Interactive Leaderboard for Requesting and Tracking Expensive Calculations of Optional Properties across a Database of Materials

Donny Winston, Joseph Montoya, and Kristin Persson Lawrence Berkeley National Laboratory Science Gateways Conference, SDSC, San Diego, CA November 2, 2016

A database of inorganic crystalline material structures and properties

Cu ₂ O	iD: mp-361	10.17188/1207131											
HM:P 1			Material Details										
a=4.288Å b=4.288Å c=4.288Å α=90.000° β=90.000°			Final Magnetic Moment 0.000 µ _B	Final Magnetic Moment 0.000 μ _B								Visualize with ELATE	
γ=90.000°			Magnetic Ordering		Stiffness Tensor Cij (GPa)						Shear Modulus G _V	Bulk Modulus K _V	
			Unknown		124.16	105.26	105.27	0	0	0	8.40 GPa	111.57 GPa	
			Formation Energy / Atom		105.26	124.17	105.27	0	0	0	Shear Modulus G _R	Bulk Modulus K _R	
			-0.050 EV		105.27	105.27	124.18	0	0	0	8.31 GPa	111.57 GPa	
			Energy Above Hull / Atom 0.000 eV		0	0	0	7.69	0	0	Shear Modulus G _{VRH}	Bulk Modulus K _{VRH}	
			Donaity		0	0	0	0	7.69	0	8.35 GPa	111.57 GPa	
			6.03 g/cm ³		0	0	0	0	0	7.69	Elastic Anisotropy	Poisson's Ratio	
			Decomposes To		Compliance Tensor Sij						0.05	0.46	
			Stable										
			Band Gap										
Structure Type:	Conventional St	andard Primitive Refined	0.500 eV			-							

https://www.materialsproject.org

Some calculated properties are useful but computationally expensive

A workflow for calculating a full elastic tensor

Entice users with a hook

Elasticity

A full elastic tensor has not been calculated for this material. Would you like statistical-learning-based predictions of this material's bulk and shear moduli?

By clicking the button at right, you are also "voting" for full calculation of this material's elastic properties.

Reference for predictions:

doi:10.1038/srep34256 https://github.com/materialsproject/gbml

FireWorks helps define workflows with database-backed state, provenance, and priority

https://github.com/materialsproject/fireworks

FireWorks has built-in web-based monitoring

Priorities of elastic tensor workflows can be dynamically updated

All together now

One main endpoint, with ample options

/rows?format=html&filter=W-*&psort=decr&ssort=incr&psize=5

Logged in as maartendft@gmail.com Interactive Leaderboard for Property **Requests and Notification**

🔿 incr o incr W-* sort: filter: E above hull / atom (eV) votes, 💿 decr decr Show only what I have upvoted reset all Go E above hull / ID description atom (eV) detail votes 5 × mp-1821 WSe₂ P6₃/mmc 0 workflow 2 mp-224 WS₂ P6₃/mmc 0 workflow 1 X mp-30336 Al₄W Cm 0.0001491496 workflow 1 X mp-12524 Al₂W P6₄22 0.0963289224444 workflow 0 $TaW_3 Fm\overline{3}m$ mp-979289 0 N/A

Log out

Configuration is mostly data, some functions

entries

workflows

<pre>get_workflow_ids(entry_ids, workflow_collection): fireworks = workflow_collection.database.fireworks fk_field = "spec.snl.aboutmp_id" fws = fireworks.find({fk_field: {"\$in": entry_ids}}, {"_id": 0, "fw_id": 1, fk_field: 1})</pre>
idmap = {}
for fw in fws:
<pre>entry_id = fw['spec']['snl']['about']['_mp_id'] idmap[entry_id] = fw['fw_id'] return [idmap.get(e_id, None) for e_id in entry_ids]</pre>
<pre>KFLOWS = { 'get_workflow_ids, 'url_for': 'http://elastic.dash.materialsproject.org/wf/{w_id}'</pre>

def user voted(email, prefilter=True, votes doc=None): def record_vote(email, votes_doc, votes_collection, how, filt_for_update):

assert email not in votes_doc.get('requesters', [])

update = {'\$inc': {'nrequesters': amt}, op: {'requesters': email}} votes_collection.update_one(filt_for_update, update, upsert=True) return "success: {}voted {}".format(how, filt_for_update['material_id'])

'filter_active': {'state': {'\$ne': 'COMPLETED'}, 'prop': 'elasticity'}, 'filter_completed': {'state': 'COMPLETED', 'prop': 'elasticity'}, 'entry_id': 'material_id',

db connections

USE_TEST_CLIENTS = True $CLIENTS = {$ 'votes': { 'host': 'host1'. 'port': 27017, 'database': 'mg_apps_prod', 'collection': 'property_requests', 'username': 'ilprn_readwrite', 'password': 'pass',

> 'host': 'host2', 'port': 27017, 'database': 'mg_core_prod', 'collection': 'materials', 'username': '<u>ilprn readonly</u>', 'password': 'pass',

'workflows': { 'host': 'host3', 'port': 27017, 'database': '<u>fw jhm</u>elastic', 'collection': 'workflows',
'username': 'ilprn_readonly', 'password': 'pass',

token-based auth

ASSWORDLESS = $\{$

'TOKEN_STORE': 'mongo', 'DELIVERY_METHOD': 'null', 'LOGIN URL': 'plain', 'dbname': 'ilprn_test', 'remote_app_id' 'materialsproject.org', 'remote_app_secret': 'SECRET', 'remote_app_name': 'Materials Project', 'remote_app_uri': 'https://materialsproject.org';

Remaining Work

- Merge existing email notification service with leaderboard codebase
- Deploy leaderboard with auth via dynamically fetched token link
 - on Materials Project user dashboard
 - at "point-of-sale" (e.g. on request of property prediction)
- Communicating expectations
 - "special" users / community expectations on vote (re)weighting
 - troubleshooting failed "user" workflows
- Release codebase and documentation
 - Will be under github.com/materialsproject
 - In the meantime, contact me: <u>dwinston@lbl.gov</u>
- Update: code online at https://github.com/materialsproject/ilprn