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S1

Proofs

S1.1 Proof of Lemma [2

We first discuss the continuous case, which illustrates the basic idea that can be applied
alike to categorical and discrete distributions.
Let fi1, fo denote the densities of the distributions F}, F5. Fix the smallest b* > 1 so

that

Q := [1,b*] covers both the supports of F} and Fy. Consider the difference of the

k-th moments, given by

A(k) == E(R}) — E(RS) :/kafl(x)dxf/gzrkfg(x)dx
= [ - e 1)

Towards a lower bound to , we distinguish two cases:

1.

If f1(x) > fo(x) for all x € Q, then (f1 — f2)(z) > 0 and because fi, fo are
continuous, their difference attains a minimum A, > 0 on the compact set €. So,
we can lower-bound as A(k) > \p [, #"dx — +o0, as k— oco.

Otherwise, we look at the right end of the interval €2, and define
a* :=inf{z>1: fi(z) > fa(z)}.

Without loss of generality, we may assume a* < b*. To see this, note that if
f1(b*) # f2(b*), then the continuity of fi — fo implies fi(z) # fo(x) within a
range (b* — &,b*] for some € > 0, and a* is the supremum of all these ¢.
Otherwise, if fi(x) = fa2(x) on an entire interval [b* — €, b*] for some & > 0, then
f1 # f2 on Q (the opposite of the previous case) implies the existence of some

€ < b* so that fi(z) < fa(x), and a* is the supremum of all these £ (see Fig |A|for
an illustration). In case that £ = 0, we would have f; > fo on Q, which is either
trivial (as A(k) =0 for all k if f; = f2) or otherwise covered by the previous case.

In either situation, we can fix a compact interval [a,b] C (a*,b*) C [1,b*] = Q and
two constants A1, A2 > 0 (which exist because f1, f2 are bounded as being
continuous on the compact set ), so that the function

. —Alxk, ifl<z<a;
Uk, z) = { XozF, ifa<z<b.

lower-bounds the difference of densities in (see Fig[A), and

Y

Figure A. Lower-bounding the difference of densities
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b* b
A(k):/l xk(flffg)(z)dxzfl ((z, k)dz

a b
= —)\1/ 2Fdr + )\2/ 2P dx
1 a

ak+1 bk‘+1
= _m()\l + )\2) + )\2]‘{:7%‘1 — +OO,

as k — oo due to a < b and because A1, A2 are constants that depend only on
fla f2-

In both cases, we conclude that, unless f; = fo, A(k) > 0 for sufficiently large
k > K where K is finite. This establishes the lemma for continuous distributions.

In the discrete or categorical case, the argument remains the same, only adapted to
looking at the finite set of values on which f; > fo. The largest value less than a above
which equality holds until the end of the support then determines the growth of the
difference sequence in the same way as was argued in Section [{.1] ]

S1.2 Proof of Theorem [2

Let fi1, fo be the density functions of Fy, Fy. Call Q = supp(F}) U supp(Fz) = [0, a] the
common support of both densities, and take £ = inf {z € Q : fi(x) = fa(x) = 0}.
Suppose there were an € > 0 so that fi; > f2 on every interval [£ — §,£] whenever 0 < e,
i.e., f1 would be larger than fo until both densities vanish (notice that f; = fo =0 on
the right of £). Then the proof of lemma [2| delivers the argument by which we would
find a K € IN so that E(XT) > E(X}) for every k > K, which would contradict

Fy =< F5. Therefore, there must be a neighborhood [§ — §,£] on which fi(z) < fa(x) for
all x € [€ — §,&]. The claim follows immediately by setting xg = £ — ¢, since taking

x > x9, we end up with ff fit)dt < ff f2(t)dt, and for i = 1,2 we have
IS fiydt = [ fit)dt = Pr{X; > 2}, 0

S1.3 Proof of Lemma [3

Throughout the proof, let ¢ € {1,2}. The truncated distribution density that
approximates f; is f;(x)/(F;(an) — F;(0)), where [0, a,] is the common support of n-th
approximation to fi, fo. By construction, a, ; — 0o as n— oo, and therefore

Fi(an) — F;(0) =1 for ¢ = 1,2. Consequently,

Fl(an) — F1(0>

@n = Fy(an) — F5(0)

—1, asn—o0,

and there is an index N such that @,, > ¢ for all n > N. In turn,

fz(%) : Qn > fZ(x) c> fl(x)v

and by rearranging terms,

fi(z) fa(z)
Fl(an) - Fl(o) < Fg(an) — FZ(O)’ (2)

for all x > zg and all n > N. The last inequality lets us compare the two
approximations easily by the same arguments as have been used in the proof of lemma
[2] and the claim follows.

PLOS



	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 3

