
Supporting information

S2 Appendix

Numerical method

Eq (1) is solved numerically with a finite difference approximation and an implicit
scheme for the diffusion term:

vn+1
i − vni

δt
= D

vn+1
i+1 − 2vn+1

i + vn+1
i−1

(δx)2
+ vni

(
1− vn+1

i − f(vn−k
i )

)
. (1)

Here the subscript i corresponds to the space discretization, n to time discretization,
δx is the space step and δt is the time step. This equation is solved by the Thomas
algorithm for the resolution of tridiagonal matrix equations.

Eq (1) contains the delay variable vn−k
i , where k is determined by the equality

τ = k(δt). For n ≤ k we set vn−k
i = v0i , where v0i is the discretized form of the initial

condition. We use the Neumann (zero derivative) boundary conditions.
Using conventional approach of the resolution of delay equations, we need to keep

in memory all functions vn−k
i , vn−k+1

i , ..., vni . It becomes very resource consuming in
the case of small time steps. With 103 − 104 space discretization points used in the
simulations and τ/δt up to 104 time discretization points, the required data can
become excessively large.

We suggest here a different method to solve delay equations. Instead of Eq (1)
consider the equations

∂Vj

∂t
= D

∂2Vj

∂x2
+ Vj (1− Vj − f(Vj−1)) , j = 1, 2, 3, ..., t ≥ (j − 1)τ, (2)

where Vj(x, t) = V 0(x) for t ≤ (j − 1)τ and V 0(x) is the initial condition. Hence each
function Vj(x, t) satisfies the same problem with time shift, Vj(x, t− τ) = Vj−1(x, t).
The discretization of these equations is similar to (1).

Thus, we replace one delay equation by a system of equations without delay whose
number grows with time. If the total time interval is not very large, then this method
is more efficient from the point of view of required memory. This difference is even
more essential in the 2D case. The disadvantage of this method is that the equality
Vj(x, t− τ) = Vj−1(x, t) should be verified exactly. This is obviously the case from the
theoretical point of view because these are solutions of the same problem. This
property should be carefully verified in the numerical code. Otherwise the error
accumulation can result in completely wrong solutions.

Function f(v)

The function f(v) used in numerical simulations is determined by the values f(vi),
i = 1, 2, 3, 4 (Fig 1). The function is constant for v ≤ v1, v2 ≤ v ≤ v3, v ≥ v4. It is given
by third-order polynomials in the intervals v1 ≤ v ≤ v2 and v3 ≤ v ≤ v4 constructed in
such a way that the function is continuous together with its first derivatives.
For the function shown in Fig 1 we set v2 = v3. In Section ”Bistable case” we put

v1 = 0.1, v2 = 1.01, f1 = 1.1, f2 = f3 = f4 = 0.1 (the values v3 and v4 are not
essential).

PLOS 1/2



Fig 1. The structure of the function f(v) used in numerical simulations.

In Section ”Monostable case”,
v1 = 0.1, v2 = 1.01, f1 = 0.1, f2 = f3 = f4 = 0.3.

Finally, in Section ”Full-scale regulation of immune response” we consider three sets of
parameter values:

v1 = 0.1, v2 = v3 = 0.2, v4 = 0.3, f1 = f2 = 0.1, f3 = 1 (Fig 6);
v1 = 0.1, v2 = v3 = 0.2, v4 = 0.3, f1 = f2 = 0.1, f3 = 2 (Fig 7);
v1 = 0.1, v2 = v3 − 0.3, v4 = 0.5, f1 = f2 = 0.1, f3 = 3 (Fig 8);
v1 = 0 : 1, v2 = v3 = 0 : 2, v4 = 0 : 3, f1 = f2 = 0 : 1, fm = f3 (Fig 9).

PLOS 2/2


