JISC/SSI workshop (Bristol)
Research Software, Management Sharing and Sustainability
Transcribed feedback from flip charts, feedback from all groups is combined so there is some repetition.
Main problems
· People who are not qualified writing software (“having a go”). People should be practising in their own time and not on a project.
· Success as a researcher is measured by publications/grants; time to do code properly is not there
· Turning a one-person project in something someone else (i.e. not the original creator) can use/extend
· Lack of recognition, results in lack of motivation to put in effort
· Training, especially for Continuous Integration (CI)
· Reproducibility, the “half-life” or lifespan of code; what should be reproduced – the functionality or how the code runs?
· Issues around use of commercial code
· Balance of open access and IP/patent needs

· Software as research vs software for research
· Software sustainability from PhD project to product
· Funding to facilitate software maintenance (e.g. once research grant has ended)
· Lack of engineering knowledge to take prototype further
· If a researcher wants to archive a snapshot of their software, what should they provide?
· Source code?
· Source code and library sources (dependencies)?
· Compiled binaries?
· Virtual machines?
· And how to do quality assurance on their documentation
· Management: what principles are reasonable to expect across applications?
· Software 
· Where is it?
· Metrics – how do you measure usage?
· Tracking
· Planning
· What is reasonable to expect at the outset?
· What is reasonable to expect at the end?
· How to manage large research projects where outputs are needed early on (i.e. at prototype stage)
· This can make the 3=phase system (research, prototype, software engineering) difficult to use
· Software sits uncertainly within metrics by which academics are judged

· Time
· Versioning – silo working
· Lack of knowledge of resources/assistance available
· Lack of prioritisation of research software publication, emphasis is on publishing articles
· Difficulty obtaining funding for software development
· Lack of knowledge of software development methods/best practice/tools etc.; or piecemeal rather than formally-taught knowledge
· Difference between programming and software development
· Importance of early training (early PGR, UG?)
· PGR skills training provision has gaps with respect to software skills
· Lack of funding for training
· Lack of publicity for RS services
· Developing software written by someone else
· Ownership
· Permissions
· Tact
· Career progression for RSEs unclear

Blockers and barriers
· Knowing about best practice
· SMPs
· Good for holding yourself to account
· Thinking about practice
· Part of grant peer-review
· Use existing practice from the commercial world, don’t reinvent
· Culture
· Code reviews are not common in academia
· Time pressures
· Hardware resources
· In some domains, academic resources are much less powerful than in industry, so ability to compete is affected
· Impact of big data
· Need people as well as kit
· Short term appointments
· Skill turnover
· RSE career paths might help, but interest is needed from HEIs not just funders
· Funding bodies don’t value software, don’t fund hardware or training
· HEI commitment
· Lack of coherent view
· Different views on what good software is

· Do people know existing best practice?
· How do they know?
· Pressure to deliver quickly
· Need to be seen to be doing ‘science’
· Who is: professor, PDRA, postgrad, programmer?
· Lack of training and awareness, lack of awareness by supervisors and in the culture
· Too much code to test
· Money to do it and time
· Access to hardware for texting and CI (portability)
· Legacy code, difficult to apply best practice
· Not clear who absorbs the overheads and where it sits 
· One person cannot know and do everything, different roles are necessary
· Planned time to write documentation etc. either doesn’t exist or gets eaten away
· Changes in hardware and paradigms can break portability, for example GPUs
· Too difficult
· May not apply to me, or to the current stage of my code
· New programming languages and OSs
· How to keep up with everything and avoid backing the ‘wrong horse’?

· Lack of familiarity with tools etc. amongst collaborators and supervisors
· E.g. PI is not a software expert
· Resistance to change of existing (bad) practice
· Inertia (personal, departmental, institutional)
· No university-level policies on best practice or auditing of current practice
· Lack of recognition of value of work (no motivation to follow best practice)
· Steep learning curves, no time to change practice or experiment with different tools/methods
· Lack of time/resources for testing
· Fear of losing IP/competitive advantage
· Lack of appreciation of work value
· Lack of support; No-one in group has relevant skills/working in a vacuum
· No opportunity for review or serendipitous learning
· Or, review by peers unfamiliar with coding
· No requirement to share code with publications (usually)
· No culture of code review, resistance to criticism
· Ownership of code, no culture of collaborative coding
· Rapid turnover in PGRs/postdocs – difficult to achieve consistency
· Coding standards/documentation of best practice is required
· Insufficient personnel to adopt best industry practice
· i.e. ideally would have different people test versus code, but not really possible in many research groups
· industry best practice predicated on different goals/aims to academic software development

Ideas for best practice, gaps in SMP templates
Ideas
· Need for universal principles and discipline specific best practice
· Software management/development process and concepts should be common
· Applies to new and old code
· But implementation may be different

· Specialised RSE departments (RSE/Data Science)
· RSEs embedded in research groups
· Change in culture of short-term contracts
· Embedding coding/programming basics in school curricula
· Emphasise professional development gains when requesting training
· Encourage opening code, even when code is messy
· Essential to checking/validating results

SMPs, gaps in templates
· Scalability
· Especially for web applications
· Needs to be considered
· How would SMPs be implemented, they are beneficial but what would make it happen?
· Helpful to think about software licensing

· Is the name of the software known
· Stock responses: don’t we already know what replies we want/expect?
· Is software useful to industry? Questions in full SMP section 2 about use to research also apply to use to industry
· What is preservation -  is this the same as sustainability? 
· What is the timeline for contributions from the project team and from the community

· Good for raising awareness
· Needs to be linked to RSE support service to provide context
· Minimal plan is too minimal
· Full plan may be too complex
· Should emphasise more that the SMP is a living document
· May be too much choice in options
· Need for expert advice from RSEs?
· More detailed questions on error handling/reporting would be useful
· Consider commercial applications at planning stage, when appropriate
· [bookmark: _GoBack]Do development methods, Agile etc., work in academic environments? 
· Lack of examples from academia
