The Renaissance
Simulations Laboratory

Matthew Turk, on behalf of
Kacper Kowalik, Michael Norman,
Britton Smith and Hao Xu

The Renaissance Simulations Laboratory is a physical
space, where virtual reality (Holodeck-like) constructs of
Renaissance painters, artists and philosophers are
allowed to operate autonomously. Surrounding this
physical space, we have constructed mechanisms for
interaction with these autonomous constructs, enabling
laboratory-style interactions, replaying conversations,
studying how these constructs interact, and what we
might learn from them.

ital Media Ceanter,
ci et al. & Digital Med
5.G. Djorgovski e

Community developed, open source
AMR cosmology platform with MHD,
FLD, ray tracing, chemistry, feedback,
and active particles.

enzo-project.org

Density E, ('m'”j XH

1—2# w27 128 10— =2 1 1= =2 10t 10"

&g
_ | =
: {2]
— R@=-17.0) |§1357%
== N(z=12.5) F
...... V(z=9.0) {®12.0
) 10-5
&
2+, llo.0
. »
Dk o
7 8

logip(M, /M)

Xu, H., Ahn, K., Norman, M.L, Wise, J.H, & O'Sheaq, B.W,,
2016, arXiv:1607.02664

Xu, H., Norman, M.L., O'Sheq, B.W., &§ Wise, J.H., 2016,
ApdJd, 823, 140

Xu, H., Wise, J.H., Norman, M.L., Ahn, K., & O'Sheq, B.W.,,
2016, arXiv:1604.07842

O'Sheq, B.W., Wise, J.H., Xu, H., § Norman, M.L., 2015,
ApJL, 807,L12

(play movie here)

Simulations by Brian O’Sheqa, Mike Norman
Visualization by the Advanced Visualization Lab:
Donna Cox, Bob Patterson, Stuart Levy, Kalina
Borkiewicz, AJ Christensen

Steps:

1. Assemble tools
2. Deploy tools
3. Make tools accessible

Layers of Representation

Layers of Representation

Layers of Representation

Model

the yt project

e Python-based (C, Cython, etc)
e Community developed

o Code of Conduct

o Governance structure

o 100+ contributors

o Volumetric and non-spatial data

Used in nearly 300 papers

Grids, particles, octrees, and unstructured meshes
Arbitrary geometric representations

Minimize time fo inquiry

Ingestion

Ingestion Representation

Ingestion Representation Analysis

Layers of Representation

Model

Low-Level Operations

N
L
o

Low-Level Operations

N
L
o

Low-Level Operations

Chunk

- <>
—— Chunk —— —— C
Chunk - Chunk Chunk Chunk

Layers of Representation

Model

Mid-Level Operations

Layers of Representation

Model

High-Level Operations

Chunk >

High-Level Operations

>
)

High-Level Operations

Chunk >

High-Level Operations

Open-Source Tools in the RSL

ytree 1.0 documentation

NEXT INDEX

Welcome to ytree’s documentation! i
Loading, Using, and Saving Merger-

ytree is a merger-tree code based on the yt analysis toolkit. ytree can create merger-trees trees

from Gadget FoF/Subfind catalogs, either for all halos or for a specific set of halos. ytree is

Making Merger-trees from Gadget
able to load in merger-tree from the following formats: FoF/Subfind

» consistent-trees
» Rockstar halo catalogs without consistent-trees
» merger-trees made with ytree

SEARCH

All formats can be saved with a universal format that can be reloaded with ytree. Individual
trees for single halos can also be saved. Similar to yt, fields queried for halos or trees are
returned with units.

Installation

ytree’s main dependency is yt. Once you have installed yt following the instructions here,
ytree can be installed using pip.

pip install ytree

And that’s it!

Using ytree ytree.readthedocs. 10

C Bemeeallesas N EBaleide vl @ siaalaaoe e e W

: J U pyte r mass_profiles Last Checkpoint: 02/16/2015 (unsaved changes) ﬂ

File Edit View Insert Cell Kernel Help | Python2 O
+ < @ B ¥ M B C Code 3 CellToolbar
In [17]: d = YTArray(70.4799588511, "pc")
M = ¥TQuantity(11.19, "Msun")
f =M/ (4 * np.pi * d**2)

mblast = (£ * np.pi * radius**2).in units("Msun")
mblast[mblast > M] = M

In [7]: my_Z = (metal mass/cell mass).in units("Zsun")
Z_inner = my_ Z[radius < YTQuantity(0.01, "pc")].mean()
m_Z_inner = cell mass * Z_inner

In [B8]: metal def = my metal mass[my Z < Z_inner].in units("Msun").sum()

In [9]: pyplot.loglog(radius.in units("pc"), cell mass.in units("Msun"), label="gas")
pyplot.loglog(radius.in units("pc"), m_Z inner.in units("Msun"), alpha=0.5)
pyplot.loglog(radius.in_units("pc"”), metal mass.in_units("Msun"), label="metals")
pyplot.loglog(radius.in units("pc"), mblast, label="blastwave")
pyplot.loglog(radius.in units("pc"), np.ones_like(radius) * metal_ def)
#pyplot.xlim(le-6, le2)
pyplot.ylim(le-12, led)
pyplot.legend(loc="lower right")
pyplot.xlabel("r [pc]")
pyplot.ylabel ("M [Msun]")

Out[9]: <matplotlib.text.Text at 0x10d746e90> log (r [AU])
-1 0 1 2 3 4 6 i 8
10 ‘ ' i J : 0l =— Blast-wave Metal Flux
102 } Enclosed Metals
— Z=2x10"Z,
10° | / _
= o}]

_ 10% =

g s

= 10* =

2 Bao}

“ 10° : : . . .
— gas : Smith et al. (2015)
1010 — metals | 15} ‘ . . . T R R S

blastwave 6 S5 4 3 2 1 0 1 2 3
102 , ; log (r [pcl)

10 10° 10° 10% 10° 107 10! 10° 100 10° 10°

r [pc]

RSL Architecture

Open source tools

All code open source & upstreamed

Building on components of the yt hub (hub. yt)
Make data and compute accessible

Invest in community

Piloted through National Data Service

Direct Download

RSL Web Interface

Job Dispatch
¢

Direct Download

JupyterHub,
Thebe, efc
A A
N — —
Basi
NCSA Storage Co r:pS)ILcj’r o
\ /

$

Container Transfer

Local Network

7
hﬂ

C
Siats

SDSC Comet

A A
~ LN
N— .
SDSC Storage
SN— .

Local Network

The RSL under the hood

Spawn new notebooks
Link to the data

Store results

Ingest data
and metadata [lSaue new data

Raw Data

| &
docker ®

i
|
! jupyter

Use mount binds to directly
access the data (read-only)

The RSL under the hood - Girder

e Uses mongodb to manage data

e Caningest existing data from the posix fs / S3 / gridFS

e Caningest or create metadata dynamically upon data
upload.

e Allows to move/copy data references without actually
touching underlying data

e Provides user authentication and multiple levels of access

e Easily extensible using a plugin framework

e Streaming upload/download of data

The RSL under the hood - Jupyter Notebook

e Provides a remote computing with a direct access to the
data

e Allows to analyze/visualize the data using popular Python
packages (AstroPy, yt)

e Can be used with other programming languages too
(Ruby, R, Matlab, js, Julig, Rust ...)

e Allows to create custom widgets

e Offten used to disseminate results in the form of interactive
papers (accepted by Nature, Apd etc)

NSF AST-1615001: CDS&E: Renaissance
Simulations Laboratory to Model and Explore
the First Galaxies in the Universe

Building on work from NSF ACI-1535651:
SI2-SSE: yt: Reusable Components for
Simulating, Analyzing and Visualizing
Astrophysical Systems

prototypes

hub.yt/data/goldbaum2015a/
hub.yt/data/goldbaum2015b/
arxiv.org/abs/1510.08458

Courtesy Nathan Goldbaum

Galaxy Visualization Widget

This notebook defines a simple widget used to visualize various fields derived from a set of 3D AMR hydrodynamic
simulation of an isolated disk galaxy. The full simulation dataset weighs in at around 15 TB, but these sorts of interactive
visualizations make it easy to quickly and easily visualize the physically important parts of the data.

The widget should appear after the final notebook cell.

In [1]: from galanyl.widget import galaxy widget
from IPython.display import display

display(galaxy widget)

feedback_20pc | ~ Image - Gas - Surface Density | ~

10°
10

102

10!

Teas (Mg pc?)

10"

B 10!

-10 -5 0
x (kpe)

10

N

Movie 500 Myr

Thank you.

mijturk@illinois.edu

