# Effective and interactive dissemination of diffusion data using MPContribs

Patrick Huck

Lawrence Berkeley National Laboratory

Staff Software Engineer

http://perssongroup.lbl.gov

[High Energy Nuclear Physics, STAR@RHIC]

#### MGI & Materials Project: Achievements to Date

#### Materials Genome Initiative

e

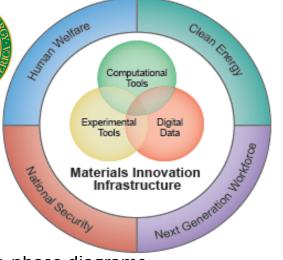
2011: "make the process of discovery & development of advanced materials faster, less expensive, more predictable"

"solutions in most pressing areas require advanced materials"

•

٠

۲


High-Quality Materials DATA

Rapid DISSEMINATION

DESIGN

- > 70,000 relaxed compounds: validated energy, phase diagrams
  - > 70,000 Pourbaix diagrams: world's largest set
- > 43,000 band structures + higher accuracy 2,700 band gaps
- > 3,000 elastic tensors: world's largest data set
- **Ten Apps** enabling material searching and design
  - First Materials data API ; community download > 8 million data
- **MPContribs framework:** platform for data sharing
- Over 25,000 registered users !

#### Design of **novel functional materials** (photocatalysts, thermoelectrics, cathodes/electrolytes)



# MP Web Site – A Science Gateway



https://materialsproject.org/ https://github.com/materialsproject Harnessing the power of supercomputing and state-of-the-art electronic structure methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

Sign In or Register to start using Learn more

Density of States Ba<sub>2</sub>UNiO<sub>6</sub> Click and drag to zoon Material Details Final Magnetic Moment 2.0000 µB Formation Energy/At -3.0384 eV Energy Above Hull Indirect X-F bandgap = 7.7511 eV Efer 0.0000 eV <u>ل</u> Density 7.38 a/cm3 Space Group Fm3m sign indicates spin 1 Hal

EXPLORE **EXPLORE BATTERIES** VISUALIZE INVENT CALCULATE MATERIALS Find candidate materials **STABILITY STRUCTURES** Search for materials for lithium batteries. Get Generate phase and Design new compounds voltage profiles and information by chemistry, pourbaix diagrams to find with our structure editor compare with composition, or property oxygen evolution data. stable phases and study and substitution experimental values reaction pathways algorithms

State-of-the-art **OPEN SOURCE** CODES

- Developed and disseminated key code base: •
- FireWorks workflow •
- pymatgen; comprehensive analysis code .
- Custodian failure recovery •

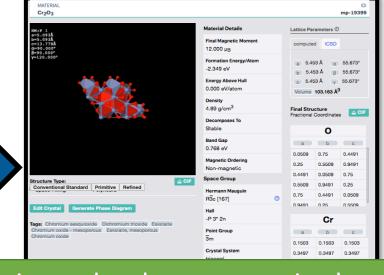
Calculate the enthalpy of 10,000+ reactions and

Contribute data and disseminate it through MP

#### **MPC**ONTRIBS

"help sharing datasets with the world"

#### A. T. N'Diaye (ALS, LBNL):


- measured XAS/XMCD spectra
- properties of rare earth substitutes
- processing of instrumental data
- integration w/ MP phase diagrams

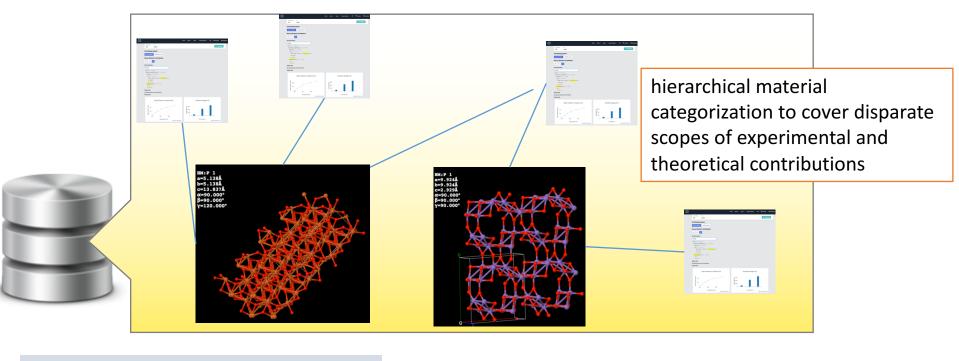
D. Morgan, H. Wu (SI2, UW):

- computed diffusion coefficients
- automated VASP data extraction and integration with MP

Demo w/ Simple & ALS Data: https://youtu.be/zH-ZauYsu64 Demo of UW/SI2 Web App: https://youtu.be/wbWde5StHnU

# Annotate materials already existing in core database




aim to develop a customized web app driven by MPCONTRIBS

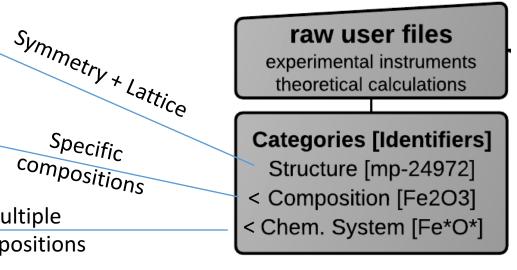
- Establish a Center Hub for theoretical and experimental data
- Effective dissemination for exposure to large MP user community

Huck P. et al.; eScience15; GCE15; Poster; MRS16 Spring & Fall

full contributors list

#### Collective Annotation of Core Database

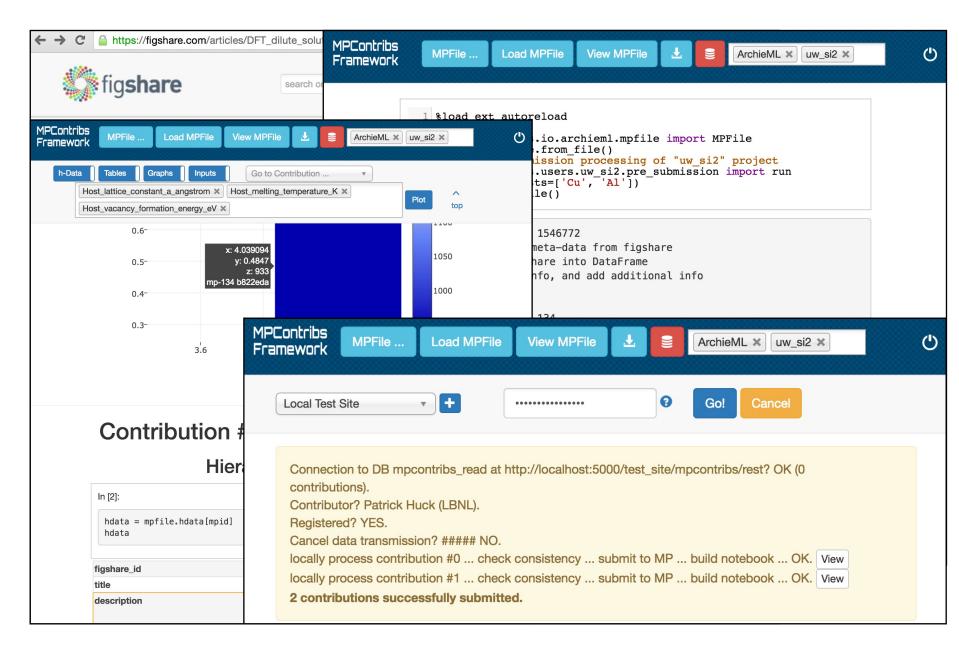



materials/mp-24972/contributions (mostly theoretical contributions)

links to compositions/Fe2O3/contributions (experimental contributions)

> ternary plot representation, e.g. phase diagrams

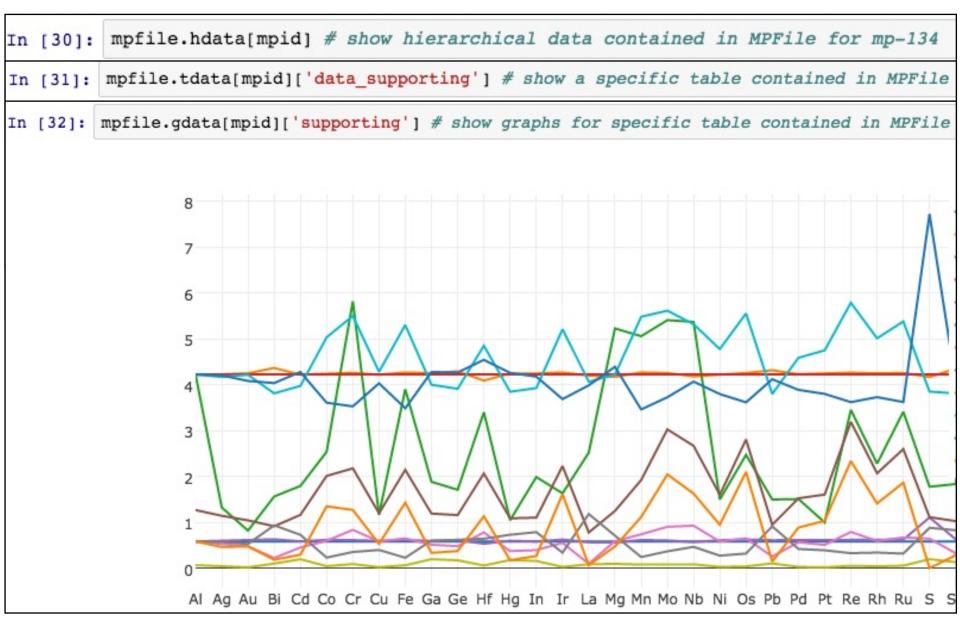
compositions multiple compositions


Specific



# Integration with JupyterHub

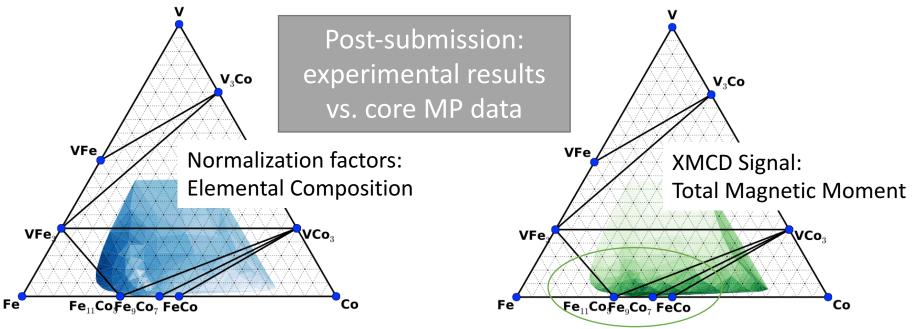
| Jupyter Hub                                                                                                | × C MPContribs                       | × phuck@lbl.gov                                     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|--|--|--|--|
| $\leftarrow$ $\rightarrow$ C (i) localhost:8000/hub/home                                                   |                                      | 🖈 🜔 😵 🛈 🚺 🔟 🖾 🗧 🗄                                   |  |  |  |  |
| 💭 jupyter                                                                                                  |                                      | MPContribs 🕞 Logout                                 |  |  |  |  |
| St                                                                                                         | top My Server My Server              | Admin                                               |  |  |  |  |
| Jupyter Hub                                                                                                | × C MPContribs                       | x phuck@lbl.gov                                     |  |  |  |  |
| $\leftarrow$ $\rightarrow$ C (i) localhost:8000/flaskproxy.                                                | /tschaume/                           | ☆ 🕐 😵 🕄 🖾 💆 🔂 🗄                                     |  |  |  |  |
|                                                                                                            | /mpcontribs/rest                     | REST API docs & test queries for public DB          |  |  |  |  |
| Materials Project Alpha Site at <u>http://alpha.materialsproject.org</u>                                   | /mpcontribs/explorer                 | Explore data contributed to public DB               |  |  |  |  |
|                                                                                                            | /uwsi2/explorer                      | Custom interface to contributed public UW/SI2 data  |  |  |  |  |
|                                                                                                            | L                                    | Landing page with OrgTable (this page)              |  |  |  |  |
|                                                                                                            | <u>/ingester</u>                     | Data ingestion, preparation, and DB submission      |  |  |  |  |
|                                                                                                            | <u>/test_site</u>                    | Local MP-like Django test site                      |  |  |  |  |
| All MPContribs services available to user in private Local/MP JupyterHub Instance at /flaskproxy/tschaume/ | /test_site/mpcontribs                | Entry portal linking to REST & Explorers            |  |  |  |  |
|                                                                                                            | /test_site/mpcontribs/rest           | REST API docs & test queries for private DB         |  |  |  |  |
|                                                                                                            | /test_site/mpcontribs/explorer       | Explore data contributed to private DB              |  |  |  |  |
|                                                                                                            | /test_site/mpcontribs/uwsi2/explorer | Custom Interface to contributed private UW/SI2 data |  |  |  |  |


#### Data Preparation, Ingestion & Submission



# Explorer & REST Interfaces

|                           |                                                                                                                                                                                                                                                                  | Home Dashboard Logo                                                                                                                                                                                                                                                | ut    |  |  |  |  |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|
| Explo                     | ore contribute                                                                                                                                                                                                                                                   | ed Materials or Compositions ?                                                                                                                                                                                                                                     |       |  |  |  |  |  |  |  |  |  |
| Selec                     | t (one or mo                                                                                                                                                                                                                                                     | ore) materials and/or projects:                                                                                                                                                                                                                                    |       |  |  |  |  |  |  |  |  |  |
| Sele                      | ct material(s)                                                                                                                                                                                                                                                   | LBNL × Find                                                                                                                                                                                                                                                        |       |  |  |  |  |  |  |  |  |  |
| Or en                     | ter a (list of)                                                                                                                                                                                                                                                  | contribution identifiers:                                                                                                                                                                                                                                          |       |  |  |  |  |  |  |  |  |  |
| Ente                      |                                                                                                                                                                                                                                                                  | ID(a) Chaw                                                                                                                                                                                                                                                         |       |  |  |  |  |  |  |  |  |  |
|                           | In [26]:                                                                                                                                                                                                                                                         | from mpcontribs.rest.rester import MPContribsRester                                                                                                                                                                                                                |       |  |  |  |  |  |  |  |  |  |
| Resul<br>/test_<br>/test_ |                                                                                                                                                                                                                                                                  | <pre>SITE = 'http://localhost:5000/test_site' # or http://alpha.materialsprojed API_KEY = 'Gn6tOpaHM1EAsbTr' # copy from SITE dashboard ENDPOINT = SITE + '/mpcontribs/rest' # REST API endpoint for SITE mpr = MPContribsRester(API_KEY, endpoint=ENDPOINT)</pre> | t.org |  |  |  |  |  |  |  |  |  |
|                           | <pre>In [28]: # make sure that user is registered on SITE as contributor assert(mpr.check_contributor()['is_contrib']) contribs = mpr.query_contributions() # get list of user contributions cid = contribs[0]['_id'] # contribution identifier (ObjectId)</pre> |                                                                                                                                                                                                                                                                    |       |  |  |  |  |  |  |  |  |  |
|                           | In [29]:                                                                                                                                                                                                                                                         | <pre>mpfile = mpr.find_contribution(cid) # get MPFile object from MPContribsRes<br/>mpid = mpfile.ids[0] # MP material identifier (e.g. mp-134)</pre>                                                                                                              | ter   |  |  |  |  |  |  |  |  |  |

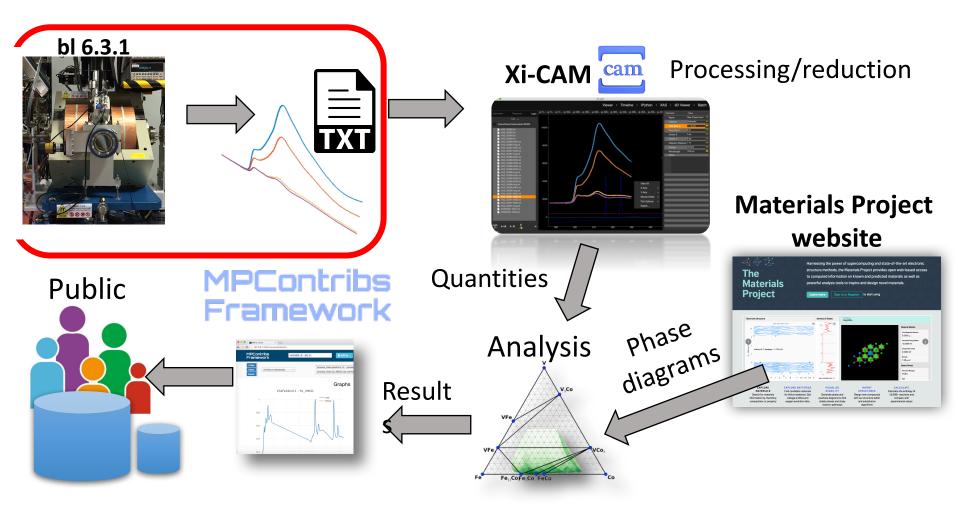

### **MPFile Components**



# UW/SI2 Diffusion App - Demo

| MPFile V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | liewer  | ×             | Materials F  | Project | ×    | Mat | terial mp-134 | ×        |         |       |    |         |                 | phuck@lbl.gov                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|--------------|---------|------|-----|---------------|----------|---------|-------|----|---------|-----------------|--------------------------------------------|
| 3 🗋 127.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0.1:5 | 000/test_site | /uwsi2/explo | rer/    |      |     |               |          |         |       |    |         |                 | o. 🏠 🛤 🕐 🕐 💽 🧮                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø       | 🖺 🔍 🕂         |              | *       |      |     |               | € + :::: | ₽ Ŧ     |       | *  |         | <b>0</b><br>3.5 |                                            |
| 10 <sup>-8</sup><br>10 <sup>-16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |               |              |         |      |     | 5             |          |         |       |    |         | 3               |                                            |
| 10 <sup>-24</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |               |              |         |      |     | 4             |          |         |       |    |         | 2.5             |                                            |
| Ativital of the second straight of the second |         |               |              |         |      | 00  | 3             |          |         |       |    |         | 0'<br>2         | •                                          |
| $10^{-48}$<br>$10^{-56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |               |              |         |      |     | 2             |          | •       |       |    | ~       | 1.5             |                                            |
| 10 <sup>-64</sup><br>10 <sup>-72</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |               |              |         | /    |     | 1             |          |         |       |    |         | 1               | Click image or URL to open demo on YouTube |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1             | 2<br>000/T   | 3       |      |     | 20            | ) 4      | l0<br>Z | 60    |    | 80      | htt             | tps://youtu.be/wbWde5St                    |
| Reveal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collaps | se Clear      |              |         |      |     | a al          |          |         |       |    | ×       |                 |                                            |
| ❤ AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | mp-134        | #0d0e0cd     |         | ❤ Ni |     | mp-23         | #0d0e0d3 | ~       | Cu    |    | mp-30   | #0d0e0d1        |                                            |
| Q, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |              | C       | ι A  |     |               |          | Q.A     | 4     |    |         |                 |                                            |
| 🔲 El. 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z       | DO            | Q            | 0       | EI.  | z   | D0 🔺          | Q        |         | El. 🔺 | z  | DO      | Q               |                                            |
| 🔲 Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47      | 0.041398      | 1.1413       | 0       | W    | 74  | 1.7234        | 3.1975   |         | Ag    | 47 | 0.44154 | 1.9491          |                                            |
| 🔲 AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13      | 0.064623      | 1.2661       | 6       | Pt   | 78  | 1.8858        | 3.0626   | Ø       | Au    | 79 | 0.2254  | 1.9723          |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79      | 0.017229      | 1.0414       | 6       | 🛛 Mo | 42  | 1.9098        | 2.9881   |         | Bi    | 83 | 0.4562  | 1.6379          |                                            |
| 🗆 Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |              |         |      |     |               |          |         |       |    |         |                 |                                            |
| Au Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83      | 0.097602      | 0.9118       | 6       | Re   | 75  | 1.9908        | 3.4598   |         | Cd    | 48 | 0.7127  | 1.9003          |                                            |

# XMCD/Magnetic Moment 👄 PD




Does data coincide w/ any phase transitions or stable compounds?

#### **MPCONTRIBS** helps the Collaborator:

- 1. guide the planning of (follow-up) computations and experiments
- 2. understand results of unknown materials
- 3. provide reference of well understood materials
- 4. reduce manual repetitive analysis work

#### The High-throughput NEXAFS workflow

