
Demo: Creating Sandboxed User Environments with
Jupyterhub and Docker

Shreyas Cholia*, Donald Winston, Daniel Gunter
Lawrence Berkeley National Laboratory

*1 Cyclotron Road, Berkeley, CA 94720, USA; email: scholia@lbl.gov

Abstract: In this demo we would like to
showcase an infrastructure for sandboxed
notebook platforms using Docker and Jupyterhub.
We will show how this infrastructure is used for
two scientific applications: in The Materials
Project, we created a per-user sandboxed
environment for workshops and tutorials, that can
be directly accessed over the web; for the Institute
for the Design of Advanced Energy Systems
(IDAES), we enabled playgrounds for users where
they can explore scientific models and data,
without the difficulties of going through a complex
installation and setup process.

1. Case Studies
1.1 Materials Project: Jupyter for

Workshops
For the tutorial sessions of a recent Materials

Project Workshop we used Jupyterhub to provision
and manage executable notebook environments.
We created docker containers with the entire
materials project software stack pre-installed,
along with a MongoDB service and a port-
mapping scheme that allowed users to locally host
and inspect project-relevant web services.

We also provided tutorial notebooks, with
worked examples and exercises. This allowed
users to follow along during the tutorial and
interact with code examples.

The workshop had over 50 users. We were
able to achieve scalability via Docker Swarm.
Jupyterhub provisioned notebooks as pre-defined
Docker containers; as we added new users and
needed additional compute power we simply added
new nodes to the Swarm. This was completely
transparent to Jupyterhub and allowed us to
seamlessly scale up.

Presented at Gateways 2016, San Diego Supercomputer
Center, La Jolla, CA, November 2-3, 2016.
https://gateways2016.figshare.com/

1.2 IDAES: Jupyterhub for Persistent
Sandboxes

The Institute for the Design of Advanced
Energy Systems (IDAES) stack has a tricky
installation process, which includes a combination
of complex software dependency management, and
custom modifications to software. Scientists on the
project would like to be able to experiment with
different models, visualize results and develop
code in a sandboxed interface while sharing their
results with others. Using Docker, we were able to
capture a complex execution environment and
make it available as a Jupyter notebook.

The Jupyterhub environment provides the ideal
system for doing this. Users are able to login to the
notebook environment with their Github
credentials (via the Jupyter OAuth module) and
commission notebooks with a fully installed
environment. The DockerSpawner module of
Jupyterhub spins up new docker containers for
each user with this environment.

Each user now has a persistent Jupyter
notebook sandbox directly accessible from their
web browser, and can iterate on their scientific
models as needed. We provide a common
filesystem layer for users to share their notebooks
with other users on the system. Since the Jupyter
notebook interface also provides a UNIX terminal
and a text editor, users are able to do all their work
directly inside this environment.

2. Demo
The overall setup process for both these use

cases is very similar. In our demo, we will
showcase the following:
• Creating a multi-user notebook environment

with Jupyterhub
• Enabling user authentication with Github and

OAuth
• Using Docker containers to create pre-installed

sandboxed environments

https://gateways2016.figshare.com/

• Deploying and executing these Docker-ized
notebook environments

• Accessing the environment through the Jupyter
terminal

• Starting up additional services in the container
• Scaling up with Docker Swarm
• Sharing notebooks and data products on this

platform

We plan to show the end-to-end process for

such a setup, and how it could be generally
applicable to any docker-based cluster
environment. We will be making our code and
containers freely available so that others can
reproduce this work, more or less out of the box.
There will also be some discussion about how one
could use easily replace certain components like
authentication (i.e. replacing Github with other
OAuth providers or PAM authentication) or cluster
management (i.e. replacing Swarm with
Kubernetes), through simple configuration file
changes.

3. References
[1] Docker, https://www.docker.com/
[2] Jupyter, http://jupyter.org/
[3] Perez, Fernando. "IPython: From interactive

computing to computational narratives." 2015
AAAS Annual Meeting (12-16 February 2015)
15 Feb. 2015.

[4] A. Jain*, S.P. Ong*, G. Hautier, W. Chen,
W.D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, K.A. Persson
(*=equal contributions)

[5] IDAES,
https://www.netl.doe.gov/research/coal/crossc
utting/simulation-based-engineering

	Untitled

