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Background

• Much	work	focuses	on	shock	detonation	of	explosive	materials	or	on	
investigating	the	constitutive	response	of	explosive	materials
• Response	of	an	explosive	to	low	speed	impacts	is	much	less	well	
understood	
• There	have	been	fatal	accidents	recorded	during	routine	handling	in	
which	explosive	samples	have	ignited.	However,	existing	models	
suggested	ignition	would	not	occur	
• Can	we	identify	important	ignition	mechanisms?

Starobin,	A.J.	and	Dienes,	J.K.	One-dimensional	 thermomechanical model	for	lateral	melting	and	ignition	of	a	thin	sheared	viscous	 layer.	
Combustion	 Theory	and	Modelling,	 2006	



Background  on May 21, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

Image	from	“Hot	spot	 ignition	mechanisms	 for	
explosives	 and	propellants”,	 Field	et	al.	

• Focus	on	low-speed	
impacts	scenarios	-
“insults”	

• Accidental	ignition	is	
caused	by	“hot	spots”	

• How	are	these	generated?	



Background

• Adiabatic	compression	of	trapped	gas	spaces
• Viscous	heating	of	material	rapidly	extruded	between	the	impacting	surfaces
• Friction	between	the	impacting	surfaces,	the	explosive	crystals	and/or	grit	particles	in	
the	explosive	layer	

• Localised	adiabatic	shear	of	the	material	during	mechanical	failure	

Photograph	of	shear	bands	 in	EDC37	from	“Temperature-time	response	of	a	polymer	 bonded	 explosive	 in	compression	 (EDC37)”,	
Williamson	 et	al.

ESGI

2.2 Experimental evidence of shear banding in high explo-
sives

(2.2.1) Williamson et al. [12] performed quasistatic compression tests on EDC37,
a polymer-bonded explosive, in which they observed clear evidence of the
formation of shear bands at all temperatures, all shear rates, and all aspect
ratios. Photographs of shear banding from [12] are shown in Figure 3.

Figure 3: Photograph of shear bands in EDC37 [12].

(2.2.2) Similarly, Balzer et al. [1] performed drop-weight tests on other high explo-
sives (PETN and RDX) where results were recorded using heat-sensitive
film. They observed stripes of localised heating that they identified with
shear bands acting as planar heat sources.

(2.2.3) Additionally, the stress-strain curve observed in Figure 2 is characteristic
of the strain-softening observed in adiabatic shear banding [13].

(2.2.4) Another intriguing piece of experimental work by Clancy et al. [3] dis-
cusses damage localisation in a high explosive (PBX-9501) in the context
of brittle crack formation. It is possible, however, that they too were
observing shear banding.

(2.2.5) From this experimental evidence, it seems likely that shear banding, and
possibly other forms of damage localisation, are significant in the mechani-
cal failure of high explosives. Indeed, the combined observations that shear
banding is observed at comparatively mild strain-rates [12] and that shear
banding leads to observable local heating [1] suggests that shear banding
will be important in the Steven test and other related experiments, and
may be a key factor in ignition.
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Low	Speed	Impact	Modelling
Steven	Test		

• Experiments	conducted	at	AWE
• Current	LS-Dyna FE	model	is	
main	approach	
• High	value	of	HERMES	Ignition	
Parameter	seen	near	confining	
walls
• Predicts	scorching	seen	in	
experiments

Base unit

Explosive

sample

Strong ring Projectile

Cover plate

PTFE ring

Images	courtesy	of	AWE	from	CEA	Workshop	of	Explosives,	 Tours,	France
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Low Speed Impact Modelling – Steven Test
� Various experiments at AWE.
� One example is the Steven Test.
� LS-Dyna FE model with HERMES 

ignition model is currently the main 
modelling tool.

� Half axisymmetric model shown top 
right. Detail bottom left shows 
contours of HERMES ignition 
parameter Ign and mesh distortion.

� Predicts site of scorching due to 
burning seen in experiment.

� Results in Curtis, Jones, Hughes 
and Reaugh, Shock Compression 
of Condensed Matter, Vol. 1, 2011, 
669-672. 



Low	Speed	Impact	Modelling
Spigot	Impact

• Localised	impact
• High	values	of	HERMES	Ignition	
Parameter	at	leading	edge	of	
spigot
• Impact	velocity	ranges	from	10-
40	ms-1

Images	courtesy	of	AWE	from	CEA	Workshop	of	Explosives,	 Tours,	France
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Low Speed Impact Modelling - Spigot 
Penetration

Contours of the ignition parameter 200 
microseconds after an impact at 40 ms-1 

� Critical HMX Ign 200. 
� Range of velocities tested 

10-40 ms-1.
� Maximum Ign is found at 

the leading edge of spigot.
� Run fails as high mesh 

distortion occurs.
� Hughes, Reaugh, Curtis 

and Jones, 38th Int. Pyro. 
Seminar, Denver, CO, 
338-346, June 2012.



Simplified	Low	Speed	Impact	Modelling
Motivation

• Improve	safety	during	everyday	conditions
• Avoid	issues	associated	with	numerical	models,	e.g.	
• severe	mesh	deformation	
• model	break	down	near	walls	

• Numerical	validation
• Focus	on	specific	mechanisms/gain	physical	insight	



Simplified	Low	Speed	Impact	Modelling
Example	Geometries

r
h

h
r
≪ 1

i.	J.P.	Curtis,	A	Model	of	Explosive	Ignition	due	to	Pinch,	Thirty–Eighth	International	Pyrotechnics	Seminar,	Denver,	Colorado,	USA.	
ii.	J.P.	Curtis,	 Explosive	Ignition	due	to	Adiabatic	Shear,	39th	International	Pyrotechnics	Seminar,	 Valencia,	Spain	

Drop	testi: Simple	shearii:



Shear	Melt
Model

• Starobin and	Dienes (2006)	present	1D	model	
• 1D	model	predicts	uniform	heating	and	may	over	predict	time	to	
thermal	runaway	
• Will	modelling	non-uniformities	in	material	lead	to	more	localised hot	
spots	and/or	decreased	time	to	runaway?	
• How	will	temperature	dependence	of	material	properties	affect	the	
results?

Starobin,	A.J.	and	Dienes,	J.K.	One-dimensional	 thermomechanical model	for	lateral	melting	and	ignition	of	a	thin	sheared	viscous	 layer.	
Combustion	 Theory	and	Modelling,	 2006	



Shear	Melt
Model	Schematic

Shear Melt
Model Schematic
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(u, v) = velocity components

T = liquid temperature

p = liquid pressure

Figure: A solid block of explosive material (HMX) initially occupies the region x > 0.
A rigid wall located at x = 0 is impulsively moved downward so that at t = t0 a thin
melt layer has already formed.
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A	solid	block	of	explosive	material	(HMX)	occupies	the	region	x	>	0.	A	rigid	wall	located	at	x	=	0	is	impulsively	
moved	downward	so	that	at	t	=	t0 a	thin	melt	layer	has	already	formed.



Shear	Melt
Model

• Shear	is	studied	in	an	idealised planar	geometry
• Assume	temperature	dependent	specific	heat	and	viscosity
• 2D	effects	to	model	non-uniformities	in	material	make	up	
• Thin	melt	layer	⇒ lateral	melting	

Shear Melt

Model

I
Shear is studied in an idealised planar geometry

I
Assume constant material properties

I
2D e↵ects to model non-uniformities in material make up

I
Thin melt layer ) lateral melting

In melt layer we introduce scalings:

x = "X , u = "U, p = "�2
P , "2 =

1

Pe

.

where Pe =

advective transport rate
di↵usive transport rate
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Shear	Melt
Model	EquationsShear Melt

Model Equations

Lubrication equations:

@U

@X
+

@v

@y
= 0,

@P

@X
= 0, �@P

@y
+

@
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✓
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◆
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@Xf

@t
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@T

@X
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X=X�

f

(U, v) = velocity components

Xf = melt front location

T = liquid temperature

P = liquid pressure

↵ = reaction extent

c(T ) = specific heat

µ(T ) = viscosity

Energy equation:

c(T )

DT

Dt
=

@2
T

@X 2
+ EcPr

✓
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Dissipation
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ˆ
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Reaction

where Ec = advective transport
dissipation potential

, Pr = viscous di↵usion
thermal di↵usion

,

⌦̂ = heat of reaction, Â = rate constant, and Ê = activation energy.
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Shear Melt

Model Equations

Lubrication equations:
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(U, v) = velocity components

Xf = melt front location

T = liquid temperature

P = liquid pressure

↵ = reaction extent

c(T ) = specific heat

µ(T ) = viscosity

Energy equation:

c(T )

DT
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where Ec = advective transport
dissipation potential

, Pr = viscous di↵usion
thermal di↵usion

,

⌦̂ = heat of reaction, Â = rate constant, and Ê = activation energy.
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Shear	Melt
Temperature-dependent	material	properties

Current Work

Temperature Dependent Material Properties

Specific heat:

c(T ) =
(✓1/T )2 exp(✓1/T )

(exp(✓1/T )� 1)2

Viscosity:

µ(T ) = exp

✓
✓2
T

� ✓2
✓3

◆

where ✓1 = (1000K)/�T , ✓2 = (7800K)/�T and ✓3 = (800K)/�T .
Here �T is a typical temperature scale. The non-dimensional specific heat and viscosity are related to their

dimensional counterparts through the scalings c⇤ = 1034 J kg�1 K�1 and µ⇤ = 5.5 ⇥ 10�3 kg m�1 s�1,

respectively.

Austin et. al., Direct numerical simualtion of shear localization and decomposition reactions in shock-loaded
HMX crystal, Journal of Applied Physics, 2015; Frey, R.B., The initiation of explosive charges by rapid shear, DTIC
Document, 1980.
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Austin	et.	al.,	Direct	numerical	simulation	 of	shear	localization	and	decomposition	 reactions	in	shock-loaded	 HMX	crystal,	Journal	of	Applied	
Physics,	 2015;	Frey,	R.B.,	The	initiation	of	explosive	charges	by	rapid	shear,	DTIC	Document,	1980.	



Perturbation	scheme

We	consider	small	deviations	from	a	uniform	melt	layer,	i.e.	X=Xf(t),

where	𝛿 ≪ 1	is	a	small	parameter	characterising the	disturbance	and	
𝜉=	X	/	Xf0 is	the	leading	order	front-fixed	coordinate.	The	function	S(y)	
describes	the	shape	of	the	disturbance.	

Perturbation scheme

In this section we consider small deviations from a uniform-width

melt front Xf = Xf (t) and introduce the small parameter � ⌧ 1

which characterises the size of the two-dimensional disturbance.

We look for a solution in terms of a perturbation series in, i.e.

[Xf ,P](y , t) = [Xf 0,P0](t) + �[Xf 1,P1](y , t) + O(�2),

[U, v ,T ,↵](⇠, y , t) = [U0, v0,T0,↵0](⇠, t) + �[U1, v1,T1,↵1](⇠, y , t) + O(�2),

[c , µ](⇠, y , t) = [c0, µ0](⇠, t) + �[c1, µ1](⇠, y , t) + O(�2),

where we have introduced the front-fixed coordinate ⇠ = X/Xf 0 which

fixes the melt front at ⇠ = 1 to leading order, and later proves useful in

numerical computations. In order to introduce two-dimensional e↵ects

into the model we impose a shape on the initial melt front, described by

the function S(y) which must decay at the infinity.

5 / 5



Perturbation	scheme
Leading	order

Integrate	directly	to	find	leading	order	velocity:

We	observe	a	departure	from	the	linear	profile	found	when	assuming	
constant	material	properties	⇒ spatial	dependence	in	mechanical	
dissipation.

v0(⇠, t) =

✓Z 1

0

1

µ0
d⇠

◆�1 Z ⇠

0

1

µ0
d⇠ � 1. (1)

Xf 1 ⇠ Xf 1(t)S(y), U1 ⇠ U1(⇠, t)S
0(y), v1 ⇠ v1(⇠, t)S(y),

@P1

@y
⇠ P1(t)S(y),T1 ⇠ T1(⇠, t)S(y), ↵1 ⇠ ↵1(⇠, t)S(y),

c1 ⇠ c1(⇠, t)S(y), µ1 ⇠ µ1(t)S(y).
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Perturbation	scheme
First	order

First	order	corrections:

Gives	vertical	velocity:

v0(⇠, t) =

✓Z 1

0

1

µ0
d⇠

◆�1 Z ⇠

0

1

µ0
d⇠ � 1. (1)

Xf 1 ⇠ Xf 1(t)S(y), U1 ⇠ U1(⇠, t)S
0(y), v1 ⇠ v1(⇠, t)S(y),

@P1

@y
⇠ P1(t)S(y),T1 ⇠ T1(⇠, t)S(y), ↵1 ⇠ ↵1(⇠, t)S(y),

c1 ⇠ c1(⇠, t)S(y), µ1 ⇠ µ1(t)S(y).
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d2(t) = 0. (3)

Integration of the continuity equation across the gap width
provides the first order pressure correction
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Energy	Equation
Numerical	Solution

Mechanical	solutions	are	substituted	into	the	energy	equation,	which	is	
solved	via	an	iterative	Crank-Nicolson	numerical	scheme	subject	to	the	
Stefan	condition		

c(T )
DT

Dt
=

1

X 2
f 0

@2T

@⇠2
+ EcPr

1

X 2
f 0

✓
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@t

?
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T

!

?
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Reactive Material

Introduce chemical reaction...
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Table

Explosive Property HMX
Activation Energy E 2.2⇥ 105 Jmol�1

Heat of Reaction ⌦ 5.02⇥ 106 J kg�1

Molar Gas Constant R 8.314 J kg�1 K�1

Pre-Exponential Const. A 5.011 872 336⇥ 1019 s�1

Density ⇢ 1860 kgm�3

Reference Viscosity µ⇤ 5.5⇥ 10�3 kgm�1 s�1

Latent Heat L 2.08⇥ 105 J kg�1

Melting Temperature Tm 520.6K
Reference Specific Heat c⇤ 1034 J kg�1 K�1

Thermal Conductivity  0.404Wm�1 K�1

Table: Material properties for HMX taken from Curtis (2013), Meniko↵ and Sewell
(2002) and Starobin and Dienes (2006).
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Material	properties	 for	HMX	taken	from	Curtis	(2013),	Menikoff and	Sewell	(2002)	 and	Starobin and	Dienes (2006).	

Numerical	Results
Material	properties



(a)	The	dimensional	 specific	heat	c	across	the	melt	layer	at	times	t	=	501,	992,	1483	and	1974	ns.	(b)	The	dimensional	 viscosity μ	across	the	
melt	layer	shown	at	the	same	times.	

Numerical	Results

explosive material. For example, material properties may locally di↵er in space, causing some areas

to melt more rapidly than others, thus resulting in a non-uniform melt width. The aim of this work

is not to describe how such two-dimensionality may arise, but to study the e↵ects spatial variations

in the melt front may have on the temperature field and time to runaway.

First we present the leading order solutions, demonstrating a departure from the linearised ve-

locity profile assumed by Starobin and Dienes [17] and the resulting localisation in the mechanical

heating across the layer. We then present an example two-dimensional solution computed up to

O(�) in the perturbation scheme and observe that the localisation mechanisms that arise due to the

melt front disturbance persist when we relax the assumption of constant specific heat and viscosity.

In the interest of brevity we only present a single two-dimensional solution to illustrate the e↵ects

of temperature dependent material properties, but similar conclusions hold for the other melt front

shapes discussed in previous work [18].

Figure 2 shows snapshots of the leading order specific heat and viscosity across the melt layer

at a series of increasing times. We observe that the specific heat increases with temperature, with

the shape of the plot looking much like a typical temperature profile across the layer. Conversely,

the viscosity decreases with temperature and thus takes its smallest value adjacent to the moving

wall where the temperature is greatest. Interestingly we see very little change in the viscosity as a

function of time, with all snapshots virtually coinciding. The temperature profile used as an initial

condition is such that we already observe a dramatic decrease in the viscosity across the melt layer,

and the local changes in temperature have relatively little e↵ect on the viscosity as time proceeds.
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Figure 2: (a) The dimensional specific heat c across the melt layer at times t = 501, 992, 1483 and 1974 ns. (b) The
dimensional viscosity µ across the melt layer shown at the same times.

Figure 3 shows the leading order vertical velocity and mechanical dissipation across the melt

layer. As predicted by Starobin and Dienes [17], most of the slip is supported by the melt layer

near the sliding surface, and the velocity profile moves further away from the linear profile as the

temperature increases. We now observe that the leading order dissipation is no longer constant in
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(a)	The	vertical	velocity	profile	across	the	melt	layer	at	times	t	=	501,	992,	1483	and	1974	ns.	(b)	The	power	density	 of	the	viscous	 dissipation	
term	as	a	function	of	ξ =	X/Xf0,	the	front-fixed	coordinate	across	melt	layer,	shown	at	the	same	times.	

Numerical	Results

the melt layer, owing to the breakdown of the linearisation of the velocity profile. The dissipation

term is computed as

� = µ0

✓
@v0
@X

◆2

+ �

"
2µ0

@v0
@X

@V1

@X
+ µ1

✓
@v0
@X

◆2
#
+O(�2), (24)

where we note that that in the leading order term both µ0 and @v0/@X are functions of X (recall

that for a melt layer of uniform width with constant material properties the leading order mechanical

dissipation has no spatial dependence and is proportional to the inverse square of the melt width.)

With the temperature dependent models for specific heat and viscosity we observe more mechan-

ical heating near the sliding surface, with dissipation increasing across the layer due to the shape of

the temperature profile, but again decreasing globally in time due to an inverse square relation to

the melt width. For the final time plotted we observe a sharp peak in the heating near ⇠ = 0 due

to the huge increase in temperature resulting from thermal runaway, Figure 3. The overall shape

of the leading order dissipation profile may seem somewhat surprising – one might expect that the

dissipation should be greatest near the melt front where the viscosity is greater. However, the large

velocity gradient near ⇠ = 0 more than compensates for the drop in viscosity and is in fact the

driving factor in determining where the most mechanical heating takes place.
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Figure 3: (a) The vertical velocity profile across the melt layer at times t = 501, 992, 1483 and 1974 ns. (b) The
non-dimensional energy increase due to viscous dissipation as a function of ⇠ = X/Xf0, the front-fixed coordinate
across melt layer, shown at the same times.

Figure 4 shows a comparison of the leading order temperature and magnitude of the reaction

source term for the constant material properties simulation (red dashed) and temperature dependent

material properties simulation (black solid). When accounting for the temperature dependence of

the specific heat and viscosity we see that the temperature profile take on a di↵erent shape across

the layer due to the leading order spatial dependence in the mechanical heating. It is found that the

temperature is increased adjacent to the wall and drops more rapidly across the layer when compared
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(a)	The	temperature	across	the	melt	layer,	and	(b)	the	power	density	 of	the	Arrhenius	 source	term	in	the	constant	material	properties	 case	
(red)	and	with	temperature	dependent	material	properties	 (black).	The	plots	show	snapshots	 at	approximately	25%,	50%,	75%	and 100%	of	the	
time	to	thermal	runaway.	For	the	constant	material	properties	simulation	 this	corresponds	 to	times	t	=	228,	446,	664	and	882	ns,	 and	for	the	
temperature	dependent	 simulation	 the	corresponding	 times	are	t	=	501,	992,	1483	and	1974	ns.	

Numerical	Results

with previous results. Once the reaction kicks in the temperature profiles for the constant and non-

constant material properties models are almost indistinguishable near the sliding surface at ⇠ = 0.

By this time the power density of the reaction term is so great that the di↵erences in results owing

to the modelling of the temperature dependent specific heat and viscosity are negligible close to the

reaction site.

Further from the reaction site, we see that the temperature increase in the melt layer is reduced

when accounting for temperature dependence in the material properties. This is in part due to the

lessened mechanical heating here, and the e↵ect is further exaggerated by the specific heat, which

increases with temperature, thus altering the shape of the temperature profile across the layer.
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Figure 4: (a) The temperature across the melt layer, and (b) the non-dimensional energy increase due to chemical
reaction, with constant material properties (red) and with temperature dependent material properties (black). The
plots show snapshots at approximately 25%, 50%, 75% and 100% of the time to thermal runaway. For the con-
stant material properties simulation this corresponds to times t = 228, 446, 664 and 882 ns, and for the temperature
dependent simulation the corresponding times are t = 501, 992, 1483 and 1974 ns.

Previous work has shown that when the melt layer is perturbed from one of uniform width

mechanical hot spots are formed in the layer [18]. These areas of localised heating due to mechanical

dissipation form either opposite or adjacent to the imposed perturbation, depending on the sign

of the disturbance. It is found that positive perturbations (i.e. ones which make the melt layer

locally wider than the far-field width) cause the formation of a mechanical hot spot on the sliding

wall, whereas a hot spot is formed adjacent to the melt front in the case of negative perturbations

(those which make the melt layer locally more narrow). In both cases an accompanying “cool spot”

is observed on the opposite side of the melt layer – this is an area where the local heating due to

mechanical dissipation is reduced compared with the mechanical heating in the bulk of the layer.

Somewhat counterintuitively, we find that disturbances which widen the initial melt layer appear

to be the most violent initial condition in the sense of decreasing time to runaway. In such a case the

temperature increase due to the hot spot on the wall is su�cient to kickstart a local reaction, causing

the temperature to rise rapidly. This has the resultant e↵ect of causing the disturbance to grow in
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Snapshot	 of	results	from	the	constant	material	properties	model	showing:	(a)	Power	density	 of	mechanical	dissipation	 source	term	(Wm-3);	(b)	
power	density	of	Arrhenius	 source	term	(Wm-3);	and	(c)	dimensional	 temperature	(K)	for	a	sample	of	HMX.	

Numerical	Results
Constant	material	properties
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Figure 5: Snapshot of results from the constant material properties model showing: (a) Power density of mechan-
ical dissipation source term (Wm�3); (b) power density of Arrhenius source term (Wm�3); and (c) dimensional
temperature (K) for a sample of HMX.
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Figure 6: Snapshot of results from the temperature dependent material properties model showing: (a) Power
density of mechanical dissipation source term (Wm�3); (b) power density of Arrhenius source term (Wm�3); and
(c) dimensional temperature (K) for a sample of HMX.
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Snapshot	 of	results	from	the	temperature	dependent	material	properties	model	 showing:	(a)	Power	density	of	mechanical	dissipation	 source	
term	(Wm-3);	(b)	power	density	of	Arrhenius	 source	term	(Wm-3);	and	(c)	dimensional	 temperature	(K)	for	a	sample	of	HMX.	

Numerical	Results
Temperature	dependent	material	properties
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Figure 5: Snapshot of results from the constant material properties model showing: (a) Power density of mechan-
ical dissipation source term (Wm�3); (b) power density of Arrhenius source term (Wm�3); and (c) dimensional
temperature (K) for a sample of HMX.
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Figure 6: Snapshot of results from the temperature dependent material properties model showing: (a) Power
density of mechanical dissipation source term (Wm�3); (b) power density of Arrhenius source term (Wm�3); and
(c) dimensional temperature (K) for a sample of HMX.
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Conclusions

• Modelling	2D	effects	gives	rise	to	temperature	localisation
• The	asymptotic	approach	allows	locations	of	potential	hot	spot	
generation	caused	by	mechanical	dissipation	to	be	determined	
• Previously	identified	hot	spot	mechanisms	persist	when	the	
assumption	of	constant	material	properties	is	relaxed



Future	Work

• Continue	study	of	temperature/pressure	dependent	material	
properties	
• Model	initiation	of	melt	layer
• Account	for	heat	loss to	the	wall	
• Presence	of	grit	on	the	wall	
• More	realistic	chemistry	
• Shear	bands	
• Void	collapse	
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