
S1 Proofs

S1.1 Proof of Lemma 2

We first discuss the continuous case, which illustrates the basic idea that can be applied
alike to categorical and discrete distributions.

Let f1, f2 denote the densities of the distributions F1, F2. Fix the smallest b∗ > 1 so
that Ω := [1, b∗] covers both the supports of F1 and F2. Consider the difference of the
k-th moments, given by

∆(k) := E
(
Rk1
)
− E

(
Rk2
)

=

∫
Ω

xkf1(x)dx−
∫

Ω

xkf2(x)dx

=

∫
Ω

xk(f1 − f2)(x)dx. (1)

Towards a lower bound to (1), we distinguish two cases:

1. If f1(x) > f2(x) for all x ∈ Ω, then (f1 − f2)(x) > 0 and because f1, f2 are
continuous, their difference attains a minimum λ2 > 0 on the compact set Ω. So,
we can lower-bound (1) as ∆(k) ≥ λ2

∫
Ω
xkdx→+∞, as k→∞.

2. Otherwise, we look at the right end of the interval Ω, and define

a∗ := inf {x ≥ 1 : f1(x) > f2(x)} .

Without loss of generality, we may assume a∗ < b∗. To see this, note that if
f1(b∗) 6= f2(b∗), then the continuity of f1 − f2 implies f1(x) 6= f2(x) within a
range (b∗ − ε, b∗] for some ε > 0, and a∗ is the supremum of all these ε.
Otherwise, if f1(x) = f2(x) on an entire interval [b∗ − ε, b∗] for some ε > 0, then
f1 6> f2 on Ω (the opposite of the previous case) implies the existence of some
ξ < b∗ so that f1(x) < f2(x), and a∗ is the supremum of all these ξ (see Fig A for
an illustration). In case that ξ = 0, we would have f1 ≥ f2 on Ω, which is either
trivial (as ∆(k) = 0 for all k if f1 = f2) or otherwise covered by the previous case.

In either situation, we can fix a compact interval [a, b] ⊂ (a∗, b∗) ⊂ [1, b∗] = Ω and
two constants λ1, λ2 > 0 (which exist because f1, f2 are bounded as being
continuous on the compact set Ω), so that the function

`(k, x) :=

{
−λ1x

k, if 1 ≤ x < a;
λ2x

k, if a ≤ x ≤ b.

lower-bounds the difference of densities in (1) (see Fig A), and
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Figure A. Lower-bounding the difference of densities
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∆(k) =

∫ b∗

1

xk(f1 − f2)(x)dx ≥
∫ b

1

`(x, k)dx

= −λ1

∫ a

1

xkdx+ λ2

∫ b

a

xkdx

= − a
k+1

k + 1
(λ1 + λ2) + λ2

bk+1

k + 1
→+∞,

as k→∞ due to a < b and because λ1, λ2 are constants that depend only on
f1, f2.

In both cases, we conclude that, unless f1 = f2, ∆(k) > 0 for sufficiently large
k ≥ K where K is finite. This establishes the lemma for continuous distributions.

In the discrete or categorical case, the argument remains the same, only adapted to
looking at the finite set of values on which f1 ≥ f2. The largest value less than a above
which equality holds until the end of the support then determines the growth of the
difference sequence in the same way as was argued in Section 4.1. �

S1.2 Proof of Theorem 2

Let f1, f2 be the density functions of F1, F2. Call Ω = supp(F1) ∪ supp(F2) = [0, a] the
common support of both densities, and take ξ = inf {x ∈ Ω : f1(x) = f2(x) = 0}.
Suppose there were an ε > 0 so that f1 > f2 on every interval [ξ − δ, ξ] whenever δ < ε,
i.e., f1 would be larger than f2 until both densities vanish (notice that f1 = f2 = 0 on
the right of ξ). Then the proof of lemma 2 delivers the argument by which we would
find a K ∈ N so that E

(
Xk

1

)
> E

(
Xk

2

)
for every k ≥ K, which would contradict

F1 � F2. Therefore, there must be a neighborhood [ξ − δ, ξ] on which f1(x) ≤ f2(x) for
all x ∈ [ξ − δ, ξ]. The claim follows immediately by setting x0 = ξ − δ, since taking

x ≥ x0, we end up with
∫ ξ
x
f1(t)dt ≤

∫ ξ
x
f2(t)dt, and for i = 1, 2 we have∫ ξ

x
fi(t)dt =

∫ a
x
fi(t)dt = Pr{Xi > x}. �

S1.3 Proof of Lemma 3

Throughout the proof, let i ∈ {1, 2}. The truncated distribution density that
approximates fi is fi(x)/(Fi(an)− Fi(0)), where [0, an] is the common support of n-th
approximation to f1, f2. By construction, an,i→∞ as n→∞, and therefore
Fi(an)− Fi(0)→ 1 for i = 1, 2. Consequently,

Qn =
F1(an)− F1(0)

F2(an)− F2(0)
→ 1, as n→∞,

and there is an index N such that Qn > c for all n ≥ N . In turn,

f2(x) ·Qn > f2(x) · c > f1(x),

and by rearranging terms,

f1(x)

F1(an)− F1(0)
<

f2(x)

F2(an)− F2(0)
, (2)

for all x ≥ x0 and all n ≥ N . The last inequality (2) lets us compare the two
approximations easily by the same arguments as have been used in the proof of lemma
2, and the claim follows.
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