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Abstract 

If many changes are necessary to improve the quality of neuroscience research, one relatively 

simple step could have great pay-offs: to promote the adoption of detailed graphical methods, 

combined with robust inferential statistics. Here we illustrate how such methods can lead to a 

much more detailed understanding of group differences than bar graphs and t-tests on means. 

To complement the neuroscientist’s toolbox, we present two powerful tools that can help us 

understand how groups of observations differ: the shift function and the difference asymmetry 

function. These tools can be combined with detailed visualisations to provide complementary 

perspectives about the data. We provide implementations in R and Matlab of the graphical 

tools, and all the examples in the article can be reproduced using R scripts. 
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Introduction 

Despite the potentially large complexity of experiments in neuroscience, from molecules, 

neurones, to large scale brain measurements and behaviour, data pre-processing and 

subsequent analyses typically lead to massive dimensionality reduction. For instance, reaction 

time distributions are summarised by their means, so they can be compared easily across 

conditions and participants; the firing rate of individual neurones is averaged in a time-

window of interest; BOLD signal is averaged in a region of interest. Because of such 

complexity reduction, researchers often focus on a limited number of group comparisons, 

such that the thrust of an article tends to depend on a few distributions of continuous 

variables. In addition, our own experience, as well as surveys of the literature (Allen et al., 

2012; Weissgerber et al., 2015), suggest data representation standards need an overhaul: the 

norm is to hide distributions behind bar graphs, using the standard deviation or the standard 

error of the mean to illustrate uncertainty. That standard, coupled with the dominant use of 

t-tests and ANOVAs on means, can mask potentially rich patterns. As a result, many 

neuroscience datasets are under-exploited.  

 

To make the most of neuroscience datasets, we believe one solution is to adopt robust and 

detailed graphical methods, which could have great pay-offs for the field (Rousselet et al., 

2016b). Briefly, modern statistical methods offer the opportunity to get a deeper, more 

accurate and more nuanced understanding of data (Wilcox, 2017). For instance, in Figure 1, 

the classic combination of a bargraph and a t-test suggests the two groups of participants 

differ very little in cerebellum local grey matter volume (Voxel Based Morphometric data 

from Pernet et al., 2009a). Using a more detailed graphical description such as a dotplot hints 

at a more interesting bimodal distribution in the patient group, and alternative analyses 

suggest that individual differences in patients’ grey matter volumes are related to behavioural 

variables (see details in Pernet et al., 2009b). In the rest of the article we cover other examples 

in which alternative methods are more informative than t-tests. In addition, even when t-tests 

are appropriate for the problem at hand, they lack robustness, as illustrated in this simple 

example. Imagine we have a vector of observations [1, 1.5, 1.6, 1.8, 2, 2.2, 2.4, 2.7] and null 

hypothesis of 1. The one-sample t-test on mean gives t=4.69, p= 0.002 and 95% confidence 

interval = [1.45, 2.35]. A single outlier can have devastating effects: for instance, adding the 

observation 8 to our previous vector now leads to t=2.26, p=0.054, and 95% confidence 

interval = [0.97, 4.19]. In this latter case, we fail to reject, despite growing evidence that we 
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are not sampling from a distribution with mean of 1. Yet, inferential tools robust to outliers 

and other distribution problems are readily available and have been described in many 

publications (Wilcox & Keselman, 2003; Erceg-Hurn & Mirosevich, 2008; Wilcox, 2009). 

The examples above also illustrate why detailed descriptions of distributions can be vital to 

make sense of a dataset, without relying blindly on a unique inferential test, which might be 

asking the wrong question about the nature of the effects. 

 

 
Figure	1.	Beyond	bar	graphs	and	t-tests.	Data	from	Pernet	et	al.	(2009a),	showing	the	local	grey	matter	

volume	(LGMV)	in	the	cerebellum	of	control	participants	and	of	participants	with	dyslexia	(patients).	A.	

Bargraph	and	t-test	suggest	that	the	two	groups	do	not	differ:	t	=	-0.4,	df	=	72.6,	p-value	=	0.692,	difference	=	

-0.01	[-0.07,	0.04].	B.	A	dotplot	suggests	a	bimodal	distribution	in	patients.	Each	point	is	a	participant	and	the	

points	were	jittered	to	reduce	overlap.	A	dotplot	is	also	called	a	stripchart	or	a	1	dimensional	scatterplot.	C.	An	

alternative	analysis	suggests	sub-groups	of	patients.	Using	the	controls	as	reference,	we	can	sort	patients	into	

subgroups,	based	on	whether	they	fall	above	(grey),	within	(orange),	or	below	(blue)	certain	limits.	For	

instance,	here	we	used	the	confidence	interval	of	the	median	of	the	control	group	as	a	reference	to	classify	the	

patients.	Using	the	mean	instead	of	the	median,	all	patients	would	fall	outside	the	control	confidence	interval,	

as	reported	in	Pernet	et	al.	(Pernet	et	al.,	2009b).	

 

The benefits of illustrating data distributions have been emphasised in many publications and 

is often the topic of one of the first chapters of introductory statistics books (Wilcox, 2006; 

Allen et al., 2012; Duke et al., 2015; Weissgerber et al., 2015; Cook et al., 2016). One of the 

most striking examples is provided by Anscombe’s quartet (Anscombe, 1973), in which very 

different distributions, illustrated using scatterplots, are associated with the same summary 

statistics. The point of Anscombe’s quartet is simple and powerful, yet often underestimated: 
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unless results are illustrated in sufficient details, standard summary statistics can lead to 

unwarranted conclusions.   

 

As demonstrated by the Anscombe’s quartet, it is easy to fool ourselves if we use the wrong 

tools, because they ask the wrong questions. Take for instance Figure 2, which illustrates a 

few examples of how distributions can differ. Obviously, distributions can differ in other 

aspects than those illustrated, and in combinations of these aspects, as we will explore in other 

examples in the rest of this article. Yet, despite these various potential patterns of differences, 

the standard group comparison using t-test on means makes the very strong assumptions that 

the most important difference between two distributions is a difference in central tendency, 

and that this difference is best captured by the mean. This is clearly not the case if 

distributions differ in spread or skewness, as illustrated in the caricatural examples of columns 

3 and 4 of Figure 2. 

 

 
Figure	2.	Distribution	differences	and	sample	sizes.	A.	Distributions	can	differ	in	other	aspects	than	the	

mean.	Columns	show	distributions	that	differ	in	four	different	ways.	Each	example	portrays	two	randomly	

generated	populations,	each	with	n	=	2000.	In	examples	1,	3	and	4,	the	two	distributions	have	the	same	mean.	

In	example	2,	the	means	of	the	two	distributions	differ	by	2	arbitrary	units.	In	examples	3	and	4,	the	

distributions	differ	in	shape.	The	distributions	are	illustrated	with	violinplots.	The	vertical	bars	indicate	the	

mean	of	each	distribution.	Orange	indicates	differences	in	mean	or	in	shape.	B.	Data	distributions	cannot	be	

estimated	with	very	small	sample	sizes.	The	three	rows	illustrate	random	subsamples	of	data	from	panel	A,	
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with	sample	sizes	n	=	100,	n	=	20,	and	n	=	5.	Above	each	plot,	the	t	value,	mean	difference	and	its	confidence	

interval	are	reported.	The	vertical	bars	indicate	the	mean	of	each	sample.	On	the	left	of	the	figure,	the	

downward	pointing	arrow	illustrates	the	decreasing	certainty	about	the	shape	of	the	distribution.	

 

The problem with asking a very narrow question about the data using a t-test on mean is 

exacerbated by the small sample sizes common in neuroscience. Small sample sizes are 

associated with low statistical power, inflated false discovery rate, inflated effect size 

estimation, and low reproducibility (Button et al., 2013; Colquhoun, 2014; Forstmeier et al., 

2016; Munafò et al., 2017; Poldrack et al., 2017). Small sample size also prevents us from 

properly estimating and modelling the populations we sample from. Consequently, small n 

stops us from answering a fundamental, yet often ignored empirical question: how do 

distributions differ? 

 

Let's consider the n=2000 populations in Figure 2A. If we draw random sub-samples of 

different sizes from these populations (Figure 2B), we can get a sense of the sorts of problems 

we might be facing as experimenters, when we draw one sample to try to make inferences 

about an unknown population. For instance, even with 100 observations we might struggle to 

approximate the shape of the parent population. Without additional information, it can be 

difficult to determine if an observation is an outlier, particularly for skewed distributions. And 

in column 4 of Figure 2, the samples with n = 20 and n = 5 are very misleading. Nevertheless, 

some of the techniques described below can be applied to sample sizes as low as 10 or 20 

observations – see section Recommendations for details. 

 

All the figures in this article are licensed CC-BY 4.0 and can be reproduced using scripts in 

the R programming language (R Core Team, 2016) and datasets available on figshare 

(Rousselet et al., 2016a). The figshare repository also includes Matlab code implementing the 

main R functions. The main R packages used to make the figures are ggplot2 (Wickham, 

2016), cowplot (Wilke, 2016), ggbeeswarm (Clarke & Sherrill-Mix, 2016), retimes (Massidda, 2013), 

and rogme (Rousselet & Wilcox, 2016), which was developed for this article.  

 

Beyond the mean: a matter of perspectives 

The previous examples illustrate that to understand how distributions differ, large sample 

sizes are needed. How large is partly an empirical question that should be addressed in each 

field for different types of variables. We will make a few recommendations at the end of this 



	 7	

article. For now, assuming that we have large enough sample sizes, why do we need to look 

beyond the mean? And how do we go about quantifying how distributions differ? It’s a matter 

of perspectives. 

 

When comparing two independent groups, we can consider different perspectives; yet one 

tends to dominate, as we typically ask: 

 

‘How does the typical observation/participant in one group compares to the typical 

observation/participant in the other group?’ (Question 1).  

 

To answer this question, we compare the marginal distributions using a proxy: the mean. 

Indeed, following this approach, we simply summarise each distribution by one value, which 

we think provides a good representation of the average Joe in each distribution. An 

interesting alternative approach consists in asking:  

  

‘What is the typical difference (effect) between any member of group 1 and any member of 

group 2?’ (Question 2).  

 

In other words, if we randomly select one member of group 1 and one member of group 2, by 

how much do they differ? This comparison can be done by systematically comparing 

members of the two groups and summarising the distribution of pairwise differences by using 

one value, for instance the mean. This perspective is particularly useful in a clinical setting, to 

get a sense of how a randomly selected patient tends to differ from a randomly selected 

control participant; or to compare young vs. old rats for example.  

 

To answer Question 1 or Question 2, it is essential to appreciate that there is nothing special 

about using the mean to summarise distributions. The mean is one of several options for the 

job, and often not the best choice. Indeed, the mean is not robust to outliers, and robust 

alternatives such as medians, trimmed means and M-estimators are more appropriate in 

many situations (Wilcox, 2017). Similarly, the standard least squares technique underlying t-

tests and ANOVAs is often inappropriate because its assumptions are easily violated (Wilcox, 

2001; Erceg-Hurn & Mirosevich, 2008). Also, there is no reason to limit our questioning of 

the data to the average Joe in each distribution: we have tools to go beyond differences in 

central tendency, for instance to explore effects in the tails of the distributions. We can thus 
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ask a more detailed version of Question 1: ‘How do observations in specific parts of a 

distribution compare between groups?’. We can tackle this more specific question by 

performing systematic group comparisons using a shift function, a tool that we will present in 

detail in the next section. Question 2 can also be extended by quantifying multiple aspects of 

the distribution of differences, including its symmetry, which can be assessed using the 

difference asymmetry function, introduced later in this article. 

 

We can ask similar questions for dependent groups. Dependent groups could involve the 

same participants/animals tested in two experimental conditions, or in the same condition 

but at different time points, for instance before and after an intervention. When considering 

dependent groups, two main questions are usually addressed: 

 

‘How does the typical observation in condition 1 compare to the typical observation in 

condition 2?’ (Question 1). 

 

‘What is the typical difference (effect) for a randomly sampled participant?’ (Question 2).  

 

Interestingly these two questions lead to the same answers if the mean is used as a measure of 

central tendency: the difference of two means is the same as the mean of the differences. 

That’s why a paired t-test is the same as a one-sample test on the pairwise differences. 

However, if other estimators are used, or other aspects of the distributions are considered, the 

answers to the two questions can differ. For instance, the difference between the medians of 

the marginal distributions is usually not the same as the median of the differences. Similarly, 

exploring entire distributions can reveal strong effects not or poorly captured by the mean.  

 

To address these different perspectives on independent and dependent groups, and to 

quantify how distributions differ, we propose an approach that combines two important steps. 

The first step is to provide more comprehensive data visualisation, to guide analyses, but also 

to better describe how distributions differ (Wilcox, 2006; Allen et al., 2012; Weissgerber et al., 

2015). The second step is to focus on robust estimators and alternative techniques to build 

confidence intervals (Wilcox, 2017). Robust estimators perform well with data drawn from a 

wide range of probability distributions. This framework is focused on quantifying how and by 

how much distributions differ, to go beyond the binary descriptions of effects as being 

significant or non-significant.  
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The shift function 

A systematic way to characterise how two independent distributions differ was originally 

proposed by Kjell Doksum: to plot the difference between the quantiles of two distributions as 

a function of the quantiles of one group (Doksum, 1974; Doksum & Sievers, 1976; Doksum, 

1977). This technique is called a shift function, and is both a graphical and an inferential 

method. Quantiles are particularly well-suited to understand how distributions differ because 

they are informative, robust and intuitive. 

 

In 1995, Wilcox proposed an alternative technique which has better probability coverage and 

more statistical power than Doksum & Sievers’ 1976 approach (Wilcox, 1995). In short, 

Wilcox’s technique:  

- uses the Harrell-Davis quantile estimator to estimate the deciles of two distributions (Harrell 

& Davis, 1982);  

- computes 95% confidence intervals of the decile differences with a bootstrap estimation of 

the deciles’ standard error; 

- controls for multiple comparisons so that the type I error rate remains around 5% across the 

nine confidence intervals (this means that the confidence intervals are larger than what they 

would be if the two distributions were compared at only one decile). 

 

Figure 3 illustrates a shift function and how it relates to the marginal distributions. It shows an 

extreme example, in which two distributions differ in spread, not in the location of the bulk of 

the observations. In that case, any test of central tendency will fail to reject (e.g. one-sample t-

test on means: t=0.91, p=0.36), but it would be wrong to conclude that the two distributions 

do not differ. In fact, a Kolmogorov-Smirnov test reveals a significant effect (test statistics = 

0.109, critical value = 0.0607), and several robust measures of effect size would also suggest 

non-trivial effects (Wilcox & Muska, 2010; Ince et al., 2016). This shows that if we do not 

know how two independent distributions differ, the default test should not be a t-test but a 

Kolmogorov-Smirnov test. But a significant Kolmogorov-Smirnov test only suggests that two 

independent distributions differ, it does not tell us how they differ.	
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Figure	3.	Simulated	example	of	a	pair	of	independent	distributions	and	their	associated	shift	function.	A.	

Marginal	distributions.	The	two	marginal	distributions	(n=1000	each)	differ	in	spread	and	are	illustrated	using	

jittered	1D	scatterplots	(also	called	stripcharts	or	dotplots).	The	spread	of	the	points	is	proportional	to	the	

local	density	of	observations.	The	observations	from	each	group	are	hypothetical	scores	in	arbitrary	units	

(a.u.).	B.	Same	data	as	in	panel	A,	but	with	vertical	lines	marking	the	deciles	for	each	group. 	The	thicker	
vertical	line	in	each	distribution	is	the	median.	Because	of	the	difference	in	spread,	the	first	decile	of	group	2	is	

lower	than	that	of	group	1;	similarly,	the	ninth	decile	of	group	2	is	higher	than	that	of	group	1.	Between	

distributions,	the	matching	deciles	are	joined	by	coloured	lined.	If	the	decile	difference	between	group	1	and	

group	2	is	positive,	the	line	is	orange;	if	it	is	negative,	the	line	is	purple.	The	values	of	the	differences	for	

deciles	1	and	9	are	indicated	in	the	superimposed	labels.	C.	Shift	function.	Panel	C	focuses	on	the	portion	of	

the	x-axis	marked	by	the	grey	shaded	area	at	the	bottom	of	panel	B.	It	shows	the	deciles	of	group	1	on	the	x-
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axis	–	the	same	values	that	are	shown	for	group	1	in	panel	B.	The	y-axis	shows	the	differences	between	

deciles:	the	difference	is	large	and	positive	for	decile	1;	it	then	progressively	decreases	to	reach	almost	zero	for	

decile	5	(the	median);	it	becomes	progressively	more	negative	for	higher	deciles.	Thus,	for	each	decile	the	shift	

function	illustrates	by	how	much	one	distribution	needs	to	be	shifted	to	match	another	one.	In	our	example,	

we	illustrate	by	how	much	we	need	to	shift	deciles	from	group	2	to	match	deciles	from	group	1.	For	each	

decile	difference,	the	vertical	line	indicates	its	95%	bootstrap	confidence	interval.	When	a	confidence	interval	

does	not	include	zero,	the	difference	is	considered	significant	in	a	frequentist	sense,	with	an	alpha	threshold	of	

0.05.		

	

The shift function can help us understand and quantify how two distributions differ. 

Concretely, the shift function describes how one distribution should be re-arranged to match 

another one: it estimates how and by how much one distribution must be shifted. In Figure 

3C, the shift function shows the decile differences between group 1 and group 2, as a function 

of group 1 deciles. The first decile of group 1 is slightly under 5, which can be read in the top 

section of panel B, and on the x-axis of the shift function. The first decile of group 2 is lower; 

as a result, the first decile difference between group 1 and group 2 is positive: thus, to match 

the first deciles of the two distributions, the first decile of group 2 needs to be shifted up. 

Deciles 2, 3 and 4 show the same pattern, but with progressively weaker effect sizes. Decile 5 

is well centred, suggesting that the two distributions do not differ in central tendency. As we 

move away from the median, we observe progressively larger negative differences, indicating 

that to match the right tails of the two distributions, group 2 needs to be shifted to the left, 

towards smaller values - hence the negative sign. Across quantile differences, the negative 

slope indicates that the two distributions differ in spread, and the steepness of the slope relates 

to the strength of the difference in spread between distributions. In other cases, non-linear 

trends would suggest differences in skewness or higher-order moments too. 

 

To get a good understanding of the shift function, Figure 4 illustrates its behaviour in the 

other situations portrayed in Figure 2: no clear difference, mean difference, skewness 

difference. The first column of Figure 4 shows two large samples drawn from a standard 

normal population. In that case, a t-test on means is not significant (t=-0.45, p=0.65), and as 

expected, the shift function shows no significant differences for any of the deciles. The shift 

function is not perfectly flat, as expected from random sampling of a limited sample size. The 

samples are both n=1000, so for smaller samples even more uneven shift functions can be 
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expected by chance. Also, the lack of significant differences should not be used to conclude 

that we have evidence for the lack of effect.  

In the middle column of Figure 4, the two distributions differ in central tendency: in that case, 

a t-test on means is significant (t=-7.56, p<0.0001), but this is not the full story. The shift 

function shows that all the differences between deciles are negative and around -0.6. That all 

the deciles show an effect in the same direction is the hallmark of a completely effective 

method or experimental intervention. This consistent shift can also be described as first order 

stochastic ordering, in which one distribution stochastically dominates another (Speckman et 

al., 2008). Thus, the shift function relates to the delta plot, which is an extension of Q-Q plots 

for the comparison of two distributions on a quantile scale (De Jong et al., 1994; Ridderinkhof 

et al., 2005; Speckman et al., 2008). The shift function is also related to relative distribution 

methods (Handcock & Morris, 1998). 

	

	
Figure	4.	Examples	of	pairs	of	independent	distributions	and	their	associated	shift	functions.	See	details	in	

Figure	3	caption.	

	

For the data presented in the third column of Figure 4, a t-test on means is significant (t=-	

3.74, p-value=0.0002). However, the way the two distributions differ is very different from 

our previous example: the first five deciles are near zero and follow almost a horizontal line, 

and from deciles 5 to 9 differences increase linearly.  Based on the confidence intervals, only 

the right tails of the two distributions seem to differ, which is captured by significant 

differences for deciles 8 and 9. The non-linearity in the shift function reflects these 

asymmetric differences. 
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Neuroscience applications 

Exploration of effects 

We can put the shift function in context by looking at the original example discussed by 

Doksum (Doksum, 1974; Doksum, 1977), concerning the survival time in days of 107 control 

guinea pigs and 61 guinea pigs treated with a heavy dose of tubercle bacilli (Bjerkedal, 1960) 

(Figure 5A). Relative to controls, the animals that died the earliest tended to live longer in the 

treatment group, suggesting that the treatment was beneficial to the weaker animals (decile 1). 

However, the treatment was harmful to animals with control survival times larger than about 

200 days (deciles 4-9). Thus, this is a case where the treatment has very different effects on 

different animals. As noted by Doksum, the same experiment was performed 4 times, each 

time giving similar results. An important point, because of the increased resolution afforded 

by shift functions, replications are necessary to confirm specific patterns observed in 

exploratory work (Wagenmakers et al., 2012). 

 

Panels B and C of Figure 5 show other examples of asymmetric effects in skewed 

distributions. Both panels show results from recordings from the cat visual cortex from two 

research groups (Chanauria et al., 2016; Talebi & Baker, 2016). Panel B illustrates the 

adaptation response (amplitude of shift) of two independent groups of neurones with opposite 

responses (attractive vs. repulsive adaptation). A two-sample t-test on means is not significant 

(t=1.46, p=0.15). A shift function suggests that the two groups differ, with increasing 

differences for progressively larger amplitudes of shift; however, uncertainty is large. The 

problem would be worth exploring with a larger sample, to determine if the largest attractive 

shifts tend to be larger than the largest repulsive shifts. Another example of recording from 

the cat visual cortex is provided in panel C, in which the response latencies of two 

independent groups of neurones clearly differ, with much earlier latencies in non-oriented 

compared to compressive oriented cells. A shift function suggests a more detailed pattern: the 

two groups differ very little for short latencies, and progressively and non-linearly more as we 

move to their right tails. 
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Figure 5 examples are particularly important because we anticipate that, as researchers 

progressively abandon bar graphs for more informative alternatives (Weissgerber et al., 2015; 

Rousselet et al., 2016b), such skewed distributions and non-uniform differences will appear to 

be more common in neuroscience. 

 

 
Figure	5.	Examples	of	shift	function	applications.	A.	Data	from	(Bjerkedal,	1960),	and	used	to	illustrate	the	

shift	function	in	(Doksum,	1974).	B.	Data	from	Figure	5A	of	(Chanauria	et	al.,	2016).	C.	Data	from	Figure	9A	of	

(Talebi	&	Baker,	2016).	Data	in	panel	A	were	obtained	from	a	table	in	the	original	publication.	Data	from	

panels	B	and	C	were	kindly	provided	by	the	authors.	In	row	1,	stripcharts	were	jittered	to	avoid	overlapping	

points.	The	vertical	lines	mark	the	deciles,	with	a	thicker	line	for	the	median.	Row	2	shows	the	matching	shift	

functions.	See	other	details	in	Figure	3	caption.	

 

Hypothesis testing 

The shift function is also well suited to investigate how reaction time distributions differ 

between experimental interventions, such as tasks or pharmaceutical treatments. This 

approach requires building shift functions in every participant. Results could then be 

summarised, for instance, by reporting the number of participants showing specific patterns, 

and by averaging the individual shift functions across participants. One could imagine 

different situations, as illustrated in Figure 6, in which a manipulation: 

- affects most strongly slow behavioural responses, but with limited effects on fast responses; 

- affects all responses, fast and slow, similarly; 

- has stronger effects on fast responses, and weaker ones for slow responses. 

Such detailed dissociations have been reported in the literature, and provide much stronger 

constraints on the underlying cognitive architecture than comparisons limited to say the 
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median reaction times across participants (Ridderinkhof et al., 2005; Pratte et al., 2010). A 

similar approach could be applied to various types of behavioural and neuronal response 

times and response durations. 

	

	
Figure	6.	Examples	of	different	ways	in	which	two	response	time	distributions	could	differ.	A.	Weak	early	

differences,	then	increasing	differences	for	longer	latencies.	B.	Complete	shift.	C.	Large	early	differences,	then	

decreasing	differences	for	longer	latencies.	The	top	row	shows	violinplots	contrasting	two	distributions	in	the	

different	situations.	The	remaining	rows	show	shift	functions	with	different	densities	applied	to	the	same	data.	

Row	2	estimates	only	the	quartiles,	row	3	quantifies	the	deciles,	and	row	4	quantifies	quantiles	0.05	to	0.95	in	

steps	of	0.05.		

	

Perspectives on independent groups 

Now that we have introduced shift functions, we need to step back to consider the different 

perspectives we can have when comparing two groups, starting with independent groups. So 

far, we have focused on Question 1 introduced earlier: how does the typical observation in one 
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group compares to the typical observation in the other group? Question 2 addresses an 

alternative approach: what is the typical difference between any member of group 1 and any 

member of group 2?  

Let’s look at the example in Figure 7, showing two independent samples. The scatterplots 

indicate large differences in spread between the two groups, and suggest larger differences in 

the right than the left tails of the distributions. The medians of the two groups are very 

similar, so the two distributions do not seem to differ in central tendency. In keeping with 

these observations, a t-test and a Mann-Whitney-Wilcoxon test are not significant, but a 

Kolmogorov-Smirnov test is.	 

	

	
Figure	7.	How	two	independent	distributions	differ.	A.	Stripcharts	of	marginal	distributions.	Vertical	lines	

mark	the	deciles,	with	a	thicker	line	for	the	median.	B.	Kernel	density	representation	of	the	distribution	of	all	

pairwise	differences	between	the	two	groups.	Vertical	lines	mark	the	deciles,	with	a	thicker	line	for	the	

median.	C.	Shift	function.	Group	1	-	group	2	is	plotted	along	the	y-axis	for	each	decile,	as	a	function	of	group	1	

deciles.	For	each	decile	difference,	the	vertical	line	indicates	its	95%	bootstrap	confidence	interval.	The	95%	

confidence	intervals	are	controlled	for	multiple	comparisons.	D.	Difference	asymmetry	function	with	95%	

confidence	intervals.	The	family-wise	error	is	controlled	by	adjusting	the	critical	p	values	using	Hochberg’s	

method;	the	confidence	intervals	are	not	adjusted.	
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This discrepancy between tests highlights an important point: if a t-test is not significant, one 

cannot conclude that the two distributions do not differ. A shift function helps us understand 

how the two distributions differ (Figure 7C): the overall profile corresponds to two centred 

distributions that differ in spread; for each decile, we can estimate by how much they differ, 

and with what uncertainty; finally, the non-linear shift function indicates that the differences 

in spread are asymmetric, with larger differences in the right tails of the marginal 

distributions.  

 

To address Question 2, we compute all the pairwise differences between members of the two 

groups. In this case, each group has n=50, so we end up with 2,500 differences. Figure 7B 

shows a kernel density representation of these differences. What does the typical difference 

look like? The median of the differences is very near zero, at -0.06, with a 95% confidence 

interval of [-1.02, 0.75]. So, it seems on average, if we randomly select one observation from 

each group, they will differ very little. However, the differences can be quite substantial, and 

with real data we would need to put these differences in context, to understand how large 

they are, and their physiological interpretation. The differences are also asymmetrically 

distributed: negative scores extend to -10, whereas positive scores don’t even reach +5. In 

other words, negative differences tend to outweigh positive differences. This asymmetry 

relates to our earlier observation of asymmetric differences in the shift function. If the two 

distributions presented in Figure 7A did not differ, the distribution of all pairwise differences 

should be approximately symmetric and centred about zero. Thus, the two distributions seem 

to differ, but in a way that is not captured by measures of central tendency. 

 

Recently, Wilcox suggested a new approach to quantify asymmetries in difference 

distributions like the one in Figure 7B (Wilcox, 2012). The idea is to get a sense of the 

asymmetry of the difference distribution by computing a sum of quantiles = q + (1-q), for 

various quantiles estimated using the Harrell-Davis estimator. A percentile bootstrap 

technique is used to derive confidence intervals. Figure 7D shows the resulting difference 

asymmetry function. In this plot, 0.05 stands for the sum of quantile 0.05 + quantile 0.95; 

0.10 stands for the sum of quantile 0.10 + quantile 0.90; and so on… The approach is not 

limited to these quantiles, so sparser or denser functions could be tested too. Figure 7D 

reveals negative sums of the extreme quantiles (0.05 + 0.95), and progressively smaller, 

converging to zero sums as we get closer to the centre of the distribution. If the distributions 
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did not differ, the difference asymmetry function would be expected to be about flat and 

centred near zero. So, the q+(1-q) plot suggests that the distribution of differences is 

asymmetric, based on the 95% confidence intervals: the two groups seem to differ, with 

maximum differences in the tails. Other alpha levels can be assessed too.  

 

Perspectives on dependent groups 

The tools covered so far have versions for dependent groups as well. Let’s consider the dataset 

presented in Figure 8. Panel A shows the two distributions, with relatively large differences in 

the right tails. To address Question 1, ‘How does the typical observation in condition 1 

compare to the typical observation in condition 2?’, we consider the median of each 

condition. In condition 1 the median is 12.1; in condition 2 it is 14.8. The difference between 

the two medians is -2.73, with a 95% confidence interval of [-6.22, 0.88], thus suggesting a 

small difference between marginal distributions. To complement these descriptions, we 

consider the shift function for dependent groups (Wilcox & Erceg-Hurn, 2012). The shift 

function (Figure 6E) addresses an extension of Question 1, by more systematically comparing 

the distributions. It shows a non-uniform shift between the marginal distributions: the first 

three deciles do not differ significantly, the remaining deciles do, and there is an overall trend 

of growing differences as we progress towards the right tails of the distributions. In other 

words, among larger observations, observations in condition 2 tend to be higher than in 

condition 1. 

 

Because we are dealing with a paired design, our investigation should not be limited to a 

comparison of the marginal distributions; it is also important to show how observations are 

linked between conditions. This association is revealed in two different ways in panels B & C. 

Looking at the pairing reveals a pattern otherwise hidden: for participants with weak scores in 

condition 1, differences tend to be small and centred about zero; beyond a certain level, with 

increasing scores in condition 1, the differences get progressively larger.  

 

Panel D shows the distribution of these differences, which let us assess Question 2, ‘What is the 

typical difference for a randomly sampled participant?’. The distribution of within-participant 

differences is shifted up from zero, with only 6 out of 35 differences inferior to zero. Matching 

this observation, only the first decile is inferior to zero. The median difference is 2.78, and its 

95% confidence interval is [1.74, 3.53]. To complement these descriptions of the difference 
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distribution, we consider the difference asymmetry function for dependent groups (Wilcox & 

Erceg-Hurn, 2012). The difference asymmetry function extends Question 2 about the typical 

difference, by considering the symmetry of the distribution of differences. In the case of a 

completely ineffective experimental manipulation, the distribution of differences should be 

approximately symmetric about zero. The associated difference asymmetry function should 

be flat and centred near zero. For the data at hand, Figure 8F reveals a positive and almost 

flat function, suggesting that the distribution of differences is almost uniformly shifted away 

from zero. If some participants had particularly large differences, the left part of the 

difference asymmetry function would be shifted up compare to the rest of the function, a non-

linearity that would suggest that the differences are not symmetrically distributed – this does 

not seem to be the case here.  
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Figure	8.	How	two	dependent	distributions	differ.	A.	Stripcharts	of	the	two	distributions.	Horizontal	lines	

mark	the	deciles,	with	a	thicker	line	for	the	median.	B.	Lines	joining	paired	observations.	Scatter	was	

introduced	along	the	x	axis	to	reveal	overlapping	observations.	C.	Scatterplot	of	paired	observations.	The	

diagonal	black	reference	line	of	no	effect	has	slope	one	and	intercept	zero.	The	dashed	lines	mark	the	quartiles	

of	the	two	conditions.	In	panel	C,	it	could	also	be	useful	to	plot	the	pairwise	differences	as	a	function	of	

condition	1	results.	D.	Stripchart	of	difference	scores.	Horizontal	lines	mark	the	deciles,	with	a	thicker	line	for	

the	median.	E.	Shift	function	with	95%	confidence	intervals.	F.	Difference	asymmetry	function	with	95%	

confidence	intervals.	
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Finally, given a sufficiently large sample size, a single distribution of differences such as the 

one shown in Figure 8D can be quantified in more details, by including confidence intervals 

of the quantiles. Figure 9 illustrates such detailed representation using event-related potential 

onsets from 120 participants (Bieniek et al., 2016). In that case, the earliest latencies are 

particularly interesting, so it is useful to quantify the first deciles in addition to the median.	

	

	
Figure	9.	Detailed	quantification	of	a	single	distribution.	A.	The	scatterplot	illustrates	the	distribution	of	

event-related	potential	(ERP)	onsets.	Points	were	scattered	along	the	y-axis	to	avoid	overlap.	Vertical	lines	

indicate	the	deciles,	with	the	median	shown	with	a	thicker	line.	One	outlier	(>200	ms)	is	not	shown.	B.	Deciles	

and	their	95%	percentile	bootstrap	confidence	intervals	are	superimposed.	The	vertical	black	line	marks	the	

median.		
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article should be taken as a starting point, not as a definitive answer to the experimental 

situations we considered. For instance, although powerful, Wilcox's 1995 shift function 

technique is limited to the deciles, can only be used with alpha = 0.05, and does not work well 

with tied values. To circumvent these problems, Wilcox's recently proposed a new version of 

the shift function that uses a straightforward percentile bootstrap without estimation of the 

standard error of the decile differences (Wilcox & Erceg-Hurn, 2012; Wilcox et al., 2014). 

This new approach allows tied values, can be applied to any quantile and can have more 

power when looking at extreme quantiles (q<=0.1, or q>=0.9). This version of the shift 

function gives the opportunity to quantify the effects at different resolutions, to create sparser 

or denser shift functions, as demonstrated in Figure 6. The choice of resolution depends on 

the application, the precision of the hypotheses, and the sample size. For dependent variables, 

at least 30 observations are recommended to compare the 0.1 or 0.9 quantiles (Wilcox & 

Erceg-Hurn, 2012). To compare the quartiles, 20 observations appear to be sufficient. The 

same recommendations hold for independent variables; in addition, to compare the .95 

quantiles, at least 50 observations per group should be used (Wilcox et al., 2014). For the 

difference asymmetry function, if sample sizes are equal, it seems that n=10 is sufficient to 

assess quantiles 0.2 and above. To estimate lower quantiles, n should be at least 20 in each 

group (Wilcox, 2012). Such large numbers of observations might seem daunting in certain 

fields, but there is simply no way around this fundamental limitation: the more precise and 

detailed our inferences, the more observations we need. 

	

Conclusion 

The techniques presented here provide a very useful perspective on group differences, by 

combining detailed illustrations and quantifications of the effects. The different techniques 

address different questions, so which technique to use depends on what is the most interesting 

question in a particular experimental context. This choice should be guided by experience: to 

get a good sense of the behaviour of these techniques requires practice with both real and 

simulated data. By following that path, the community will soon realise that classic 

approaches such as t-tests on means combined with bar graphs are far too limited, and richer 

information can be captured in datasets, which in turn can lead to better theories and 

understanding of the brain. 
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One might think that such detailed analyses will increase false positives, and risk to focus on 

trivial effects. However, the tools presented here control for multiple comparisons, thus 

limiting false positives. Nevertheless, applying multiple tests to the same dataset, such as a t-

test, a Kolmogorov-Smirnov test, a shift function, and difference asymmetry function, will 

inevitably increase false positives. There is a simple safeguard against these problems: 

replication. Drawing inspiration from genetic studies, we should consider two samples, one 

for discovery, one for replication. The tools described in this article are particularly useful to 

explore distributions in a discovery sample. Effects of interest can then be tested in a 

replication sample. Our approach has also the advantage of taking the focus away from 

binary outcomes (significant vs. non-significant), towards robust effect sizes and the 

quantification of exactly how distributions differ.  
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