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Appendix S1 Proof of Results in Figure 3

In this appendix, we detail the relationship among the wholesale prices under IP, 3PN and 3PS in

the different capacity regions using four propositions. For each region, we express the relationships

among the wholesale prices in the statement of the proposition, followed by its proof.

Proposition A For KS in Region 1, where the store-brand factory’s capacity constraint is binding

under IP, 3PN , and 3PS, the national brand’s equilibrium wholesale prices satisfy wC∗

N,3PN < wC∗

N,IP =

wC∗

N,3PS .

Proof: Using algebraic manipulations, we can show that the condition wC∗

N,IP > wC∗

N,3PN can be

written as:

γ(αS − 2KS) + (βS + γ)αN

2(βNβS + βNγ + βSγ)
> 0.5cN (29)

Notice that the left-hand side of the above inequality is equal to the first term in wC∗

N,IP for the

capacity-constrained case (see Table 1). Therefore, if the above inequality is not satisfied, then

wC∗

N,IP would not exceed cN and the national brand would not participate. Thus, we have established

that wC∗

N,IP > wC∗

N,3PN . As shown in the analysis of the 3PS configuration (in Appendix C.3),

wC∗

N,IP = wC∗

N,3PS . Thus, w
C∗

N,IP = wC∗

N,3PS > wC∗

N,3PN . This completes the proof.

Given the above, we consider the relationship between wC∗

N,3PN and wC∗

N,IP . If the store-brand

factory has a binding capacity constraint under 3PN with the third-party charging a mark-up over

production cost, then the store-brand factory faces even tighter capacity restrictions in the absence

of a wholesale mark-up. To compensate, the retailer has to pass on a high opportunity cost of

capacity to customers to drive down demand. Facing little competition, the national brand could

charge a high wholesale price. With the introduction of the third-party “middleman” under 3PN ,

the store-brand factory faces less problematic capacity restrictions, which then forces the national
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brand to price more competitively under 3PN than under IP .

We now discuss why wC∗

N,IP = wC∗

N,3PS , which is a more subtle result. In Region 1, the store-brand

factory is operating at capacity under both 3PS and IP and the store-brand factory provides the

same supply to the market whether the factory is operated by the retailer or by a third party. In the

IP configuration, the national brand chooses his wholesale price so that the resultant demand for the

store-brand product is exactly equal to the factory’s capacity. Under 3PS, the eventual outcome is

the same, but the third-party manufacturer performs the capacity-clearing function (to ensure that

his capacity constraint is not violated) via his choice of wholesale price in response to the national

brand’s wholesale price and in view of how the retailer will choose retail prices. In both cases, the

national brand uses his first-mover advantage to “push” the store-brand factory to operate at full

capacity. This turns out to be preferable for the national brand: although he sells fewer units, he

sells each unit at a higher margin, and the differential in the margin more than compensates for the

reduction in sales volume.

The same result as in Proposition A applies, with a similar rationale, when KS is in Region 2,

as stated in the next proposition.

Proposition B For KS in Region 2, where the store-brand factory is constrained under IP and 3PS

but unconstrained under 3PN , the national brand’s equilibrium wholesale prices satisfy wU∗

N,3PN <

wC∗

N,IP = wC∗

N,3PS .

Proof: At the leftmost boundary of Region 2, wC∗

N,3PN < wC∗

N,IP = wC∗

N,3PS (by Proposition A). At the

rightmost boundary, the store-brand factory is unconstrained under both 3PN and 3PS . Algebraically

we can show that the condition wU∗

N,3PS > wU∗

N,3PN can be written as
γαS + (βS + γ) (2αN + γcS)

4(βN + γ)(βS + γ)− 2γ2
>

0.5cN .

Using a similar argument to that in the proof of Proposition A, we note that the left hand side of the

above inequality is equal to the first term in wU∗

N,3PS . Therefore, if the above inequality is not satisfied,

then the national brand would not participate. Thus, we have established that wU∗

N,3PS > wU∗

N,3PN

in Region 3 (and at the rightmost boundary of Region 2). The facts that in Region 2, wU∗

N,3PN is

constant and wC∗

N,3PS is linearly decreasing in KS complete the proof.

Proposition C For KS in Region 3, where the store-brand factory is constrained under IP but

unconstrained under 3PN and 3PS, the national brand’s equilibrium wholesale prices in the two out-

sourcing configurations are such that wU∗

N,3PN < wU∗

N,3PS . Furthermore, the wholesale price under IP,

wC∗

N,IP , may be larger, smaller, or in-between wU∗

N,3PN and wU∗

N,3PS , depending upon the capacity level

of the store-brand factory.
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Proof: See proof of Proposition B above.

Recall that the national brand’s wholesale price is the same under IP and 3PS in Regions 1 and 2.

At the lower boundary of Region 3, the store-brand factory becomes unconstrained under 3PS . Hence,

the national brand’s price becomes constant under 3PS while it continues to fall under IP because

the store-brand factory is still constrained under IP in this region. Thus, the relationship between

these two curves is not surprising. What is more interesting is that the price curve under IP crosses

that of 3PN in this region. For smaller values of KS within Region 3, the binding capacity of the

store-brand factory under IP combined with the national brand’s first-mover advantage enables the

national brand to charge a high price despite the absence of double marginalization on the store-brand

product. On the other hand, as KS increases, the national brand must be more price-competitive

due to greater supply of the store-brand product. Indeed, despite the national brand’s first mover

advantage under IP, when there is near-ample capacity at the store-brand factory, the national brand

cannot charge as much as he could have under 3PN . This occurs because in the latter scenario, the

national brand benefits from double marginalization on the store brand product, but such “protec-

tion” does not exist when the retailer owns the factory.

Proposition D For KS in Region 4, where the store-brand factory is unconstrained under all sup-

ply chain configurations, the national brand’s equilibrium wholesale prices are such that wU∗

N,IP <

wU∗

N,3PN < wU∗

N,3PS .

Proof: The proof is straightforward and is omitted.

Appendix S2 Proof of Results in Section 5

Appendix S2.1 Proof of Lemma 1:

Proof of part (a): For KS in Region 1, we can show that the first derivative of ΠC∗

R,3PN with

respect to KS is strictly greater than zero, and the second derivative is non-negative. For Region 2,

3 and 4, where the factory is unconstrained under 3PN , Π∗
R,3PN does not depend on KS . Thus, the

retailer’s profit function is convex increasing in KS for Region 1, and constant for Regions 2, 3, and 4.

Proof of part (b): The retailer’s profit in Regions 1, 2, and 3, under IP , is concave increasing

in KS . For KS in Region 4, the profit function is constant. To show there a jump discontinuity at

KIP
S , we consider ΠU∗

R,IP − ΠC∗

R,IP

(

KIP
S

)

, and show this difference is strictly greater than zero. The

retailer’s profit function under IP can be found in Table 1. We can show that the difference between
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the unconstrained profit and the constrained profit at KIP
S , ΠU∗

R,IP − ΠC∗

R,IP

(

KIP
S

)

> 0. Thus, we

have a jump discontinuity at K3PS

S .

Proof of part (c): For KS in Regions 1 and 2, the retailer’s profit function is convex increasing in

KS .

Appendix S2.2 Proof of Proposition 1

We begin by showing that the retailer’s profit under 3PN exceeds his profits under IP at KS = 0.

At KS = 0, the retailer’s profit under the IP and 3PN scenarios are, respectively:

ΠC∗

R,IP (KS = 0) =
[γαS + (βS + γ)αN − (βNβS + βNγ + βS γ)cN ]2

16(βS + γ)(βNβS + βNγ + βSγ)
(30)

ΠC∗

R,3PN (KS = 0) =
(βN + γ)2(βS + γ) [γαS + (βS + γ)αN − (βNβS + βNγ + βSγ)cN ]2

4
[

(βNβS + βNγ + βSγ) (2(βN + γ)(βS + γ)− γ2)2
] (31)

We note that

ΠC∗

R,3PN (KS = 0) > (βN+γ)2(βS+γ)[γαS+(βS+γ)αN−(βNβS+βNγ+βSγ)cN ]2

4[(βNβS+βNγ+βSγ)(2(βN+γ)(βS+γ))2]
> ΠC∗

R,IP (KS = 0)

Thus, at KS = 0, the retailer’s profit under 3PN exceeds that under IP . Because Π∗
R,3PN is convex

increasing in KS , and Π∗
R,IP is concave increasing in Region 1, the two functions cross at most twice

in Region 1.

Appendix S2.3 Proof of Corollary 1

In Region 2, the retailer’s profit under 3PN is constant, and is increasing under IP. Thus, they may

cross at most once in Region 2. If the retailer is better off under 3PN at K3P
N

S , then the retailer will

be better off for some KS-interval in Region 2.

Appendix S2.4 The Effect of Substitutability on the Retailer’s Profits

We consider an example with αN = 100, αS = 50, cN = cS = 1, β = 0.15, two degrees of sub-

stitutability: γ = 0.25 (low) and γ = 0.95 (high). In Figure S1, we show the retailer’s profit as a

function of KS for the two values of γ under both the IP and 3PN configurations. For the high value

of γ, we observe, as expected, that the retailer prefers the Nash configuration over a broad range

of KS values. For the low value of γ, we observe that the retailer prefers the Nash configuration

over a smaller range of KS values. Yet, the resulting market share for the store brand product

(with γ = 0.25) is close to 25%, which is consistent with market shares observed in grocery retailing

(Geller, 2011). Although the retailer achieves higher profit when γ is high, low substitutability does
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not preclude the retailer from benefiting from the sale of its store-brand factory. This is because

even for low γ values, the effect of competition can dominate the effect of double-marginalization.
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Figure S1: Equilibrium configurations under IP , 3PN , and 3PS as a function of KS .

Appendix S3 Results Regarding National Brand’s Profits

Appendix S3.1 Proof of Lemma 2

Recall that the national brand’s profits under the IP configuration are given in Table 1. The first

and second derivatives of Π∗
N,IP with respect to KS are:

∂Π∗
N,IP

∂KS

=







γ[−(βS + γ)αN + (βNβS + βNγ + βSγ)cN − γ(αS − 2KS)]

2(βS + γ)(βNβS + βNγ + βSγ)
< 0 for KS ∈ [0,KIP

S ]

0 for KS ∈ [KIP
S ,∞)

∂2Π∗
N,IP

∂K2
S

=







γ2

(βS + γ)(βNβS + βNγ + βSγ)
> 0 for KS ∈ [0,KIP

S ]

0 for KS ∈ [KIP
S ,∞)

Substituting the expression for KIP
S in Π∗C

N,IP , we find that all the terms not in the square root

cancel, and we are left with

Π∗C
N,IP (K

IP
S ) =

[√

(βS+γ)(βNβS+βNγ+βSγ)(αN−(βN+γ)cN+γcS)2

(βN+γ)

]2

8(βS + γ)(βNβS + βNγ + βSγ)
=

(αN − (βN + γ)cN + γcS)
2

8(βN + γ)

= Π∗U
N,IP (K

IP
S )
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The above results imply that the national brand’s profit function under the IP configuration is

continuous, convex decreasing in KS , KS ∈ [0,KIP
S ], and constant for KS ≥ KIP

S .

For the 3PS configuration, we showed in Section 3.2.2 that Π∗C
N,3PS = Π∗C

N,IP for KS ∈ [0,K3PS

S ].

Thus, by the preceding analysis, we know the national brand’s profit is convex decreasing in KS for

KS ∈ [0,K3PS

S ], and constant for KS ≥ K3PS

S . The national brand’s profit, given by (25), is:

ΠC∗

N,3PS (KS = K3PS

S ) =






[

(βS + γ)αN + γ
(

αS − 2K3PS

S

)

− (βNβS + βNγ + βSγ)cN
]2

8(βS + γ)(βNβS + βNγ + βSγ)






=
1

16

[[
2(βS + γ)αN + γ(αS + (βS + γ)cS)− (2(βN + γ)(βS + γ)− γ2)cN

]2

(βS + γ)(2(βN + γ)(βS + γ)− γ2)

]

= ΠU ∗

N,3PS

(

K3PS

S

)

which is a constant. Thus, in summary, the national brand’s profit function under the 3PS configu-

ration is continuous, convex decreasing in KS , KS ∈ [0,K3PS

S ], and constant for KS ≥ K3PS

S .

The national brand supplier’s profit functions under the 3PN configuration are given by (19) and

(21) in the unconstrained and constrained cases, respectively. The first and second derivatives of

(19) and (21) with respect to KS are:

∂Π∗
N,3PN

∂KS

=







2γ(βN + γ)[−(βS + γ)αN + (βNβS + βNγ + βSγ)cN − γ(αS − 2KS)]

[2(βN + γ)(βS + γ)− γ2]2
< 0, KS ∈ [0,K3PN

S ]

0, KS ∈ [K3PN

S ,∞)

∂2Π∗
N,3PN

∂K2
S

=







4γ2(βN + γ)

[2(βN + γ)(βS + γ)− γ2]2
> 0 for KS ∈ [0,K3PN

S ]

0 for KS ∈ [K3PN

S ,∞)

Although it is algebraically messy, it is straightforward to show that ΠC∗

N,3PN (K3PN

S ) = ΠU ∗

N,3PN (K3PN

S ).

Hence, the national brand’s profit function under the 3PN configuration is continuous, convex de-

creasing in KS , KS ∈ [0,K3PN

S ], and constant for KS ≥ K3PN

S .

Appendix S3.2 Proof of Lemma 3

We now compare the national brand’s profits under different configurations, region by region.

We first prove that for KS in Region 1 (i.e., KS ∈ [0,K3PN

S ]), Π∗
N,3PN < Π∗

N,3PS = Π∗
N,IP . In

Section 3.2.3, we showed that Π∗
N,IP = Π∗

N,3PS in Region 1, Thus, we only need to show that

Π∗
N,3PN < Π∗

N,3PS in Region 1, which we establish next.The national brand’s profits under the Nash

and Stackelberg settings in Region 1 are given by (21) and (27), respectively. Dividing (27) by (21),

we have

Π∗
N,3PS

Π∗
N,3PN

=

[

2(βN + γ)(βS + γ)− γ2
]2

4(βN + γ)(βS + γ) [(βN + γ)(βS + γ)− γ2]
≥ 1.

6



Thus, Π∗
N,3PN < Π∗

N,3PS = Π∗
N,IP for all KS in Region 1.

We now prove that for KS in Region 2 (i.e., KS ∈ [K3PN

S ,K3PS

S ]), Π∗
N,3PN < Π∗

N,3PS = Π∗
N,IP .

In Lemma 4, we established that Π∗
N,3PN is constant in Region 2. In Section 3.2.3 we showed that

Π∗
N,3PS = Π∗

N,IP and in Lemma 4, we showed that these functions are decreasing in Region 2. Thus,

to show that Π∗
N,3PN < Π∗

N,3PS = Π∗
N,IP in Region 2, we only need to show that Π∗

N,3PN < Π∗
N,IP at

K3PS

S , the rightmost boundary of Region 2, which we establish next.

Π∗
N,3PN (K

3PS

S ) =
(βN + γ) · C1

2 [4(βN + γ)(βS + γ)− γ2]2
=

(βN + γ)(βS + γ) · C1

2(βS + γ) [4(βN + γ)(βS + γ)− γ2]2

<
C1

4(βS + γ) [βNβS + βNγ + βSγ]
<

C1

16(βS + γ) [βNβS + βNγ + βSγ]

= Π∗
N,IP (K

3PS

S )

where C1 =
[
γαS + (βS + γ) [2αN + γcS ]−

[
2(βN + γ)(βS + γ)− γ2

]
cN

]2
.

We now prove: For KS in Region 3 (i.e., KS ∈ [K3PS

S ,KIP
S ]), Π∗

N,3PN < Π∗
N,3PS and Π∗

N,IP <

Π∗
N,3PS . We have already shown that at K3PS

S (the leftmost boundary of Region 3), the national

brand’s profit under IP equals his profit under 3PS , which exceeds his profit under 3PN . Because

the national brand’s profits under both 3PN and 3PS are constant in Region 3, it follows that for

KS in Region 3 (i.e., KS ∈ [K3PS

S ,KIP
S ]), Π∗

N,3PN < Π∗
N,3PS . Finally, because the national brand’s

profit under IP is decreasing in Region 3, and the profit under 3PS is constant, it must be the case

that Π∗
N,IP < Π∗

N,3PS in Region 3.

We now show that for KS in Region 4 (i.e., KS ∈ [KIP
S ,∞]), Π∗

N,IP ≤ Π∗
N,3PN < Π∗

N,3PS . We first

prove that Π∗
N,IP < Π∗

N,3PS . Because the national brand’s profit under IP was shown above to be

less or equal to his profit under 3PS (a constant) at the left boundary of Region 3, and his profit

under IP is decreasing in Region 3 while his profit under 3PS is constant, it must be the case that

in Region 4, it remains less than his profit under 3PS . We next show that Π∗
N,IP ≤ Π∗

N,3PN . We can

write Π∗
N,IP as:

Π∗
N,IP =

(βN + γ) [(βS + γ)[2αN + 2γcS ]− [2(βN + γ)(βS + γ)] cN ]2

2 [4(βN + γ)(βS + γ)]2

<
(βN + γ) [(βS + γ)[2αN + 2γcS ]− [2(βN + γ)(βS + γ)] cN ]2

2 [4(βN + γ)(βS + γ)− γ2]2
≡ ΠUpperBound

N,IP (32)

where ΠUpperBound
N,IP is an upper bound on Π∗

N,IP .

Recall that ΠN,3PN
∗ =

(βN + γ)
[

γαS + (βS + γ)[2αN + γcS ]−
[

2(βN + γ)(βS + γ)− γ2
]

cN
]2

2 [4(βN + γ)(βS + γ)− γ2]2
. Di-
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viding ΠN,3PN
∗by (32), we obtain

ΠN,3PN
∗

ΠUpperBound
N,IP

=

[
γαS + (βS + γ)[2αN + γcS ]−

[
2(βN + γ)(βS + γ)− γ2

]
cN

]2

[(βS + γ)[2αN + 2γcS ]− [2(βN + γ)(βS + γ)] cN ]2
≥ 1

The inequality follows from the fact that the difference between the numerator and denominator is

non-negative, i.e.,
[

γαS + (βS + γ)[2αN + γcS ]−
[

2(βN + γ)(βS + γ)− γ2
]

cN

]

−

[(βS + γ)[2αN + 2γcS ]− [2(βN + γ)(βS + γ)] cN ] = γ [αS − (βS + γ)cS + γcN ] = γDS(cN , cS) ≥ 0 (33)

Thus, we have shown that Π∗
N,IP < ΠUpperBound

N,IP ≤ Π∗
N,3PN in Region 4.

Appendix S4 Proof of Lemma 4

It is straightforward to compare the demand expressions given in Tables 1, 2, and the demand

expressions in Appendix C at KS = 0 and at the various KS thresholds to establish the claims in

Lemma 4. The expressions for DC∗

N,IP and DU∗

N,IP can be found in Table 1. Table 2 contains the

expressions for DC∗

N,3PN and DU∗

N,3PN . Lastly, the expressions for DC∗

N,3PS and DU∗

N,3PS are shown in

Appendix C.

For Region 1, we must show that DC∗

N,IP = DC∗

N,3PS ≤ DC∗

N,3PN . Region 1’s leftmost boundary is

KS = 0. Recall from Tables 1 and 3 that DC∗

N,IP = DC∗

N,3PS , whereby we only need to establish the

inequality between DC∗

N,3PS and DC∗

N,3PN . Both demands are linearly decreasing in KS (cf. Tables 1

and 3). Hence, we need only show that their values at the boundaries of Region 1 have the stated

relationship. Substituting KS = 0 into the expression for DC∗

N,IP = DC∗

N,3PS , through simple algebraic

manipulations we find that

DC∗

N,IP (0) =
(βS + γ)αN − (βNβS + βNγ + βSγ)cN + γαS

4(βS + γ)

<
(βN + γ) [(βS + γ)αN − (βNβS + β −Nγ + βSγ)cN + γ(αS − 2KS)]

2[2(βN + γ)(βS + γ)− γ2]
= DC∗

N,3PN (0)

Substituting K3PN

S into the expression for DC∗

N,IP , we obtain

DC∗

N,IP (K
3PN

S ) =
(2(βN+γ)(βS+γ)−γ2)[2(βS+γ)αN+γ[αS+(βS+γ)]−[2(βN+γ)(βS+γ)−γ2]cN ]

4(βS+γ)[4(βN+γ)(βS+γ)−γ2]

≤
(βN+γ)[2(βS+γ)αN+γ[αS+(βS+γ)]−[2(βN+γ)(βS+γ)−γ2]cN ]

2[4(βN+γ)(βS+γ)−γ2]

= DC∗

N,3PN (K
3PN

S )
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Thus, we have shown that DC∗

N,IP = DC∗

N,3PS ≤ DC∗

N,3PN in Region 1.

In Region 2, we require DC∗

N,IP = DC∗

N,3PS < DU∗

N,3PN . At Region 2’s leftmost boundary (KS = K3PN

S ),

we have DC∗

N,IP = DC∗

N,3PS < DC∗

N,3PN = DU∗

N,3PN . The national brand’s demand under the 3PN ,

DU∗

N,3PN , is constant in KS in Region 2, while the national brand’s demand under 3PS and IP

continues to decrease in KS . This implies that DC∗

N,IP = DC∗

N,3PS < DU∗

N,3PN in Region 2.

In Region 3, we require that DC∗

N,IP ≤ DU∗

N,3PS ≤ DU∗

N,3PN . For KS ≥ K3PS

S , a direct comparison of

DU∗

N,3PN and DU∗

N,3PS (see Tables 2 and 3 for the expressions, both of which are constants) reveals

that DU∗

N,3PS ≤ DU∗

N,3PN because the two expressions share the same numerator, but the numerator

for DU∗

N,3PS is larger. We now turn to a comparison of DC∗

N,IP and DU∗

N,3PS . At the leftmost boundary

in Region 3 (KS = K3PS

S ), we have

DC∗

N,IP (K
3PS

S ) =

√

2[(βN + γ)(βS + γ)− γ2]

2(βN + γ)(βS + γ)− γ2
︸ ︷︷ ︸

≤1

·
2(βS + γ)αN + γ[αS + (βS + γ)]− [2(βN + γ)(βS + γ)− γ2]cN

8(βS + γ)
︸ ︷︷ ︸

=DU∗

N,3PS

Thus, DC∗

N,IP ≤ DU∗

N,3PS at the leftmost boundary in Region 3. Combining this result with the

facts that DC∗

N,IP is decreasing in KS in Region 3 while DU∗

N,3PS is constant, we have that DC∗

N,IP ≤

DU∗

N,3PS ≤ DU∗

N,3PN in Region 3.

Finally, in Region 4, for KS ≥ KIP
S , we have DC∗

N,IP =
αN − (βN + γ)cN + γcs

4
. Multiplying both the

numerator and denominator by 2(βS+γ), the expression becomes [2(βS+γ)αN+2(βS+γ)γcS−2(βN+γ)(βS+γ)cN ]
8(βS+γ) ,

which is less than or equal to DU∗

N,3PS (cf. Table 3). Together with the fact that DU∗

N,3PS ≤ DU∗

N,3PN

for KS ≥ K3PS

S , we have that DC∗

N,IP ≤ DU∗

N,3PS ≤ DU∗

N,3PN in Region 4.

Appendix S5 Third-Party Supplier Profits

In this appendix, we show that the third-party supplier prefers (profit-wise) that the national-brand

supplier is the Stackelberg leader for KS in Regions 1, 3, and 4. We conjecture that the result also

holds in Region 2, although we have not been able to prove it because of the complicated form of

K3PS

S . We have observed through numerous simulations that Region 2 covers a very narrow range

of capacity levels (e.g., K3PS

S is only a few percent larger than K3PN

S ) and we have been unable to

generate a counterexample to our conjecture.

The store-brand supplier’s profits under the third party production configurations (3PN , 3PS)

for both the unconstrained and constrained equilibrium settings are given below:

ΠU∗

S,3PN =
(βS + γ)

[
γαN + (βN + γ)(2αS + γcN )−

(
2(βN + γ)(βS + γ)− γ2

)
cS

]2

2 [4(βN + γ)(βS + γ)− γ2]2
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ΠC∗

S,3PN =

[
γαN + (βN + γ) [2αS + γcN − 4KS ]−

(
2(βN + γ)(βS + γ)− γ2

)
cS

]
KS

2(βN + γ)(βS + γ)− γ2

ΠU∗

S,3PS =

[
2γ(βS + γ)αN +

(
4(βN + γ)(βS + γ)− γ2

)
αS

+
(

2(βN + γ)(βS + γ)− γ2
)

γcN − (βS + γ)(4(βN + γ)(βS + γ)− 3γ2)cS
]2

2(βS + γ) [2(βN + γ)(βS + γ)− γ2]2

ΠC∗

S,3PS =

[
γ(βS + γ)αN + (2(βN + γ)(βS + γ)− γ2)(αS − 2KS)

+((βN + γ)(βS + γ)− γ2)(γcN − 2(βS + γ)cS)
]
KS

2(βS + γ)((βN + γ)(βS + γ)− γ2)

To show that the third-party supplier always prefers the 3PS to the 3PN configuration in Regions 1,

3, and 4, we compare the applicable profits in each KS region.

In Region 1, the store-brand factory has a binding capacity constraint under both 3PS and 3PN .

We can write ΠC∗

S,3PS −ΠC∗

S,3PN as:

ΠC∗

S,3PS −ΠC∗

S,3PN =
γ3KS ·

[
(βS + γ)αN + γ(αS − 2KS)−

(
(βN + γ)(βS + γ)− γ2

)
cN

]

2(βS + γ) [(βN + γ)(βS + γ)− γ] [2(βN + γ)(βS + γ)− γ]
≥ 0

This follows from (29), where we show the bracketed term in the numerator is positive.

We next compare the third-party supplier’s profits in Regions 3 and 4, where the capacity constraint

is not binding under either 3PS or 3PN . The difference ΠU∗

S,3PS −ΠU∗

S,3PN can be written as:

ΠU∗

S,3PS −ΠU∗

S,3PN =

γ3 ·
[
(γ2 + βSγ)cS − (γ2 + 2βSγ + 2βSβN + 2γβN )cN + (2γ + 2βS)αN + γαS

]
·








(

8(βN + γ)(βS + γ)− γ2
) [

2(βS + γ)γαN + (4(βN + γ)(βS + γ)− γ2)αS+

(2(βN + γ)(βS + γ)− γ2)γcN − (βS + γ)(4(βN + γ)(βS + γ)− 3γ2)cS
]

−4γ2((βS + γ)γαN + (βN + γ)(βS + γ)αS − (βS + γ)((βN + γ)(βS + γ)− γ2)cS)








32(βS+γ)[2(βN+γ)(βS+γ)−γ]2[4(βN+γ)(βS+γ)−γ]2

which we can show is decreasing in cs. In Appendix D.1, we showed that (28) is an upper bound on

cs. Substituting this upper bound into the above expression, we obtain a lower bound on the profit

difference:

ΠU∗

S,3PS −ΠU∗

S,3PN ≥
γ6

[
γαS + (βN + γ)αN −

(
(βN + γ)(βS + γ)− γ2

)
cN

]2

2(βS + γ) [4(βN + γ)(βS + γ)− γ]2 [4(βN + γ)(βS + γ)− 3γ]2
≥ 0

Thus, the third-party supplier always prefers that the national brand is the Stackelberg leader for

KS in Regions 1, 3, and 4.
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