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In this supplement, we discuss approaches to adjust directionally competing models for 

categorical covariates which are a priori known to be external influences. In general, we make 

use of the fact that any multiple linear regression model can be re-expressed as a (partial) 

regression model based on covariate-residualized variables (see, e.g., Karlson, Holm & Breen, 

2012; Wurm & Fisicaro, 2014). We show that error terms of these two models are identical 

which implies that statistical inference on the error distribution of the partial regression model 

also holds for the multiple regression model and vice versa. Next, we show that non-

independence of the error term and the predictors also holds for the directionally mis-specified 

partial regression model which enables researchers to deduce statements concerning the direction 

of effects of competing partial regression models. Results of a Monte-Carlo simulation study are 

presented which demonstrate the applicability of the proposed direction dependence methods to 

the case of categorical covariates. 

For simplicity, we focus on the case of three variables: a true continuous outcome 𝑦𝑦, the 

true continuous (non-normally distributed) cause 𝑥𝑥, and a binary covariate 𝑧𝑧 (with 𝑧𝑧 ∈ {0,1}; the 

following proof can straightforwardly be extended to polytomous and ordinal predictors through 

defining proper sets of dummy variables). It is important to re-iterate that categorical variables 

are assumed to constitute external influences whose causes lie outside the considered model. 

That is, cases in which categorical variables serve as tentative outcomes of other explanatory 

variables are excluded. This imposes stricter assumptions on categorical covariates compared to 

the continuous case. However, the current set-up still allows model selection in multiple-group 

scenarios where the causal relation between predictor and outcome is allowed to vary in 

magnitude (i.e., in terms of the mean structure) across categorical groups which covers a broad 
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range of applications. In case of a linear relation between outcome and all explanatory variables, 

the true model is given by  

 𝑦𝑦 = 𝑖𝑖𝑦𝑦 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑧𝑧 + ϵ𝑦𝑦 (S1) 

where 𝑖𝑖𝑦𝑦 denotes the model intercept, the 𝑏𝑏’s constitute the regression slopes, and ϵ𝑦𝑦 refers to the 

error term which is assumed to be independent of 𝑥𝑥 and 𝑧𝑧. In this case, the directionally mis-

specified model can be written as  

 𝑥𝑥 = 𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑦𝑦 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑧𝑧 + ϵ𝑥𝑥. (S2) 

An alternative representation of the models in (S1) and (S2) can be obtained through 

residualizing 𝑥𝑥 and 𝑦𝑦 on 𝑧𝑧 and regressing the corresponding residuals on each other. In other 

words, in a first step, one estimates the two auxiliary models  

 𝑦𝑦 = 𝑖𝑖𝑦𝑦′ + 𝑏𝑏𝑦𝑦𝑦𝑦′ 𝑧𝑧 + ϵ𝑦𝑦′  (S3) 

and  

 𝑥𝑥 = 𝑖𝑖𝑥𝑥′ + 𝑏𝑏𝑥𝑥𝑥𝑥′ 𝑧𝑧 + ϵ𝑥𝑥′  (S4) 

and extracts the residuals ϵ𝑦𝑦′ = 𝑦𝑦 − 𝑖𝑖𝑦𝑦′ − 𝑏𝑏𝑦𝑦𝑦𝑦′ 𝑧𝑧 and ϵ𝑥𝑥′ = 𝑥𝑥 − 𝑖𝑖𝑥𝑥′ − 𝑏𝑏𝑥𝑥𝑥𝑥′ 𝑧𝑧 which can be interpreted 

as “purified“ measures of 𝑦𝑦 and 𝑥𝑥 (cf. Hayes, 2013). Next, the two competing models, 𝑥𝑥 → 𝑦𝑦 and 

𝑦𝑦 → 𝑥𝑥, are obtained through  

 ϵ𝑦𝑦′ = 𝑎𝑎𝑦𝑦𝑦𝑦ϵ𝑥𝑥′ + θ𝑦𝑦 (S5) 

and  

 ϵ𝑥𝑥′ = 𝑎𝑎𝑥𝑥𝑥𝑥ϵ𝑦𝑦′ + θ𝑥𝑥. (S6) 

It is well-known that the simple slope coefficients in (S5) and (S6) equal the partial regression 

coefficients given in (S1) and (S2), i.e., 𝑏𝑏𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑦𝑦𝑦𝑦 and 𝑏𝑏𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑥𝑥𝑥𝑥. Further, the two models that 

posit that 𝑥𝑥 → 𝑦𝑦, (S1) and (S5), have identical error terms (ϵ𝑦𝑦 = θ𝑦𝑦) and so do the two 

competing models (S2) and (S6), i.e., ϵ𝑥𝑥 = θ𝑥𝑥. Equivalence of errors can easily be shown 

through rewriting the error terms as function of observed variables. For model (S5), for example, 

one obtains  

 
θ𝑦𝑦 = ϵ𝑦𝑦′ − 𝑎𝑎𝑦𝑦𝑦𝑦ϵ𝑥𝑥′  

= 𝑦𝑦 − �𝑖𝑖𝑦𝑦′ − 𝑏𝑏𝑦𝑦𝑦𝑦𝑖𝑖𝑥𝑥′ � − 𝑏𝑏𝑦𝑦𝑦𝑦𝑥𝑥 − (𝑏𝑏𝑦𝑦𝑦𝑦′ − 𝑏𝑏𝑦𝑦𝑦𝑦𝑏𝑏𝑥𝑥𝑥𝑥′ )𝑧𝑧  
(S7) 

with 𝑖𝑖𝑦𝑦 = 𝑖𝑖𝑦𝑦′ − 𝑏𝑏𝑦𝑦𝑦𝑦𝑖𝑖𝑥𝑥′  and 𝑏𝑏𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑦𝑦𝑦𝑦′ − 𝑏𝑏𝑦𝑦𝑦𝑦𝑏𝑏𝑥𝑥𝑥𝑥′  which is identical to ϵ𝑦𝑦 in model (S1). Similar 

considerations hold for the two directionally competing models.   



3 
 

Further, because both true predictors, 𝑥𝑥 and 𝑧𝑧, are assumed to be independent of ϵ𝑦𝑦, 

independence will also hold for the correctly specified partial regression model, i.e., ϵ𝑥𝑥′  and θ𝑦𝑦 (= 

ϵ𝑦𝑦) are stochastically independent in the present set-up. In contrast, non-independence of ϵ𝑦𝑦′  and 

θ𝑥𝑥 (= ϵ𝑥𝑥) can again be established through making use of the reverse corollary of the Darmois-

Skitovich theorem: Here, ϵ𝑦𝑦′  and θ𝑥𝑥 can be expressed as linear functions of the same random 

variates (ϵ𝑥𝑥′  and ϵ𝑦𝑦), i.e.,      

 ϵ𝑦𝑦′ = 𝑏𝑏𝑦𝑦𝑦𝑦ϵ𝑥𝑥′ + ϵ𝑦𝑦 (S8) 

and  

 
𝜃𝜃𝑥𝑥 = ϵ𝑥𝑥′ − 𝑏𝑏𝑥𝑥𝑥𝑥ϵ𝑦𝑦′  

= �1 − 𝑏𝑏𝑥𝑥𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦�ϵ𝑥𝑥′ − 𝑏𝑏𝑥𝑥𝑥𝑥ϵ𝑦𝑦. 
(S9) 

Because both, 𝑥𝑥 and ϵ𝑥𝑥′ , are assumed to be non-normally distributed, the “purified“ outcome ϵ𝑦𝑦′  

and the error term of the mis-specified auxiliary regression model θ𝑥𝑥 are stochastically non-

independent when �1 − 𝑏𝑏𝑥𝑥𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦�𝑏𝑏𝑦𝑦𝑦𝑦 ≠ 0. From a direction dependence perspective, we, thus, 

arrive at the conclusion that a model of the form 𝑥𝑥 → 𝑦𝑦 is empirically confirmed, if 

independence holds in model (S5) and, at the same time, non-independence is observed in model 

(S6). In contrast, one has found empirical evidence for 𝑦𝑦 → 𝑥𝑥 if independence holds in model 

(S6) and, at the same time, non-independence can be observed in the model (S5). Again, if the 

independence assumption is satisfied/violated in both models, no distinct decision can be made.  

Simulating the Performance of Heteroscedasticity Tests in Case of a Categorical Covariate 

In this section, we present additional simulation results on the adequacy of the proposed 

direction dependence approach (in terms of Type I error and power) when categorical covariates 

are considered. In addition, we compare two different approaches to establish statements 

concerning the direction of effects: 1) the ordinary multiple linear regression approach (as used 

in case of continuous covariates) and 2) the partial regression approach where residuals of 

auxiliary regressions are used as covariate-adjusted (“purified”) measures.  

Type I Error Simulation  

Data were generated according to the true model 𝑦𝑦 = 𝑖𝑖𝑦𝑦 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑧𝑧 + ϵ𝑦𝑦 with 𝑥𝑥 

being a continuous variable and 𝑧𝑧 denoting a binary covariate. The intercept was fixed at zero 
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and the error term ϵ𝑦𝑦 was randomly sampled from the standard normal distribution. To generate 

correlated predictor variables, we, in the first step, generated two continuous variables, 𝑥𝑥 and 𝑧𝑧′ 

(exhibiting zero means and unit variances), using elliptical copulas of the normal family and, in a 

second step, dichotomized 𝑧𝑧′at the theoretical mean of zero, i.e., 𝑧𝑧 = 0 if  𝑧𝑧′ ≤ 0 and 𝑧𝑧 = 1 

otherwise. Because dichotomization affects the correlation between 𝑥𝑥 and 𝑧𝑧, input correlations 

between 𝑥𝑥 and  𝑧𝑧′ were adjusted using ρ𝑥𝑥𝑥𝑥 = ρ𝑥𝑥𝑧𝑧′(ℎ/�𝑝𝑝(1 − 𝑝𝑝) ) where ℎ represents the 

ordinate of the standard normal curve at the point of dichotomization and p denotes the 

proportion of observations for which 𝑧𝑧′ > 0 (cf. Cohen, 1983; MacCallum et al., 2002). We 

restricted the simulation to the case of equal group sizes (i.e., 𝑝𝑝 = 0.5 and ℎ = .3989). Values for 

ρ𝑥𝑥𝑧𝑧′ were selected to obtain the desired correlations of ρ𝑥𝑥𝑥𝑥 = 0, 0.2, 0.4, and 0.6. Regression 

coefficients were selected to account for zero, small, medium, and large effects reflecting partial 

correlations of 0, 0.14, 0.36, and 0.51. For the continuous predictor 𝑥𝑥, we used 𝑏𝑏𝑦𝑦𝑦𝑦 = 0, 0.14, 

0.39, and 0.59; corresponding values for the binary covariate 𝑧𝑧 were 𝑏𝑏𝑦𝑦𝑦𝑦 = 0, 0.28, 0.77, and 

1.19. Sample sizes were n = 50, 100, 200, and 400. The simulation factors were fully crossed 

leading to 4 (magnitude of ρ𝑥𝑥𝑥𝑥) × 4 (magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦) × 4 (magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦) × 4 (sample size 

n) = 256 experimental conditions (1000 samples were generated per condition). 

For each variable triple (𝑥𝑥, 𝑦𝑦, and 𝑧𝑧), two different approaches were used: First, 

competing multiple regression models 𝑦𝑦 = 𝑖𝑖𝑦𝑦 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑥𝑥 + 𝑏𝑏𝑦𝑦𝑦𝑦𝑧𝑧 + ϵ𝑦𝑦 and 𝑥𝑥 = 𝑖𝑖𝑥𝑥 +  𝑏𝑏𝑥𝑥𝑥𝑥𝑦𝑦 + 𝑏𝑏𝑥𝑥𝑥𝑥𝑧𝑧 +

ϵ𝑥𝑥 were estimated and the Breusch-Pagan test was used to evaluate the homoscedasticity of ϵ𝑦𝑦 

and ϵ𝑥𝑥 using a nominal significance level of 5% (we focus on the Breusch-Pagan test which has 

been shown to be the most powerful procedure to establish direction dependence decisions). The 

empirical Type I error rates were defined as the portion of samples for which  𝐻𝐻0: Ω{𝑥𝑥,𝑧𝑧}→𝑦𝑦 = 𝐼𝐼𝑛𝑛 

was retained and, at the same time, 𝐻𝐻0: Ω{𝑦𝑦,𝑧𝑧}→𝑥𝑥 = 𝐼𝐼𝑛𝑛 was rejected.  

Second, we estimated the two auxiliary regression models 𝑦𝑦 = 𝑖𝑖𝑦𝑦′ + 𝑏𝑏𝑦𝑦𝑦𝑦′ 𝑧𝑧 + ϵ𝑦𝑦′  and 𝑥𝑥 =

𝑖𝑖𝑥𝑥′ + 𝑏𝑏𝑥𝑥𝑥𝑥′ 𝑧𝑧 + ϵ𝑥𝑥′  and corresponding residuals (ϵ𝑦𝑦′  and ϵ𝑥𝑥′ ) were further analyzed using the two 

simple linear regression models ϵ𝑦𝑦′ = 𝑎𝑎𝑦𝑦𝑦𝑦ϵ𝑥𝑥′ + θ𝑦𝑦 (reflecting 𝑥𝑥 → 𝑦𝑦) and  ϵ𝑥𝑥′ = 𝑎𝑎𝑥𝑥𝑥𝑥ϵ𝑦𝑦′ + θ𝑥𝑥 

(reflecting 𝑦𝑦 → 𝑥𝑥). Again, the Breusch-Pagan test was used to evaluate the homoscedasticity 

assumption in both models separately. Here, the empirical Type I error rate is defined as the 
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portion of samples for which  𝐻𝐻0: Ω�ϵ𝑥𝑥′ �→ϵ𝑦𝑦′ = 𝐼𝐼𝑛𝑛 is retained and, at the same time, 𝐻𝐻0: Ω�ϵ𝑦𝑦′ �→ϵ𝑦𝑦′ =

𝐼𝐼𝑛𝑛 is rejected.  

Figure S1 summarizes the empirical Type I error rates of both regression approaches as a 

function of 𝑏𝑏𝑦𝑦𝑦𝑦, 𝑏𝑏𝑦𝑦𝑦𝑦, and ρ𝑥𝑥𝑥𝑥 for the case of n = 50 observations. Results for larger sample sizes 

are virtually identical and will, thus, not be presented here. Type I error rates are given for the 

separate Breusch-Pagan tests and the combined decision in terms of model selection for the 

multiple regression approach and the two-step auxiliary regression approach. The dashed 

horizontal lines reflect Bradley’s (1978) liberal robustness interval. In general, observed Type I 

error rates for both approaches are in accordance with the nominal significance level of 5%.  

Power Simulation  

Next, we focused on the power behavior of the proposed approach when adjusting for a 

categorical covariate. The true (continuous) predictor, 𝑥𝑥, was generated from various gamma 

distributions (shape parameter 𝑐𝑐 = (2 γ⁄ )2, scale parameter 𝑑𝑑 = 1) with pre-specified skewness 

values of γ𝑥𝑥 = 0.75, 1.5, and 2.25. Again, the error term of the true model (ϵ𝑦𝑦) was sampled 

from the standard normal distribution and the binary covariate (𝑧𝑧) was generated through 

dichotomizing a standard normal variable (𝑧𝑧′) at the mean of zero. The simulation experiment 

consisted of 4 (magnitude of ρ𝑥𝑥𝑥𝑥) × 4 (magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦) × 4 (magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦) × 3 (skewness 

of 𝑥𝑥) × 4 (sample size n) =  768 conditions. Again, 1000 samples were generated for each 

condition. Multiple linear regression ({𝑥𝑥, 𝑧𝑧} → 𝑦𝑦 versus {𝑦𝑦, 𝑧𝑧} → 𝑥𝑥) as well as the two-step 

auxiliary regression approach (ϵ𝑥𝑥′ → ϵ𝑦𝑦′  versus ϵ𝑦𝑦′ → ϵ𝑥𝑥′  ) were applied for model selection 

purposes. For each simulation condition, we calculated the portion of correct model selection 

decisions, i.e., the portion of cases in which the Breusch-Pagan test indicated homoscedasticity 

for the correctly specified model and heteroscedasticity for the mis-specified model (for the 

Breusch-Pagan tests we again used a nominal significance level of 5%). That is, the multiple 

regression approach identifies the correct causal flow when 𝐻𝐻0: Ω{𝑥𝑥,𝑧𝑧}→𝑦𝑦 = 𝐼𝐼𝑛𝑛 is retained and, at 

the same time, 𝐻𝐻0: Ω{𝑦𝑦,𝑧𝑧}→𝑥𝑥 = 𝐼𝐼𝑛𝑛 is rejected. Similarly, the auxiliary regression approach selected 

the correct model when  𝐻𝐻0: Ω�ϵ𝑥𝑥′ �→ϵ𝑦𝑦′ = 𝐼𝐼𝑛𝑛 is retained and, at the same time, 𝐻𝐻0: Ω�ϵ𝑦𝑦′ �→ϵ𝑦𝑦′ = 𝐼𝐼𝑛𝑛 is 

rejected.  
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Figure S2 shows the empirical rejection rates of separate Breusch-Pagan tests for the 

multiple and auxiliary regression models as well as the empirical power curves in terms of model 

selection based on combined decisions. Note that empirical rates of individual Breusch-Pagan 

test evaluating 𝐻𝐻0: Ω{𝑥𝑥,𝑧𝑧}→𝑦𝑦 = 𝐼𝐼𝑛𝑛 and 𝐻𝐻0: Ω�ϵ𝑥𝑥′ �→ϵ𝑦𝑦′ = 𝐼𝐼𝑛𝑛 again reflect Type I error rates because 

data were simulated such that the homoscedasticity assumption holds in the correctly specified 

models {𝑥𝑥, 𝑧𝑧} → 𝑦𝑦 and ϵ𝑥𝑥′ → ϵ𝑦𝑦′ . The remaining curves in Figure S2 reflect observed power 

values for rejecting homoscedasticity in the mis-specified model and for combined model 

selection decisions for the multiple and auxiliary regression models. Overall, model selection 

results are virtually identical compared to the case of a continuous covariate (see Figure 3 of the 

main text). In other words, the power to select the correct model for both, the multiple and the 

auxiliary regression approach, increases with the magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦, the skewness 𝛾𝛾𝑥𝑥, and sample 

size 𝑛𝑛. Further, the power also slightly increases with the correlation between 𝑥𝑥 and 𝑧𝑧. In 

contrast, the magnitude of 𝑏𝑏𝑦𝑦𝑦𝑦 has no impact on the model selection procedures. In general, the 

multiple linear regression approach has a slight power advantage over the auxiliary regression 

approach.  
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Figure S1: Empirical Type I error rates of the Breusch-Pagan test (BP) for multiple linear regression 
(MLR) and auxiliary regression models (AUX). Type I error curves labeled with “true model“ refer to 
models with correctly specified direction of effects, curves labeled with “false model“ refer to 
directionally mis-specified models. “model selection“ refers to the Type I error rates of combined 
homoscedasticity decisions.  
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Figure S2: Empirical rejection rates of the Breusch-Pagan test (BP) for multiple linear regression (MLR) 
and auxiliary regression models (AUX). Curves labeled with “true model“ refer to individual models with 
correctly specified direction of effects and reflect Type I error rates of the Breusch-Pagan test, curves 
labeled with “false model“ refer to directionally mis-specified models and reflect the power of the 
Breusch-Pagan test to identify heteroscedasticity. Curves labeled with “model selection“ refer to the 
power of the model selection procedure based on combined homoscedasticity decisions.  

 

 

 

 


