S1 Proofs

S1.1 Proof of Lemma 2

We first discuss the continuous case, which illustrates the basic idea that can be applied alike to categorical and discrete distributions.

Let f_1, f_2 denote the densities of the distributions F_1, F_2 . Fix the smallest $b^* > 1$ so that $\Omega := [1, b^*]$ covers both the supports of F_1 and F_2 . Consider the difference of the k-th moments, given by

$$\Delta(k) := \operatorname{E}(R_1^k) - \operatorname{E}(R_2^k) = \int_{\Omega} x^k f_1(x) dx - \int_{\Omega} x^k f_2(x) dx$$
$$= \int_{\Omega} x^k (f_1 - f_2)(x) dx.$$
(1)

Towards a lower bound to (1), we distinguish two cases:

- 1. If $f_1(x) > f_2(x)$ for all $x \in \Omega$, then $(f_1 f_2)(x) > 0$ and because f_1, f_2 are continuous, their difference attains a minimum $\lambda_2 > 0$ on the compact set Ω . So, we can lower-bound (1) as $\Delta(k) \ge \lambda_2 \int_{\Omega} x^k dx \to +\infty$, as $k \to \infty$.
- 2. Otherwise, we look at the right end of the interval Ω , and define

$$a^* := \inf \{x \ge 1 : f_1(x) > f_2(x)\}$$

Without loss of generality, we may assume $a^* < b^*$. To see this, note that if $f_1(b^*) \neq f_2(b^*)$, then the continuity of $f_1 - f_2$ implies $f_1(x) \neq f_2(x)$ within a range $(b^* - \varepsilon, b^*]$ for some $\varepsilon > 0$, and a^* is the supremum of all these ε . Otherwise, if $f_1(x) = f_2(x)$ on an entire interval $[b^* - \varepsilon, b^*]$ for some $\varepsilon > 0$, then $f_1 \neq f_2$ on Ω (the opposite of the previous case) implies the existence of some $\xi < b^*$ so that $f_1(x) < f_2(x)$, and a^* is the supremum of all these ξ (see Fig A for an illustration). In case that $\xi = 0$, we would have $f_1 \geq f_2$ on Ω , which is either trivial (as $\Delta(k) = 0$ for all k if $f_1 = f_2$) or otherwise covered by the previous case. In either situation, we can fix a compact interval $[a, b] \subset (a^*, b^*) \subset [1, b^*] = \Omega$ and two constants $\lambda_1, \lambda_2 > 0$ (which exist because f_1, f_2 are bounded as being continuous on the compact set Ω), so that the function

$$\ell(k,x) := \begin{cases} -\lambda_1 x^k, & \text{if } 1 \le x < a; \\ \lambda_2 x^k, & \text{if } a \le x \le b. \end{cases}$$

lower-bounds the difference of densities in (1) (see Fig A), and

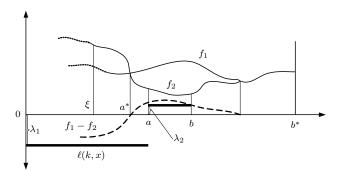


Figure A. Lower-bounding the difference of densities

$$\begin{split} \Delta(k) &= \int_1^{b^*} x^k (f_1 - f_2)(x) dx \geq \int_1^b \ell(x, k) dx \\ &= -\lambda_1 \int_1^a x^k dx + \lambda_2 \int_a^b x^k dx \\ &= -\frac{a^{k+1}}{k+1} (\lambda_1 + \lambda_2) + \lambda_2 \frac{b^{k+1}}{k+1} \to +\infty \end{split}$$

as $k \to \infty$ due to a < b and because λ_1, λ_2 are constants that depend only on f_1, f_2 .

In both cases, we conclude that, unless $f_1 = f_2$, $\Delta(k) > 0$ for sufficiently large $k \ge K$ where K is finite. This establishes the lemma for continuous distributions.

In the discrete or categorical case, the argument remains the same, only adapted to looking at the finite set of values on which $f_1 \ge f_2$. The largest value less than *a* above which equality holds until the end of the support then determines the growth of the difference sequence in the same way as was argued in Section 4.1.

S1.2 Proof of Theorem 2

Let f_1, f_2 be the density functions of F_1, F_2 . Call $\Omega = \operatorname{supp}(F_1) \cup \operatorname{supp}(F_2) = [0, a]$ the common support of both densities, and take $\xi = \inf \{x \in \Omega : f_1(x) = f_2(x) = 0\}$. Suppose there were an $\varepsilon > 0$ so that $f_1 > f_2$ on every interval $[\xi - \delta, \xi]$ whenever $\delta < \varepsilon$, i.e., f_1 would be larger than f_2 until both densities vanish (notice that $f_1 = f_2 = 0$ on the right of ξ). Then the proof of lemma 2 delivers the argument by which we would find a $K \in \mathbb{N}$ so that $\mathbb{E}(X_1^k) > \mathbb{E}(X_2^k)$ for every $k \ge K$, which would contradict $F_1 \preceq F_2$. Therefore, there must be a neighborhood $[\xi - \delta, \xi]$ on which $f_1(x) \le f_2(x)$ for all $x \in [\xi - \delta, \xi]$. The claim follows immediately by setting $x_0 = \xi - \delta$, since taking $x \ge x_0$, we end up with $\int_x^{\xi} f_1(t) dt \le \int_x^{\xi} f_2(t) dt$, and for i = 1, 2 we have $\int_x^{\xi} f_i(t) dt = \int_x^a f_i(t) dt = \Pr\{X_i > x\}$.

S1.3 Proof of Lemma 3

Throughout the proof, let $i \in \{1, 2\}$. The truncated distribution density that approximates f_i is $f_i(x)/(F_i(a_n) - F_i(0))$, where $[0, a_n]$ is the common support of *n*-th approximation to f_1, f_2 . By construction, $a_{n,i} \to \infty$ as $n \to \infty$, and therefore $F_i(a_n) - F_i(0) \to 1$ for i = 1, 2. Consequently,

$$Q_n = \frac{F_1(a_n) - F_1(0)}{F_2(a_n) - F_2(0)} \to 1, \quad \text{as } n \to \infty,$$

and there is an index N such that $Q_n > c$ for all $n \ge N$. In turn,

$$f_2(x) \cdot Q_n > f_2(x) \cdot c > f_1(x),$$

and by rearranging terms,

$$\frac{f_1(x)}{F_1(a_n) - F_1(0)} < \frac{f_2(x)}{F_2(a_n) - F_2(0)},\tag{2}$$

for all $x \ge x_0$ and all $n \ge N$. The last inequality (2) lets us compare the two approximations easily by the same arguments as have been used in the proof of lemma 2, and the claim follows.