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Supporting information

S1 Appendix

Proof of wave existence

Bistable case

We begin with the case where a > 1. Then the stationary points w =0and w=1—-15
of the corresponding equation dw/dt = F(w) are stable. Instead of the second-order
equations in (20) we will consider the systems of the first-order equations:

w =p, p=—-cp—kw(l-b—w) (1)

and

w =p, p=-cp—kw(l—a-—uw). (2)

w

Fig 1. Trajectories of systems (1) and (2) for ¢ = ¢; (solid lines) leaving the saddle
point (1 — b,0) and approaching the saddle point (0,0). They intersect at w = wy,
that is w(0) = wy and w(cr) = wo. The same trajectories for ¢ = ¢y (dashed lines).

Consider the trajectory «; of the first system for ¢ = ¢; leaving the saddle point
(1 —5,0) in the half-plane p < 0, and the trajectory o of the second system for ¢ = ¢;
approaching another saddle point (0,0) from the same half-plane.

Consider p as a function of w for the solutions of systems (1), (2), and denote by
p1(w;c1) the function corresponding to the trajectory 1. Similarly, let po(w;c;) be
the function corresponding to the trajectory ~p. Due to the properties of systems (1),
(2), both these functions are defined on the interval 0 < w <1 —b, and

po(0;¢1) =0, po(l—bsc1) <0; p1(05¢1) <0, pi(1—bser) =0.

Then there is a solution of the equation

PLOS

1/4



@PLOS | susmission

po(w; c) = pr(w;c) 3)
(c = ¢1) for some wy € (0,1 —b). We have
dpo(wy;cy) kwi(l —a—wq) kw1 —b—wi) _ dpi(wi;er)

=—Cc ——F> < —C = . (4
dw ! po(wi;cr) ! p1(wi;cr) dw (4)

Therefore solution of Eq (3) in the interval (0,1 — b) is unique.

Lemma 1. Solution wy of Eq (8) is a decreasing function of c. Moreover, wy(c) =0
for ¢ > ¢o, and wi(c) = 1 —b as ¢ — —oo. Here c¢q is the minimal speed for there
exists a [0,1 — b]-trajectory of systems (1).

Proof. It can be easily verified that

po(w;c2) > po(w;cr), pr(wiez) > pr(wser), 0<w<1—0

for co < ¢; (Fig 1). Therefore wy(c2) > wi(cy).

Let us note that (0,0) is a stable node of system (1) if ¢ > 24/k(1 — b), and
(1 —5,0) is a saddle point. If the previous condition on ¢ is satisfied, then there is a
trajectory connecting them such that it entirely belongs to the half-strip
O<w<1=0b,p<0.Ifec<2y/k(1—0), then the trajectory connecting these
stationary points exists, but it does not belong to the half-strip.

Thus, p1(0;¢) = 0 for ¢ > 24/k(1 — b). Moreover py(w;c) < p1(w,c) for
0 <w < 1—b. Indeed, since po(0;¢) = p1(0;¢) = 0, then this assertion follows from
the estimate (4) for the derivatives at the intersection point.

It remains to verify that wi(c) = 1 —b as ¢ = —oo. It follows from the
monotonicity of solutions with respect to ¢: the function pg(w;c) increases and the
function p; (w; ¢) decreases for each w as ¢ decreases.

By virtue of Lemma 1, there exists a unique value ¢ = ¢y such that wj(co) = wg. The
following lemma gives a condition under which ¢y > 0.

Lemma 2. Let wi(cg) = wg. Then ¢ > 0 if and only if

3(a —b)ywd < (1 —b)3. (5)

Proof. Tt is sufficient to compare the values of the functions pg(w;c) and p; (w;¢) for
w = wp and ¢ = 0. Namely, we require that pg(wo;0) > p1(wp;0). From (1) we have
for ¢ =0:

d,
pﬁ = —kw(l—b—w).
Integrating this equation between wgy and 1 — b, we obtain
1 1-0 1
P2 (wo;0) = 2k (6(1 —b)® - ng + 3w3) .

Similarly, from (2),

-1 1
pa(wo;0) = 2k (a 5 wi + 3w3> .

Condition (5) follows from the inequality p?(wo;0) > p3(wp;0).
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We can now prove the theorem on the existence of waves.

Theorem 3. Let a > 1, 0 < wy < 1 —b and condition (5) be satisfied. Then for any
7 > 0 there is a unique positive value of ¢ for which there exists a solution of problem
(19)-(21).
Proof. By virtue of Lemmas 1 and 2, there exists a unique value ¢y > 0 such that
w1 (cp) = wo. Let us choose some ¢ such that wi(c) > wy and consider the second
equation in (20). Then w(0) = w;(c) and w(zg) = wo for some zy > 0. We will show
that we can choose c¢ such that xq = c7.

Let us determine how ¢ depends on c¢. Consider the trajectories of systems (1), (2)
for ¢; and ¢y (Fig 1). If ¢a < ¢1, then

po(w;c1) < po(w;cz), wo < w < wi(er). (6)

Hence zg(c2) > xo(c1). Indeed, the arc of the trajectory po(wj;ce) consists of two parts.
The first one between the values wg and wy(c1), the second one between the values
w1 (c1) and wy (c2). Therefore we can set xg(cz) = x1(ca) + x2(c2), where x1(c2) and
x2(co) are the lengths of the intervals corresponding to these arcs. It follows from
inequality (6) that x1(c2) > xo(c1). Then we get xo(c2) > xo(c1).

Thus, z¢(cp) = 0 and z((c) is a decreasing function. Since ¢g > 0, then there exists
a unique positive solution of the equation xo(c) = c7.

Monostable case

As above, we consider problem (18), (19) with function (17) and reduce it to problem
(19)-(21). We will assume in this section that 0 < a < b <1 and 0 < wp <1 —b. Then
system (1) has two stationary points for 0 < w <1, (0,0) is a a node or a focus,
depending on the value of ¢, and (1 — b,0) is a saddle point. System (2) has only one
stationary point (0,0), which is a node or focus. We suppose that ¢ > 2,/(1 — a).
Then the point (0,0) is a stable node for both systems.

Theorem 4. Suppose that 0 < a <b <1 and 0 <wy <1—b. Then for any
¢ > 2+/(1 — a) there exists a solution of problem (18), (19) with function (17).

Proof. Consider the function p; (w;c) with ¢ > 24/(1 — @) corresponding to the
trajectory of system (1) leaving the stationary point (1 —b,0) into the half-plane p < 0.
It approaches the point (0,0) since ¢ is greater than the minimal wave speed
24/(1 — b) for this system. Hence p;1(0;¢) = p1(1 — b;¢) = 0.

Let po(w;c) be the function corresponding to a trajectory of system (2)
approaching the stationary point (0,0) and such that

po(wr; ) = pr1(wi;c) (7)
for some w; € (0,1 —b). Then
dpo(wy; ) s w(l—a—wp) o el w(l—b—wp) _ dpl(wl;c). ()
dw po(wr;c) p1(wy;c) dw

This inequality determines the mutual direction of the trajectories of systems (1) and
(2) at the intersection points (Fig 2).
Set

_ [ po(w;e) , O0<w<wy
p(w)_{pl(wac) , wp<w<1-b
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W

Fig 2. Trajectories of systems (1) and (2) in the monostable case.

and the corresponding function w(zx) such that w'(z) = p(w(x)). It is a solution of
equations (20). It is continues together with its first derivative. We have w(0) = wy,
w(zg) = wo. We need to choose the value w; in order to satisfy the last condition in
(21), that is g = c7.

Let us note that for any ¢ > 24/(1 — a), all trajectories of system (2) crossing the
points (w, p1(w;c)) on the trajectory of system (1) approach the stationary point
(0,0). If we vary wq from wp to 1 — b, then the corresponding value of xy increases
from 0 to some value which is finite since (1 — b,0) is not a stationary point for system
(2). Therefore there exists a maximal delay 7 = 7, for which the solution remains
monotone as a function of x. For 7 > 7, we consider the intersection with the
trajectory of system (1) leaving the stationary point (0,0) in the half-plane p > 0 (Fig
2). Therefore for any 7 > 0 there exists a value w; such that g = cr. Ifwy > 1 —b,
then the solution is not monotone.
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