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Appendix A Data overview

Model size
Name Fred mnemonic m = 3 m = 7 m = 21 Trans

Real Gross Domestic Product GDPC96 x x x 1
Real Personal Consumption Expenditures PCECC96 x x 1
Real Gross Private Domestic Investment GPDIC96 x x 1
Real private fixed investment: Residential PRFIx x 1
Industrial Production Index INDPRO x 1
Capacity Utilization: Manufacturing CUMFNS x 1
All Employees: Service-Providing Industries SRVPRD x 1
Civilian Employment CE16OV x 1
Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing AWHMAN x x 2
Personal Consumption Expenditures PCECTPI x 1
Gross Domestic Product: Chain-type Price Index GDPCTPI x x x 1
Gross Private Domestic Investment: Chain-type Price Index GPDICTPI x 1
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL x 1
Real Average Hourly Earnings of Production and Nonsupervisory Employees: Construction CES2000000008x x x 1
Effective Federal Funds Rate FEDFUNDS x x x 2
1-Year Treasury Constant Maturity Rate GS1 x 2
10-Year Treasury Constant Maturity Rate GS10 x 2
Real M2 Money Stock M2REALx x 1
U.S. / U.K. Foreign Exchange Rate EXUSUKx x 1
University of Michigan: Consumer Sentiment UMCSENTx x 2
S&Ps Common Stock Price Index: Composite S&P 500 x 1
Notes: Data are obtained from the quarterly variant of the dataset provided by McCracken and Ng (2016). Trans = Transformation codes are as follows: 1 - log difference, 2 -
raw data, 3- difference of the log difference

Table A.1: Data overview
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Appendix B Additional empirical results

Fig. B.1: Evolution of ϑψ and ϑφ over the hold-out period
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GDPC96 PCECC96 GPDIC96 PRFIx INDPRO CUMFNS SRVPRD CE16OV AWHMAN PCECTPI GDPCTPI

NG-global 529.331 546.588 287.694 305.904 438.161 422.881 649.915 579.930 526.676 578.356 653.901
NG-rowwise 527.033 546.230 280.849 303.876 436.556 421.223 660.936 578.439 536.149 574.098 658.506
NG-columnwise 527.828 540.017 288.095 305.161 440.607 427.505 662.119 575.942 520.227 583.744 656.723
NG-lagwise 527.424 539.890 278.725 305.545 445.336 421.452 665.300 588.461 544.486 583.314 663.689
SSVS 523.360 506.789 278.556 298.870 424.117 411.446 614.045 545.138 508.915 544.793 619.834
Minnesota 528.809 525.909 292.413 297.237 430.114 416.544 615.633 557.709 524.349 557.600 633.379

GPDICTPI CPIAUCSL CES2000000008x FEDFUNDS GS1 GS10 M2REALx EXUSUKx UMCSENTx S.P.500

NG-global 609.524 535.312 561.461 479.871 485.204 484.132 392.861 238.678 186.343 200.548
NG-rowwise 610.142 522.079 573.884 482.062 484.515 485.192 390.432 236.172 178.577 196.890
NG-columnwise 622.914 541.077 565.666 477.713 489.491 500.304 393.440 234.911 188.838 198.265
NG-lagwise 617.469 525.318 557.263 479.589 488.188 495.938 382.298 233.307 161.971 194.016
SSVS 575.359 506.216 536.599 471.312 469.139 465.474 359.403 233.647 175.696 191.748
Minnesota 572.719 518.336 534.961 487.412 470.684 467.530 393.680 237.635 182.290 199.284
Notes: Absolute values of cumulative one-step-ahead log predictive scores. The bold figures indicate the best performing model for a given variable. NG-global stands for a vector autoregressive
model coupled with the baseline NG prior, NG-rowwise is the VAR model with the rowwise NG specification, columnswise the VAR model with the columnwise NG specification and NG-lagwise
denotes the VAR model with the lagwise NG specification. SSVS refers to a VAR coupled with the SSVS prior of George et al. (2008) and Minnesota denotes the hierarchical Minnesota prior VAR.

Table B.1: Out-of-sample performance in terms of the sum of one-step-ahead log
predictive scores (LPS): 1979Q3 to 2015Q2.
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Appendix C Additional conditional posterior distributions

The conditional posterior of the autoregressive coefficients α takes a standard form
(Kadiyala et al., 1997; Karlsson, 2013), namely a k-dimensional multivariate Gaus-
sian distribution. However, if the number of endogenous variables and the lags
thereof becomes large, traditional sampling algorithms based on the full system of
equations are prohibitively slow, since the posterior variance-covariance matrix of α
has to be inverted within each iteration of the MCMC algorithm. We thus follow Car-
riero et al. (2015) and exploit the fact that conditional on H, the VAR can be written
as m unrelated regression models with the errors of the preceding j− 1 equations be-
ing included as additional regressors in the jth equation. This simplifies computation
enormously, allowing for large scale models that feature stochastic volatility.

More specifically, note that conditional onH−1 and the remaining parameters, the
first equation of the VAR can be written as (Carriero et al., 2015)

y1t = A1•X t + s
1/2
1t η1t, (C.1)

where the notation A1• indicates that the first row of A is selected and η1t is a stan-
dard normally distributed innovation.1 A generic equation i = 2, . . . ,m is given by

yit = Ai•X t +
i−1∑
j=1

h̃ijs
1/2
it ηjt + s

1/2
it ηit, (C.2)

with h̃ij denoting the (negative) free off-diagonal elements of H−1. This implies that
the full conditional posterior of the ith row of A, denoted by Ai• takes a particularly
simple form, namely that of a standard regression model with heteroscedastic errors.

More precisely, the conditional posterior of Ai• is (Carriero et al., 2015)

A′i•|A1:i−1•,H ,ψ, λ2ψ,S1:T ,Y ∼ N (A
′
i•,V Ai). (C.3)

Hereby, we letA1:i−1• = (A1•, . . . ,Ai−1•) and ψ = (ψ1, . . . , ψk)
′. Note that conditional

on H, the corresponding hyperparameters carry no additional information. The pos-
terior mean and variance are, respectively,

A
′
i• = V

−1
Ai

(
T∑
t=1

X tỹits
−0.5
it + V −1αi αi

)
, (C.4)

V
−1
Ai

=

(
T∑
t=1

X tX
′
ts
−0.5
it + V −1αi

)
. (C.5)

1In what follows we moreover assume that each equation features the same set of explanatory
variables Xt.
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We let V αi denote the ith block of a a k × k-dimensional diagonal matrix V α with

[V α]jj = 2/λ2ψψj, j = 1, . . . , k. (C.6)

and ỹit = yit −
∑i−1

j=1 h̃ijs
1/2
it ηjt if i > 1 and ỹit = yit if i = 1.

The same holds true for the covariance parameters in H, which are obtained by
running m − 1 univariate regression models with stochastic volatility (Cogley and
Sargent, 2005). To see this, note that conditional on A, we can rewrite the model as
follows

Hεt = S
1/2
t ηt, (C.7)

with ηt = (η1t, . . . , ηmt)
′ and St = S

1/2
t S

1/2
t . The first equation of Eq. (C.7) is the

identity,
ε1t = s

1/2
1t η1t. (C.8)

For i = 2, . . . ,m, it is easy to show that a typical equation is

εit =
i−1∑
j=1

hijεjt + s
1/2
it ηit, (C.9)

which, again, is a standard regression model with heteroscedastic innovations.
The conditional posterior distribution associated with the covariance parameters

of equation i is given by

hi|φ, λ2φ,S1:T ,A,Y ∼ N (hi,V ih), (C.10)

with hi = (hi1, . . . , hii−1)
′ and φi = (φi1, . . . , φii−1)

′. The (inverse) posterior variance
equals

V
−1
ih =

(
T∑
t=1

ξitξ
′
its
−1/2
it + V −1ih

)−1
. (C.11)

Here, we let ξit = (ε1t, . . . , εi−1t)
′ denote the errors of the preceding i − 1 equations

and V ih is the prior variance matrix of the Normal-Gamma prior.
The posterior mean is

hi = V
−1
ih

(
T∑
t=1

ξitεits
−1/2
it

)
. (C.12)

Finally, the (conditional) posterior distribution of the full history of log-volatilities
has no well known form. We thus opt for the algorithm proposed in Kastner and
Frühwirth-Schnatter (2014) to simulate the full history of log-volatilities and the co-
efficients of the state equation (which are based on simple Gibbs and Metropolis
Hastings steps).
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Appendix D Derivations

D.1 Derivations related to the baseline Normal-Gamma prior

To derive Eq. (2.8), note that due to the hierarchical nature of the model, the con-
ditional posterior of ψi is independent from the data. Combining the likelihood with
the prior yields

p(ψi|ϑψ, λ2ψ, αi) ∝ ψ−1/2α exp

(
− α2

i

2ψi

)
× ψ(ϑψ−1)

i exp

(
−
ϑψλ

2
ψψi

2

)
, (D.1)

∝ ψ
(ϑψ−0.5)−1
i exp

(
−(α2

i /ψi + ϑψλ
2
ψψi)/2

)
, (D.2)

where we exploit the scaling property of the Gamma distribution to rewrite the prior
in Eq. (2.4) as

αi|ψi ∼ N (0, ψi), ψi ∼ G(ϑψ, ϑψλ2ψ/2). (D.3)

Equation (D.2) is the kernel of the GIG distribution described in Eq. (2.8).
We derive Eq. (2.10) by combining the Gamma likelihood with the prior and

simplifying

p(λ2ψ|ψ, ϑψ) ∝ (λ2ψ)
(kϑψ+cψ0)−1 × exp

(
−(cψ1 + ϑψ/2

k∑
j=1

ψj)λ
2
ψ

)
, (D.4)

which is the kernel of a Gamma density with shape parameter equal to kϑψ + cψ0 and
rate parameter given by cψ1 + ϑψ/2

∑k
j=1 ψj.

The derivation of Eq. (2.11) closely resembles the derivation of Eq. (2.8). Finally,
the derivation of Eq. (2.13) is analogous to the derivation of Eq. (2.10).

D.2 Derivations related to the three extensions of the baseline Normal-Gamma
prior

As noted in Section 2, the relevant conditional posterior distributions can still be used
with only minor alterations.

First, due to the presence of different global shrinkage parameters that are either
row-, column- or lag-specific we have to modify V α accordingly. For instance, in
the case of the rowwise specification, the mp elements relating to the m different
equations of V α feature an equation-specific shrinkage parameters λ2ψi and ϑpsii for
i = 1, . . . ,m. In the case of the columnwise specification the prior variance matrix
has to be modified to take into account mp different shrinkage parameters. Finally,
for the lagwise specification we have to adapt V α such that elements associated with
Aj (j = 1, . . . , p) feature lag-specific shrinkage parameters λψj and ϑψj. Under these
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slight modifications of the prior variance-covariance matrix, the conditional posterior
of A remains the same.

For all modifications we let A(n)
j for specification n = 1, 2, 3 denote a generic index

set that selects the appropriate elements of α (i.e., all elements of the jth row, jth
column or the jth lag). The modified counterpart of Eq. (2.8) is then given by

ψi|ϑψ, λ2ψ, αi ∼ GIG
(
ϑψ −

1

2
, ϑψjλ

2
ψj, α

2
i

)
for i = 1, . . . , k. (D.5)

Similarly, we adapt Eq. (2.10) as

λ2ψj|ϑψj,ψ ∼ G

cψ0 + ϑψjq
(n)
j , cψ1 + ϑψ/2

∑
i∈A(n)

j

ψi

 . (D.6)

Here, we let q(n)j = #(A(n)
s ) denote the cardinality of A(n)

j .
For the third (lagwise) case the specific structure of λ2ψj =

∏j
i=1 ζi calls for ad-

ditional derivations. For the first lag, we combine the Gamma likelihood with the
Gamma prior to obtain,

p(ζ1|ϑψ1,ψ) ∝ ζ
(ϑψ1m

2+d1)−1
1 × exp

−
ϑψ1/2 ∑

j∈A(3)
j

ψj + l1

 ζ1

 , (D.7)

which is the kernel of a Gamma distribution with parameters (ϑψ1m
2 + d1) and

ϑψ1/2
∑

j∈A(3)
j
ψj + l1.

For higher lag orders g = 2, . . . , p one can show that the conditional posterior is
again Gamma distributed,

p(ζg|ϑψg,ψ, λ2ψg−1) ∝ ζ
(ϑψgm

2+dg)−1
g × exp

−
ϑψgλ2ψg−1/2 ∑

j∈A(3)
g

ψj + lg

 ζg

 , (D.8)

with parameters ϑψgm2 + dg and (ϑψgλ
2
ψg−1/2

∑
j∈A(3)

g
ψj + lg). For all specifications,

the acceptance probability for the MH step needs to be modified to take into account
that we sample different ϑψj.

Steps (4) to (6) of the MCMC algorithm presented in Appendix E have to be
modified to draw distinct λ2ψj and ϑψj for each variant of the prior. These steps are
straightforward to implement and do not increase the computational burden consid-
erably.
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Appendix E Full conditional MCMC algorithm

A relatively straightforward MCMC scheme can be devised by iteratively drawing
from the conditional posterior distributions described in the previous subsections. We
present the exact algorithm for the case of a single global shrinkage parameter only.
The needed alterations for the other variants of the NG prior are straightforward to
implement and only steps (4) to (6) are affected. For the baseline prior setup, the
MCMC algorithm cycles through the following steps

Step 0 Initialize all parameters of the model by using the corresponding OLS esti-
mates or by drawing from the prior

Step 1 Drawα using the algorithm put forth in Carriero et al. (2015) on an equation-
by-equation basis. The exact conditional posterior distribution for the regres-
sion coefficients is given in Eq. (C.3).

Step 2 Draw hi = (hi1, . . . , hii−1)
′ for i = 2, . . . ,m from simple normally distributed

posterior distributions given by Eq. (C.10).

Step 3 Update the full history of log-volatilities S1:T = (S1, . . . ,ST ) and the co-
efficients of Eq. (2.3) for each equation j = 1, . . . ,m using the algorithm
proposed in Kastner and Frühwirth-Schnatter (2014) and implemented in
Kastner (2015).

Step 4 Draw ψi for i = 1, . . . , k element-wise from Eq. (2.8) and φij for i = 2, . . . ,m; j =
1, . . . ,m− 1 from Eq. (2.11).

Step 5 Draw λ2ψ and λ2φ from Eq. (2.10) and Eq. (2.13).

Step 6 Draw ϑψ and ϑφ with a univariate random walk Metropolis Hastings step.
We follow Griffin and Brown (2010) by proposing ϑ∗j = exp(κjzj)ϑj for j ∈
{ψ, φ}. κj is set such that the acceptance probability lies between 20 and 40
percent and zj is a standard normally distributed random variable.

After discarding a suitable amount of draws the algorithm is repeated N times. In
all simulations and the empirical applications we find that convergence is typically
smooth, with convergence diagnostics indicating rapid convergence towards the sta-
tionary distribution.
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