
JISC/SSI workshop (Bristol)

JHD

20 January 2017

1 JHD’s Executive Summary

1.1 What’s my problem with research software?

As is the rest of the world, the cummunity as a whole (sa distinct from RSEs
etc.) does not appreciate that software is hard, and good software is extremely
hard. See the quotes below.

• No-one is asked “what is your training in SE”.

• Never, at Masters or PhD, have my supervisors asked “how do you know
it’s correct”.

A more specific problem with research software is “mission creep”, when a piece
of software that was good enough for one person/team/. . . is seen to be more
useful, and needs to move to the next stage of “productisation”. Who will
pay for the needed three months of refactoring, or the portability testing, or
whatever is required.

1.2 Blockers and barriers to using existing best practice

This seemed to resolve to two questions: “what is best practice” and “how is
it discovered/disseminated”. The current SMP structure, while not ideal (see
next section) is reasonable at the ‘technology-free” level, but could do with
being complemented by more detailed (and more rapidly-changing) technology-
specific guidance: for example JHD had never heard of conda.

The theme “community” came up several times. Nationally, SSI/EPSRC
seem to be making progress is building an RSE community, though these is
more to be done. At the University (or Faculty, or even Department) level,
things are much patchier.

1.3 Best practice, and what’s wrong with SMPs

It was felt that full/minimal was not necessarily the right (or at least the only)
distinction: what is being developed is important.

1



The simple script This definitely needs to be included: there were several
mentions of the Reinhart–Rogoff error [BB13].

The MatLab Toolbox (or equivalent), when issues of portability etc. are
largely solved by the underlying system.

The self-contained program when issues of portability etc. need to be ad-
dressed.

2 Why Persistently Identifying Software is a good
idea: Catherine Jones

Example from J. Physics Condensed Matter.
SSI survey 92% use research software, 56% develop their own. I am a Li-

brarian, so have an analogy.

One-off script Like a post-it note.

Routine script Tech report.

Complete program Journal article

Software Suite Journal issue

I wrote software in ReXX: I have the printouts, and some postits, and postscript
files I can’t read. Electronic objects need active management.

GitHub/Zenodo, or FigShare, can generate persistent identifiers, but they
need good metadata to be effective.

However, not everything needs a persistent identifier: think of all the drafts
an article goes through.

2.1 Why

• used in circumstances

• reusable

• citable

But for use, we need metadata: who/what etc.
Force11 Software Citation Group. https://www.force11.org/software-citation-principles

has six principles.
JISC-funded Software RRR project. There’s the product, the version, the

variant, and even the particular installation.

Example 1 (Mantid) Open source software development for Neutron scatter-
ing. Approach was a project-elvel DOI and each version has its own DOI credit-
ing the authors of that version. Uses IsPartOf to link back to the product-level
DOI.

https://www.force11.org/software-citation-principles


Creator This might not be a straight-forward thing, depending on life-cycle.
Starting after many years of software development if hard. Also assumes
formal releasing.

Title Is there an oficial name differnt from te common name? What effect is
versioning/branching going to have on the name. Is it unique enough?

Abstract

Other

TechnicalInfo new in DataCite v4. Hoping that GitHub/Zenodo will imple-
ment it.

Relation A very publication-oriented part of DataCite. IsCompiledBy is not
used in the computing sense!

I work in an organisation that doesn’t do REF: what will the REF impact/implications
be? Notes the rate of change of electronic journals: 15 years from “never catch
on” to routine.

Q–Cardiff Citing technical resources is a problem in general. Most of the
people we deal with have no formal training. Major cultural change is
required: how?

A Agreed that it’s difficult.

Q How do we translate this into the general OpenScience movement?

A

Q–MJC 92% seems very high.

A You should look at what we see in humanitiies these days.

Q–JHD IsPartOf seems an odd way of saying “11.2 IsPartOf Ansys”.

A–Liz Jennings There are also version metadata links, which might be more
appropriate.

A Yes, these might be better, but we should really design what’s right for
software.

3 Lessons from Publishing Sire: Woods

“Sire is a really bad name”. Seriously it’s a molecular simulation suite. 300KLOC
C++/Python. Since 2005, now several development teams. No atcual funding:
all done through “science” funding. GPL. All done via a GitHub repository.
Unit testing plus CI via Travis-CI. This is relaly important for multi-developer



software. Four releases/year, with a four-week freeze window/release. Release
binaries as well as source, using 2008 machines to ensure forward compatibility.

“Failure to compile” is regarded as a bug. Use conda to manage Python
dependencies (wonderful). Reproducibility: because we bundle everything, we
know the complete package. Keep all versions on the website. We nowhave a
DOI off data.bris.ac.uk, and are moving things there.

How does one track “success”? Citations have a great time lag, and down-
loads are meaningless. We have a “phone home” system, so Sire says (with
permission) that it’s being used. All these data are published, which also builds
trust.

There isn’t a Sire paper yet, so people tend to cite either the DOI or the
specific application package they are looking at. Aiming at a JORS software
paper. Commercial plugins to be developed/sold by Cresste (launch in SF in
April).

Q Are there defined rôles for software build?

A Academia is a business that fires its employees every three years! It’s difficult,
because the teams keep changing. “Collaborative Community” is better
than rôles.

Q ??

A There’s a major hole in training for researchers.

Q ??

A There are professional tools (real Gitub, not institutional, as we couldn’t
get all our collaborators Bristol licences), Travis etc. There’s aren’t (yet)
integration services, so we’re rolled our own.

Q How does new development fit in?

A Use GitHub feature branches.

Q Do you do anything more than unit tests?

A We’ve talked to Travis, and extended the run time as we’re HPC. But a
several-day simulation can’t be a unit test. We do have these as system
tests.

Testing is the most important thing. If t’s not tested, it shouldn’t be used.
We need to educate developers better about regression tests.

Q Old versions?

A We keep deprecated interfaces alive. It’s easier to manage C++ developers
than Python developers.



4 What’s my main problem with Research Soft-
ware

4.1 Group 1

skills

rewards we aren’t measured on the quality of the code, rather the abstract
algorithm.

one-man project “just grows”, and how do we get it to a state where others
can contribute. CI takes effort.

IPR How does one protect. Licencing, and does “open source” damage univer-
sity rights.

4.2 Group 2

Research Student Never, at Masters or PhD, have my subervisors asked “how
do you know it’s correct”. This session is the first real emphasis I have
heard on testing.

de facto RSE How do I, sat in a Biochemistry lab., discover what’s going on
elsewhere, or what I should know?

Q1 How do we build “communities” (within a university, within a subject) of
people doing this and sharing best practices? The HPC Community have
sort-of done this, but it’s more restrictive (and a bit exclusive).

Bath Maths We now have workshops on Linux and version control before the
“Scientific Computing” MMath/MSc course, using Linux laptops and Soft-
ware Carpentry.

Q2 What’s the incentive for students?

4.3 Group 3

Motivation

Skills much training is irrelevant — “soft skills”

Impact how is that managed.

Career progression

Some-one else’s software how does one develop this?



4.4 Group 4

Transition from “cobbled together” to “real software”.

Lifepsan No question of how one keeps it alive.

Education Lack of SE knowledge.

Archiving snapshots of software

Subject differences Are there?

Management How does one manage deliverables against timescales.

Funders What questions should be asked? No-one is asked “what is your
training in SE”.

5 Blockers and barriers to using existing best
practice

5.1 Group 4

Training : no knowledge of best practice: ranging from PI via postdoc to new
research student, and often funder as well.

Testing Too much time, access to a range of machines?

Portability How much is reasonable? Portable to X might not be portable to
Y?

SE overhead who absorbs this? Is it in the work programme? And it sends
to be used as a contingency.

“It doesn’t apply to me”

5.2 Group 1–Eike

Knowledge SMPs might help here,but how useful are they really? Can we
copy best practice from the commercial world.

Time what gets sacrificed to allow this?

Hardware Access/range

Funding Will funders allow for this? Is it worth following all these?

5.3 Group 2–JHD

CW argued strongly for the Co-I route rather than the pool technician route
for RSE funding on projects. Noted that Manchester now have 15 RSEs, and
Bristol 3.



5.4 Group 3

Lack of peer support and the peers you have aren’t experts either.

No requirement to share have criticised and reviewed.

Staff turnover especially in postdocs.

+ Just started a PhD in Physics after 12 years in industry, and the team
structure is very different. We wouldn’t have one person writing the code
and testing it. Note that traditional models have been replaced by Agile
etc.

Eike I have a product-driven model of industry, and this isn’t academia. Cur-
rently we don’t have a product model in academia.

Bath The fact that we don’t have these teams is a problem in academia.

CW The Microsoft Researches of this world are doing research engineering.

? Isn’t “Agile” merely being reactive than proactive.

6 Best practice, and what’s wrong with SMPs

6.1 Group 3

RSE Departments Including Data Science skills.

Culture of short-term contracts needs to change.

Schools teaching programming

SMP Good for raising awareness, but needs to be linked to resources. Is mini-
mal too minimal, and full too full? Should there be emphasis on its being
a living document. Too much choice for the amateur. More questions on
error handling/reporting. Commercial implications. Does Agile work in
an academic department. Should emphasise CPD.

Also always code that supports publications should be made available.

6.2 Group 4

Full The questions seem loaded, which looks like “there is a right answer”, so a
tickbox culture. Looks like a GCSE paper. If one deviates from the model
answer, it’s hard. How does it reflect the reality of postdoc style. How
about commercial questions? Is preservation the same as sustainability.
How does one know the latter at the start. But how does it fit into the
work plan of the project. External contributions question should have
timeline against it.



6.3 Group 1

I do web so worry about security and scalability.

6.4 Group 2

SMP Minimal is too minimal, full is too full. Should be separate versions for
“few scripts” versus toolbox versus “main()”.

References

[BB13] J.M. Borwein and D.H. Bailey. The Reinhart-Rogoff error —
or how not to Excel at economics. http://theconversation.com/

the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646,
2013.

http://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
http://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646

	JHD's Executive Summary
	What's my problem with research software?
	Blockers and barriers to using existing best practice
	Best practice, and what's wrong with SMPs

	Why Persistently Identifying Software is a good idea: Catherine Jones
	Why

	Lessons from Publishing Sire: Woods
	What's my main problem with Research Software
	Group 1
	Group 2
	Group 3
	Group 4

	Blockers and barriers to using existing best practice
	Group 4
	Group 1–Eike
	Group 2–JHD
	Group 3

	Best practice, and what's wrong with SMPs
	Group 3
	Group 4
	Group 1
	Group 2


