmelstein DS, Baranzini SE (2016). dhimmel/ppi v1.0: Compiling a human

protein interaction catalog. Zenodo. DOI: 10.5281/zenodo.48443

102

https://doi.org/10.15363/thinklab.d96
https://doi.org/10.15363/thinklab.d96
https://doi.org/10.5281/zenodo.46866
https://doi.org/10.5281/zenodo.46866
https://doi.org/10.5281/zenodo.48445
https://doi.org/10.5281/zenodo.48445
https://doi.org/10.15363/thinklab.d93
https://doi.org/10.2307/2340521
https://doi.org/10.2307/2340521
https://doi.org/10.1371/journal.pgen.1004967
https://doi.org/10.1371/journal.pgen.1004967
https://doi.org/10.1371/journal.pgen.1004967
https://doi.org/10.15363/thinklab.d57
https://doi.org/10.15363/thinklab.d57
https://doi.org/10.5281/zenodo.48444
https://doi.org/10.5281/zenodo.48444
https://doi.org/10.15363/thinklab.d85
https://doi.org/10.15363/thinklab.d85
https://doi.org/10.5281/zenodo.48443
https://doi.org/10.5281/zenodo.48443


[211] Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005) Towards a

proteome-scale map of the human protein–protein interaction network. Nature.

DOI: 10.1038/nature04209

[212] Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, et al. (2011) Next-generation sequenc-

ing to generate interactome datasets. Nature Methods. DOI: 10.1038/nmeth.1597
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