
Extended Abstract: Enabling Interactive Notebooks on
Supercomputers with Jupyterhub

Shreyas Cholia*; R. Shane Canon, Rollin Thomas
Lawrence Berkeley National Laboratory

*1 Cyclotron Road, Berkeley, CA 94720, USA; email: scholia@lbl.gov

Abstract: Interactive notebook systems such as
Jupyter represent a new paradigm in web science
gateways that can combine interactive code
execution with data analysis and exploration. In
our work we demonstrate how one can create and
manage interactive notebooks in a multi-user
supercomputing environment using the Jupyterhub
platform. We describe our architecture along with
custom modules that we developed for Jupyterhub
to manage authentication, notebook execution and
interaction with the job queueing system. We
illustrate the power of this system through the
OpenMSI use case, and outline future directions
for this effort.

1. Interactive Notebooks and Jupyter
Interactive notebook environments are quickly

gaining traction in the sciences by enabling a new
kind of paradigm - iterative, live computational
exploration. Their ability to combine an annotated
mathematical narrative with live code execution
and results creates a “literate computing”
environment, where narrative and computation go
hand in hand. This makes them uniquely valuable
for the cycle that ranges from individual
exploratory work to collaboration and publication,
supporting sharing and reproducibility of results.

In particular the Jupyter [1] framework has
played a key role in bringing this style of
computing to a large number of users. Jupyter
enables web-based notebook interfaces, which can
combine backend computing language kernels
(Python, R, Julia etc.), explanatory elements in
Markdown or HTML along with interactive
frontend visualizations and widgets in Javascript.
Originally focused on Python, it now supports over
70 language [2] kernels along with a highly
customizable codebase to enable development of
specialized features.

Presented at Gateways 2016, San Diego Supercomputer
Center, La Jolla, CA, November 2-3, 2016.
https://gateways2016.figshare.com/

The Jupyter ecosystem also includes
Jupyterhub [3], a platform for deploying multi-user
notebook environments. This framework is critical
in making Jupyter useful across the project and
institutional level, and transforming it into a
general purpose Science Gateway service.
Jupyterhub centralizes key areas like
authentication, scaling and provisioning while also
enabling fully integrated backend notebooks (with
all the needed tools and libraries pre-installed) for
users.

Our work focuses on how we have used the
Jupyterhub platform to enable access to large-scale
supercomputing resources, such as the NERSC
Cori system. Note that the modules that we have
developed are generally useful for deploying
Jupyterhub in large distributed or cloud computing
environments. Our code is freely available to
enable others to use these modules [5][6][8].

2. Jupyterhub for Supercomputing
HPC workflows for today’s large-scale data-

intensive science largely focus on asynchronous,
batch execution. However, scientific insight
frequently requires interactive, iterative
exploration and analysis. A bridge between these
two modes of scientific computing is needed,
enabling "human in the loop" exploration provided
by interactive electronic notebooks, as a seamless
element of asynchronous, large scale workflows.

In order to support this mode of computing, we
are enabling Jupyter notebooks to access HPC and
data resources on the NERSC Cray XC40 system,
Cori [4]. Cori includes a “data partition” that is
particularly suitable for these kinds of workloads
with features like data friendly queuing policies,
external network connectivity on compute nodes,
burst buffer capabilities and a large pool of big-
memory interactive nodes.

The Jupyterhub service enables web notebooks
in a multi-user environment. When users log in,

https://gateways2016.figshare.com/

they receive a notebook for their projects, which
provides access to NERSC files and jobs, along
with pre-installed notebook “kernels” (language
interpreters that drive the notebook).

Our setup includes a Jupyterhub web service
(running inside a Docker container for portability
and scaling) that manages user authentication, and
proxies subsequent requests to the Cori system. We
have developed a custom authenticator for
Jupyterhub called the GSI Authenticator [5] that
allows users to acquire a grid certificate upon
login. The service then uses a special spawner that
we developed (SSH Spawner) [6], which spins up
a Jupyter notebook on Cori via SSH (using the GSI
credentials). The notebook connects back to the
hub over a websocket. The hub then proxies all
future user requests to the Cori node via this
websocket connection. The NERSC Jupyterhub
architecture is illustrated in figure 1.

Additionally we have also enabled special
hooks (known as “magics” in Jupyter) for
interacting with the SLURM [7] batch system on
Cori. Our tool, called “Slurm-Magic” [8], enables
users to directly submit and manage jobs via the
notebook interface, and supports various SLURM
commands as well as processing and formatting of
queue information.

The NERSC notebook infrastructure provides
access to several kernels (including different
versions of Python, Root and custom libraries for
specific projects). It also allows users to run their
own kernels by simply creating a small JSON file
that points to their own language interpreter.

Key benefits of this service include (i) direct
access to large datasets, including terabytes written
to the Cori scratch file system and global shared
project filesystem, allowing users to write and
view their data, (ii) access to the job queueing
system, allowing users to submit jobs, query the
batch systems and look at results and (iii) a secure,
managed setup that allows users to directly login to
the system with their NERSC credentials.

3. Use Case: OpenMSI
We illustrate the power of this type of

interactive web notebook, through the OpenMSI
[9] use case for high-throughput screening of
spotted samples using mass-spectrometry imaging.

The OpenMSI team can log into NERSC machines
from their browsers using Jupyterhub, see all their
files on a common file-system, add ions of
particular interest (from data stored at NERSC)
and then center the samples on a grid for analysis.
The grids contain 384 samples, each with a
different spectrum. This essentially represents a
canned workflow with all the steps needed to
analyze a given sample contained in the notebook,
while giving the researcher complete control to be
able to tweak and modify any step in the analysis.
See figure 2 for an example notebook workflow.

4. Related and Future Work
There is similar work being done at SDSC

[12], the University of Minnesota [13], and TACC
[14] to commission notebooks directly on compute
nodes through a graphical interface to the batch
system manager. We believe that our work is
complementary to these efforts, as we have added
new capabilities (GSI Authentication, pure SSH
spawning and SLURM magics) to this ecosystem.

As we move forward, it will become very
important to integrate tools and frameworks that
manage advanced workflow and distributed
computing constructs, directly into the Jupyter
infrastructure. In particular two frameworks that
we are actively investigating are Spark [10] and
Dask [11], with the idea that users can control
data-parallel map-reduce style operations from
within these notebooks in an effective manner.

5. Conclusions
We believe that notebook-style interactive

frameworks represent a novel way to approach
scientific computing. Using a multi-user platform
like Jupyterhub we have demonstrated that this can
be extended to include traditional HPC
environments, allowing users to develop custom
workflows that combine the power of interactivity
with large scale jobs and data analysis. This allows
users to easily move back and forth between
exploratory analysis and large-scale batch
processing without leaving the browser
environment. Additionally it facilitates
reproducibility and sharing of workflow processes
across a science team (as demonstrated by the
OpenMSI example).

6. Figures

Fig. 1. NERSC Jupyterhub architecture diagram. Jupyterhub runs on a science gateway node called
Sgnworker while the notebook itself runs inside the Cori system.

Fig 2. Programmatic visualization illustrating the use of dimensionality reduction using non-negative
matrix factorization (NMF) on publicly available OpenMSI data using a Jupyter notebook

7. Acknowledgments
This research used resources of the National Energy Research Scientific Computing Center, a DOE

Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

8. References
[1] Jupyter Project, http://jupyter.org/
[2] IPython Documentation, https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-

languages
[3] Jupterhub, https://github.com/jupyterhub/jupyterhub
[4] Wright, Nicholas J et al. "Cori: A Pre-Exascale Supercomputer for Big Data and HPC Applications."

Big Data and High Performance Computing 26 (2015): 82.
[5] GSI Authenticator, https://github.com/NERSC/gsiauthenticator
[6] SSH Spawner, https://github.com/NERSC/sshspawner
[7] Yoo, Andy B, Morris A Jette, and Mark Grondona. "Slurm: Simple linux utility for resource

management." Workshop on Job Scheduling Strategies for Parallel Processing 24 Jun. 2003: 44-60.
[8] SLURM Magic, https://github.com/NERSC/slurm-magic
[9] Fischer, Curt R, Oliver Ruebel, and Benjamin P Bowen. "An accessible, scalable ecosystem for

enabling and sharing diverse mass spectrometry imaging analyses." Archives of Biochemistry and
Biophysics 589 (2016): 18-26.

[10] Shanahan, James G, and Laing Dai. "Large scale distributed data science using apache spark."
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining 10 Aug. 2015: 2323-2324

[11] Dask, http://dask.pydata.org/
[12] Zonca, Andrea, “Run Jupyterhub on a Supercomputer”, https://zonca.github.io/2015/04/jupyterhub-

hpc.html
[13] Batch Spawner, https://github.com/jupyterhub/batchspawner
[14] TACC Visualization Portal https://vis.tacc.utexas.edu

