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Abstract

If many changes are necessary to improve the quality of neuroscience research, one relatively
simple step could have great pay-offs: to promote the adoption of detailed graphical methods,
combined with robust inferential statistics. Here we illustrate how such methods can lead to a
much more detailed understanding of group differences than bar graphs and t-tests on means.
To complement the neuroscientist’s toolbox, we present two powerful tools that can help us

understand how groups of observations differ: the shift function and the difference asymmetry
function. These tools can be combined with detailed visualisations to provide complementary
perspectives about the data. We provide implementations in R and Matlab of the graphical

tools, and all the examples in the article can be reproduced using R scripts.



Introduction

Despite the potentially large complexity of experiments in neuroscience, from molecules,
neurones, to large scale brain measurements and behaviour, data pre-processing and
subsequent analyses typically lead to massive dimensionality reduction. For instance, reaction
time distributions are summarised by their means, so they can be compared easily across
conditions and participants; the firing rate of individual neurones is averaged in a time-
window of interest; BOLD signal is averaged in a region of interest. Because of such
complexity reduction, researchers often focus on a limited number of group comparisons,
such that the thrust of an article tends to depend on a few distributions of continuous
variables. In addition, our own experience, as well as surveys of the literature (Allen ez al.,
2012; Weissgerber et al., 2015), suggest data representation standards need an overhaul: the
norm is to hide distributions behind bar graphs, using the standard deviation or the standard
error of the mean to illustrate uncertainty. That standard, coupled with the dominant use of
t-tests and ANOVAs on means, can mask potentially rich patterns. As a result, many

neuroscience datasets are under-exploited.

To make the most of neuroscience datasets, we believe one solution is to adopt robust and
detailed graphical methods, which could have great pay-ofls for the field (Rousselet ez al.,
2016b). Briefly, modern statistical methods offer the opportunity to get a deeper, more
accurate and more nuanced understanding of data (Wilcox, 2017). For instance, in Figure 1,
the classic combination of a bargraph and a t-test suggests the two groups of participants
differ very little in cerebellum local grey matter volume (Voxel Based Morphometric data
from Pernet et al., 2009a). Using a more detailed graphical description such as a dotplot hints
at a more interesting bimodal distribution in the patient group, and alternative analyses
suggest that individual differences in patients’ grey matter volumes are related to behavioural
variables (see details in Pernet e/ al., 2009b). In the rest of the article we cover other examples
in which alternative methods are more informative than t-tests. In addition, even when t-tests
are appropriate for the problem at hand, they lack robustness, as illustrated in this simple
example. Imagine we have a vector of observations [1, 1.5, 1.6, 1.8, 2, 2.2, 2.4, 2.7] and null
hypothesis of 1. The one-sample t-test on mean gives t=4.69, p= 0.002 and 95% confidence
interval = [1.45, 2.35]. A single outlier can have devastating effects: for instance, adding the
observation 8 to our previous vector now leads to t=2.26, p=0.054, and 95% confidence

interval = [0.97, 4.19]. In this latter case, we fail to reject, despite growing evidence that we



are not sampling from a distribution with mean of 1. Yet, inferential tools robust to outliers
and other distribution problems are readily available and have been described in many
publications (Wilcox & Keselman, 2003; Erceg-Hurn & Mirosevich, 2008; Wilcox, 2009).
The examples above also illustrate why detailed descriptions of distributions can be vital to
make sense of a dataset, without relying blindly on a unique inferential test, which might be

asking the wrong question about the nature of the effects.

A Mean +/- SEM B Dotplot C Patient sub—groups?
1.07 1.0 1.0
0.84 0.8 o 0.8 o
: 8 S8
= = =
2 S 2 S [T e8]
0.44 0.41 0.41
0.2 0.21 0.21
0.0 0.01 0.0
Controls Patients Controls Patients Controls Patients
Group Group Group

Figure 1. Beyond bar graphs and t-tests. Data from Pernet et al. (2009a), showing the local grey matter
volume (LGMV) in the cerebellum of control participants and of participants with dyslexia (patients). A.
Bargraph and t-test suggest that the two groups do not differ: t = -0.4, df = 72.6, p-value = 0.692, difference =
-0.01 [-0.07, 0.04]. B. A dotplot suggests a bimodal distribution in patients. Each point is a participant and the
points were jittered to reduce overlap. A dotplot is also called a stripchart or a 1 dimensional scatterplot. C. An
alternative analysis suggests sub-groups of patients. Using the controls as reference, we can sort patients into
subgroups, based on whether they fall above (grey), within (orange), or below (blue) certain limits. For
instance, here we used the confidence interval of the median of the control group as a reference to classify the
patients. Using the mean instead of the median, all patients would fall outside the control confidence interval,

as reported in Pernet et al. (Pernet et al., 2009b).

The benefits of illustrating data distributions have been emphasised in many publications and
1s often the topic of one of the first chapters of introductory statistics books (Wilcox, 2006;
Allen et al., 2012; Duke et al., 2015; Weissgerber et al., 2015; Cook et al., 2016). One of the
most striking examples is provided by Anscombe’s quartet (Anscombe, 1973), in which very
different distributions, illustrated using scatterplots, are associated with the same summary

statistics. The point of Anscombe’s quartet is simple and powerful, yet often underestimated:



unless results are illustrated in sufficient details, standard summary statistics can lead to

unwarranted conclusions.

As demonstrated by the Anscombe’s quartet, it is easy to fool ourselves if we use the wrong
tools, because they ask the wrong questions. Take for instance Figure 2, which illustrates a
few examples of how distributions can differ. Obviously, distributions can differ in other
aspects than those illustrated, and in combinations of these aspects, as we will explore in other
examples in the rest of this article. Yet, despite these various potential patterns of differences,
the standard group comparison using t-test on means makes the very strong assumptions that
the most important difference between two distributions is a difference in central tendency,
and that this difference is best captured by the mean. This is clearly not the case if
distributions differ in spread or skewness, as illustrated in the caricatural examples of columns

3 and 4 of Figure 2.
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Figure 2. Distribution differences and sample sizes. A. Distributions can differ in other aspects than the
mean. Columns show distributions that differ in four different ways. Each example portrays two randomly
generated populations, each with n = 2000. In examples 1, 3 and 4, the two distributions have the same mean.
In example 2, the means of the two distributions differ by 2 arbitrary units. In examples 3 and 4, the
distributions differ in shape. The distributions are illustrated with violinplots. The vertical bars indicate the
mean of each distribution. Orange indicates differences in mean or in shape. B. Data distributions cannot be

estimated with very small sample sizes. The three rows illustrate random subsamples of data from panel A,



with sample sizes n = 100, n = 20, and n = 5. Above each plot, the t value, mean difference and its confidence
interval are reported. The vertical bars indicate the mean of each sample. On the left of the figure, the

downward pointing arrow illustrates the decreasing certainty about the shape of the distribution.

The problem with asking a very narrow question about the data using a t-test on mean is
exacerbated by the small sample sizes common in neuroscience. Small sample sizes are
associated with low statistical power, inflated false discovery rate, inflated effect size
estimation, and low reproducibility (Button ez al., 2013; Colquhoun, 2014; Forstmeier et al.,
2016; Munafo et al., 2017; Poldrack et al., 2017). Small sample size also prevents us from
properly estimating and modelling the populations we sample from. Consequently, small n
stops us from answering a fundamental, yet often ignored empirical question: how do

distributions differ?

Let's consider the n=2000 populations in Figure 2A. If we draw random sub-samples of
different sizes from these populations (Figure 2B), we can get a sense of the sorts of problems
we might be facing as experimenters, when we draw one sample to try to make inferences
about an unknown population. For instance, even with 100 observations we might struggle to
approximate the shape of the parent population. Without additional information, it can be
difficult to determine if an observation is an outlier, particularly for skewed distributions. And
in column 4 of Figure 2, the samples with n = 20 and n = 5 are very misleading. Nevertheless,
some of the techniques described below can be applied to sample sizes as low as 10 or 20

observations — see section Recommendations for details.

All the figures in this article are licensed CC-BY 4.0 and can be reproduced using scripts in
the R programming language (R Core Team, 2016) and datasets available on figshare
(Rousselet et al., 2016a). The figshare repository also includes Matlab code implementing the
main R functions. The main R packages used to make the figures are ggplot2 (Wickham,
2016), cowplot (Wilke, 2016), ggbeeswarm (Clarke & Sherrill-Mix, 2016), retimes (Massidda, 2013),

and rogme (Rousselet & Wilcox, 2016), which was developed for this article.

Beyond the mean: a matter of perspectives

The previous examples illustrate that to understand how distributions differ, large sample
sizes are needed. How large is partly an empirical question that should be addressed in each

field for different types of variables. We will make a few recommendations at the end of this



article. For now, assuming that we have large enough sample sizes, why do we need to look
beyond the mean? And how do we go about quantifying how distributions differ? It’s a matter

of perspectives.

When comparing two independent groups, we can consider different perspectives; yet one

tends to dominate, as we typically ask:

‘How does the typical observation/participant in one group compares to the typical

observation/participant in the other group?’ (Question 1).

To answer this question, we compare the marginal distributions using a proxy: the mean.
Indeed, following this approach, we simply summarise each distribution by one value, which
we think provides a good representation of the average Joe in each distribution. An

interesting alternative approach consists in asking:

‘What is the typical difference (effect) between any member of group 1 and any member of

group 27 (Question 2).

In other words, if we randomly select one member of group 1 and one member of group 2, by
how much do they differ? This comparison can be done by systematically comparing
members of the two groups and summarising the distribution of pairwise differences by using
one value, for instance the mean. This perspective is particularly useful in a clinical setting, to
get a sense of how a randomly selected patient tends to differ from a randomly selected

control participant; or to compare young vs. old rats for example.

To answer Question 1 or Question 2, it 1s essential to appreciate that there is nothing special
about using the mean to summarise distributions. The mean is one of several options for the
job, and often not the best choice. Indeed, the mean is not robust to outliers, and robust
alternatives such as medians, trimmed means and M-estimators are more appropriate in
many situations (Wilcox, 2017). Similarly, the standard least squares technique underlying t-
tests and ANOVAs 1s often inappropriate because its assumptions are easily violated (Wilcox,
2001; Erceg-Hurn & Mirosevich, 2008). Also, there 1s no reason to limit our questioning of
the data to the average Joe in each distribution: we have tools to go beyond differences in

central tendency, for instance to explore effects in the tails of the distributions. We can thus



ask a more detailed version of Question 1: ‘How do observations in specific parts of a
distribution compare between groups?’. We can tackle this more specific question by
performing systematic group comparisons using a shift function, a tool that we will present in
detail in the next section. Question 2 can also be extended by quantifying multiple aspects of
the distribution of differences, including its symmetry, which can be assessed using the

difference asymmetry function, introduced later in this article.

We can ask similar questions for dependent groups. Dependent groups could involve the
same participants/animals tested in two experimental conditions, or in the same condition
but at different time points, for instance before and after an intervention. When considering

dependent groups, two main questions are usually addressed:

‘How does the typical observation in condition 1 compare to the typical observation in

condition 2’ (Question 1).

‘What is the typical difference (effect) for a randomly sampled participant?’ (Question 2).

Interestingly these two questions lead to the same answers if the mean is used as a measure of
central tendency: the difference of two means is the same as the mean of the differences.
That’s why a paired t-test is the same as a one-sample test on the pairwise differences.
However, if other estimators are used, or other aspects of the distributions are considered, the
answers to the two questions can differ. For instance, the difference between the medians of
the marginal distributions is usually not the same as the median of the differences. Similarly,

exploring entire distributions can reveal strong effects not or poorly captured by the mean.

To address these different perspectives on independent and dependent groups, and to
quantify how distributions differ, we propose an approach that combines two important steps.
The first step 1s to provide more comprehensive data visualisation, to guide analyses, but also
to better describe how distributions differ (Wilcox, 2006; Allen et al., 2012; Weissgerber et al.,
2015). The second step is to focus on robust estimators and alternative techniques to build
confidence intervals (Wilcox, 2017). Robust estimators perform well with data drawn from a
wide range of probability distributions. This framework is focused on quantifying how and by
how much distributions differ, to go beyond the binary descriptions of effects as being

significant or non-significant.



The shift function

A systematic way to characterise how two independent distributions differ was originally
proposed by Kjell Doksum: to plot the difference between the quantiles of two distributions as
a function of the quantiles of one group (Doksum, 1974; Doksum & Sievers, 1976; Doksum,
1977). This technique 1s called a shift function, and is both a graphical and an inferential
method. Quantiles are particularly well-suited to understand how distributions differ because

they are informative, robust and intuitive.

In 1995, Wilcox proposed an alternative technique which has better probability coverage and
more statistical power than Doksum & Sievers’ 1976 approach (Wilcox, 1995). In short,
Wilcox’s technique:

- uses the Harrell-Davis quantile estimator to estimate the deciles of two distributions (Harrell
& Davis, 1982);

- computes 95% confidence intervals of the decile differences with a bootstrap estimation of
the deciles’ standard error;

- controls for multiple comparisons so that the type I error rate remains around 5% across the
nine confidence intervals (this means that the confidence intervals are larger than what they

would be if the two distributions were compared at only one decile).

Figure 3 illustrates a shift function and how it relates to the marginal distributions. It shows an
extreme example, in which two distributions differ in spread, not in the location of the bulk of
the observations. In that case, any test of central tendency will fail to reject (e.g. one-sample t-
test on means: (=0.91, p=0.36), but it would be wrong to conclude that the two distributions
do not differ. In fact, a Kolmogorov-Smirnov test reveals a significant effect (test statistics =
0.109, critical value = 0.0607), and several robust measures of effect size would also suggest
non-trivial effects (Wilcox & Muska, 2010; Ince et al., 2016). This shows that if we do not
know how two independent distributions differ, the default test should not be a t-test but a
Kolmogorov-Smirnov test. But a significant Kolmogorov-Smirnov test only suggests that two

independent distributions differ, it does not tell us how they differ.
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Figure 3. Simulated example of a pair of independent distributions and their associated shift function. A.
Marginal distributions. The two marginal distributions (n=1000 each) differ in spread and are illustrated using
jittered 1D scatterplots (also called stripcharts or dotplots). The spread of the points is proportional to the
local density of observations. The observations from each group are hypothetical scores in arbitrary units
(a.u.). B. Same data as in panel A, but with vertical lines marking the deciles for each group. The thicker
vertical line in each distribution is the median. Because of the difference in spread, the first decile of group 2 is
lower than that of group 1; similarly, the ninth decile of group 2 is higher than that of group 1. Between
distributions, the matching deciles are joined by coloured lined. If the decile difference between group 1 and
group 2 is positive, the line is orange; if it is negative, the line is purple. The values of the differences for
deciles 1 and 9 are indicated in the superimposed labels. C. Shift function. Panel C focuses on the portion of

the x-axis marked by the grey shaded area at the bottom of panel B. It shows the deciles of group 1 on the x-
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axis — the same values that are shown for group 1 in panel B. The y-axis shows the differences between
deciles: the difference is large and positive for decile 1; it then progressively decreases to reach almost zero for
decile 5 (the median); it becomes progressively more negative for higher deciles. Thus, for each decile the shift
function illustrates by how much one distribution needs to be shifted to match another one. In our example,
we illustrate by how much we need to shift deciles from group 2 to match deciles from group 1. For each
decile difference, the vertical line indicates its 95% bootstrap confidence interval. When a confidence interval
does not include zero, the difference is considered significant in a frequentist sense, with an alpha threshold of

0.05.

The shift function can help us understand and quantify how two distributions differ.
Concretely, the shift function describes how one distribution should be re-arranged to match
another one: it estimates how and by how much one distribution must be shifted. In Figure
3C, the shift function shows the decile differences between group 1 and group 2, as a function
of group 1 deciles. The first decile of group 1 is slightly under 5, which can be read in the top
section of panel B, and on the x-axis of the shift function. The first decile of group 2 is lower;
as a result, the first decile difference between group 1 and group 2 is positive: thus, to match
the first deciles of the two distributions, the first decile of group 2 needs to be shifted up.
Deciles 2, 3 and 4 show the same pattern, but with progressively weaker effect sizes. Decile 5
1s well centred, suggesting that the two distributions do not differ in central tendency. As we
move away from the median, we observe progressively larger negative differences, indicating
that to match the right tails of the two distributions, group 2 needs to be shifted to the left,
towards smaller values - hence the negative sign. Across quantile differences, the negative
slope indicates that the two distributions differ in spread, and the steepness of the slope relates
to the strength of the difference in spread between distributions. In other cases, non-linear

trends would suggest differences in skewness or higher-order moments too.

To get a good understanding of the shift function, Figure 4 illustrates its behaviour in the
other situations portrayed in Figure 2: no clear difference, mean difference, skewness
difference. The first column of Figure 4 shows two large samples drawn from a standard
normal population. In that case, a t-test on means is not significant (t=-0.45, p=0.65), and as
expected, the shift function shows no significant differences for any of the deciles. The shift
function is not perfectly flat, as expected from random sampling of a limited sample size. The

samples are both n=1000, so for smaller samples even more uneven shift functions can be
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expected by chance. Also, the lack of significant differences should not be used to conclude

that we have evidence for the lack of effect.

In the middle column of Figure 4, the two distributions differ in central tendency: in that case,

a t-test on means is significant (t=-7.56, p<0.0001), but this is not the full story. The shift

function shows that all the differences between deciles are negative and around -0.6. That all

the deciles show an effect in the same direction is the hallmark of a completely effective

method or experimental intervention. This consistent shift can also be described as first order

stochastic ordering, in which one distribution stochastically dominates another (Speckman et

al., 2008). Thus, the shift function relates to the delta plot, which is an extension of Q)-Q) plots

for the comparison of two distributions on a quantile scale (De Jong et al., 1994; Ridderinkhof

et al., 2005; Speckman et al., 2008). The shift function is also related to relative distribution

methods (Handcock & Morris, 1998).
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Figure 4. Examples of pairs of independent distributions and their associated shift functions. See details in

Figure 3 caption.

For the data presented in the third column of Figure 4, a t-test on means is significant (t=-

3.74, p-value=0.0002). However, the way the two distributions differ is very different from

our previous example: the first five deciles are near zero and follow almost a horizontal line,

and from deciles 5 to 9 differences increase linearly. Based on the confidence intervals, only

the right tails of the two distributions seem to differ, which is captured by significant

differences for deciles 8 and 9. The non-linearity in the shift function reflects these

asymmetric differences.
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Neuroscience applications

Exploration of effects

We can put the shift function in context by looking at the original example discussed by
Doksum (Doksum, 1974; Doksum, 1977), concerning the survival time in days of 107 control
guinea pigs and 61 guinea pigs treated with a heavy dose of tubercle bacilli (Bjerkedal, 1960)
(Figure 5A). Relative to controls, the animals that died the earliest tended to live longer in the
treatment group, suggesting that the treatment was beneficial to the weaker animals (decile 1).
However, the treatment was harmful to animals with control survival times larger than about
200 days (deciles 4-9). Thus, this is a case where the treatment has very different effects on
different animals. As noted by Doksum, the same experiment was performed 4 times, each
time giving similar results. An important point, because of the increased resolution afforded
by shift functions, replications are necessary to confirm specific patterns observed in

exploratory work (Wagenmakers et al., 2012).

Panels B and C of Figure 5 show other examples of asymmetric effects in skewed
distributions. Both panels show results from recordings from the cat visual cortex from two
research groups (Chanauria ez al.,, 2016; Talebi & Baker, 2016). Panel B illustrates the
adaptation response (amplitude of shift) of two independent groups of neurones with opposite
responses (attractive vs. repulsive adaptation). A two-sample t-test on means is not significant
(t=1.46, p=0.15). A shift function suggests that the two groups differ, with increasing
differences for progressively larger amplitudes of shift; however, uncertainty is large. The
problem would be worth exploring with a larger sample, to determine if the largest attractive
shifts tend to be larger than the largest repulsive shifts. Another example of recording from
the cat visual cortex 1s provided in panel C, in which the response latencies of two
independent groups of neurones clearly differ, with much earlier latencies in non-oriented
compared to compressive oriented cells. A shift function suggests a more detailed pattern: the
two groups differ very little for short latencies, and progressively and non-linearly more as we

move to their right tails.
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Figure 5 examples are particularly important because we anticipate that, as researchers
progressively abandon bar graphs for more informative alternatives (Weissgerber et al., 2015;
Rousselet et al., 2016b), such skewed distributions and non-uniform differences will appear to

be more common in neuroscience.
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Figure 5. Examples of shift function applications. A. Data from (Bjerkedal, 1960), and used to illustrate the
shift function in (Doksum, 1974). B. Data from Figure 5A of (Chanauria et al., 2016). C. Data from Figure 9A of
(Talebi & Baker, 2016). Data in panel A were obtained from a table in the original publication. Data from
panels B and C were kindly provided by the authors. In row 1, stripcharts were jittered to avoid overlapping
points. The vertical lines mark the deciles, with a thicker line for the median. Row 2 shows the matching shift

functions. See other details in Figure 3 caption.

Hypothesis testing

The shift function 1s also well suited to investigate how reaction time distributions differ
between experimental interventions, such as tasks or pharmaceutical treatments. This
approach requires building shift functions in every participant. Results could then be
summarised, for instance, by reporting the number of participants showing specific patterns,
and by averaging the individual shift functions across participants. One could imagine
different situations, as illustrated in Figure 6, in which a manipulation:

- affects most strongly slow behavioural responses, but with limited effects on fast responses;
- affects all responses, fast and slow, similarly;

- has stronger effects on fast responses, and weaker ones for slow responses.

Such detailed dissociations have been reported in the literature, and provide much stronger

constraints on the underlying cognitive architecture than comparisons limited to say the
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median reaction times across participants (Ridderinkhof e al., 2005; Pratte et al., 2010). A

similar approach could be applied to various types of behavioural and neuronal response

times and response durations.
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Figure 6. Examples of different ways in which two response time distributions could differ. A. Weak early

differences, then increasing differences for longer latencies. B. Complete shift. C. Large early differences, then

decreasing differences for longer latencies. The top row shows violinplots contrasting two distributions in the

different situations. The remaining rows show shift functions with different densities applied to the same data.

Row 2 estimates only the quartiles, row 3 quantifies the deciles, and row 4 quantifies quantiles 0.05 to 0.95 in

steps of 0.05.

Perspectives on independent groups

Now that we have introduced shift functions, we need to step back to consider the different

perspectives we can have when comparing two groups, starting with independent groups. So

far, we have focused on Question I introduced earlier: how does the typical observation in one
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group compares to the typical observation in the other group? Question 2 addresses an
alternative approach: what is the typical difference between any member of group 1 and any
member of group 2?

Let’s look at the example in Figure 7, showing two independent samples. The scatterplots
indicate large differences in spread between the two groups, and suggest larger differences in
the right than the left tails of the distributions. The medians of the two groups are very
similar, so the two distributions do not seem to differ in central tendency. In keeping with
these observations, a t-test and a Mann-Whitney-Wilcoxon test are not significant, but a

Kolmogorov-Smirnov test is.
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Figure 7. How two independent distributions differ. A. Stripcharts of marginal distributions. Vertical lines
mark the deciles, with a thicker line for the median. B. Kernel density representation of the distribution of all
pairwise differences between the two groups. Vertical lines mark the deciles, with a thicker line for the
median. C. Shift function. Group 1 - group 2 is plotted along the y-axis for each decile, as a function of group 1
deciles. For each decile difference, the vertical line indicates its 95% bootstrap confidence interval. The 95%
confidence intervals are controlled for multiple comparisons. D. Difference asymmetry function with 95%
confidence intervals. The family-wise error is controlled by adjusting the critical p values using Hochberg’s

method; the confidence intervals are not adjusted.
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This discrepancy between tests highlights an important point: if a t-test is not significant, one
cannot conclude that the two distributions do not differ. A shift function helps us understand
how the two distributions differ (Figure 7C): the overall profile corresponds to two centred
distributions that differ in spread; for each decile, we can estimate by how much they differ,
and with what uncertainty; finally, the non-linear shift function indicates that the differences
in spread are asymmetric, with larger differences in the right tails of the marginal

distributions.

To address Question 2, we compute all the pairwise differences between members of the two
groups. In this case, each group has n=50, so we end up with 2,500 differences. Figure 7B
shows a kernel density representation of these differences. What does the typical difference
look like? The median of the differences is very near zero, at -0.06, with a 95% confidence
interval of [-1.02, 0.75]. So, it seems on average, if we randomly select one observation from
each group, they will differ very little. However, the differences can be quite substantial, and
with real data we would need to put these differences in context, to understand how large
they are, and their physiological interpretation. The differences are also asymmetrically
distributed: negative scores extend to -10, whereas positive scores don’t even reach +5. In
other words, negative differences tend to outweigh positive differences. This asymmetry
relates to our earlier observation of asymmetric differences in the shift function. If the two
distributions presented in Figure 7A did not differ, the distribution of all pairwise differences
should be approximately symmetric and centred about zero. Thus, the two distributions seem

to differ, but in a way that is not captured by measures of central tendency.

Recently, Wilcox suggested a new approach to quantify asymmetries in difference
distributions like the one in Figure 7B (Wilcox, 2012). The idea is to get a sense of the
asymmetry of the difference distribution by computing a sum of quantiles = q + (1-q), for
various quantiles estimated using the Harrell-Davis estimator. A percentile bootstrap
technique 1is used to derive confidence intervals. Figure 7D shows the resulting difference
asymmetry function. In this plot, 0.05 stands for the sum of quantile 0.05 + quantile 0.95;
0.10 stands for the sum of quantile 0.10 + quantile 0.90; and so on... The approach is not
limited to these quantiles, so sparser or denser functions could be tested too. Figure 7D
reveals negative sums of the extreme quantiles (0.05 + 0.95), and progressively smaller,

converging to zero sums as we get closer to the centre of the distribution. If the distributions
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did not differ, the difference asymmetry function would be expected to be about flat and
centred near zero. So, the q+(1-q) plot suggests that the distribution of differences is
asymmetric, based on the 95% confidence intervals: the two groups seem to differ, with

maximum differences in the tails. Other alpha levels can be assessed too.

Perspectives on dependent groups

The tools covered so far have versions for dependent groups as well. Let’s consider the dataset
presented in Figure 8. Panel A shows the two distributions, with relatively large differences in
the right tails. To address Question 1, ‘How does the typical observation in condition I
compare to the typical observation in condition 2?°, we consider the median of each
condition. In condition 1 the median is 12.1; in condition 2 it is 14.8. The difference between
the two medians is -2.73, with a 95% confidence interval of [-6.22, 0.88], thus suggesting a
small difference between marginal distributions. To complement these descriptions, we
consider the shift function for dependent groups (Wilcox & Erceg-Hurn, 2012). The shift
function (Figure 6E) addresses an extension of Question 1, by more systematically comparing
the distributions. It shows a non-uniform shift between the marginal distributions: the first
three deciles do not differ significantly, the remaining deciles do, and there is an overall trend
of growing differences as we progress towards the right tails of the distributions. In other
words, among larger observations, observations in condition 2 tend to be higher than in

condition 1.

Because we are dealing with a paired design, our investigation should not be limited to a
comparison of the marginal distributions; it is also important to show how observations are
linked between conditions. This association is revealed in two different ways in panels B & C.
Looking at the pairing reveals a pattern otherwise hidden: for participants with weak scores in
condition 1, differences tend to be small and centred about zero; beyond a certain level, with

increasing scores in condition 1, the differences get progressively larger.

Panel D shows the distribution of these differences, which let us assess Question 2, ‘What 1s the
typical difference for a randomly sampled participant?’. The distribution of within-participant
differences is shifted up from zero, with only 6 out of 35 differences inferior to zero. Matching
this observation, only the first decile 1s inferior to zero. The median difference is 2.78, and its

95% confidence interval is [1.74, 3.53]. To complement these descriptions of the difference
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distribution, we consider the difference asymmetry function for dependent groups (Wilcox &
Erceg-Hurn, 2012). The difference asymmetry function extends Question 2 about the typical
difference, by considering the symmetry of the distribution of differences. In the case of a
completely ineffective experimental manipulation, the distribution of differences should be
approximately symmetric about zero. The associated difference asymmetry function should
be flat and centred near zero. For the data at hand, Figure 8F reveals a positive and almost
flat function, suggesting that the distribution of differences is almost uniformly shifted away
from zero. If some participants had particularly large differences, the left part of the
difference asymmetry function would be shifted up compare to the rest of the function, a non-
linearity that would suggest that the differences are not symmetrically distributed — this does

not seem to be the case here.
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Figure 8. How two dependent distributions differ. A. Stripcharts of the two distributions. Horizontal lines
mark the deciles, with a thicker line for the median. B. Lines joining paired observations. Scatter was
introduced along the x axis to reveal overlapping observations. C. Scatterplot of paired observations. The
diagonal black reference line of no effect has slope one and intercept zero. The dashed lines mark the quartiles
of the two conditions. In panel C, it could also be useful to plot the pairwise differences as a function of
condition 1 results. D. Stripchart of difference scores. Horizontal lines mark the deciles, with a thicker line for
the median. E. Shift function with 95% confidence intervals. F. Difference asymmetry function with 95%

confidence intervals.
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Finally, given a sufficiently large sample size, a single distribution of differences such as the
one shown in Figure 8D can be quantified in more details, by including confidence intervals
of the quantiles. Figure 9 illustrates such detailed representation using event-related potential
onsets from 120 participants (Bieniek et al., 2016). In that case, the earliest latencies are

particularly interesting, so it is useful to quantify the first deciles in addition to the median.
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Figure 9. Detailed quantification of a single distribution. A. The scatterplot illustrates the distribution of
event-related potential (ERP) onsets. Points were scattered along the y-axis to avoid overlap. Vertical lines
indicate the deciles, with the median shown with a thicker line. One outlier (>200 ms) is not shown. B. Deciles

and their 95% percentile bootstrap confidence intervals are superimposed. The vertical black line marks the

median.

Recommendations

There are various ways to illustrate and compare distributions, including how to compute a

shift function and a difference asymmetry function. Therefore, the examples presented in this
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article should be taken as a starting point, not as a definitive answer to the experimental
situations we considered. For instance, although powerful, Wilcox's 1995 shift function
technique 1s limited to the deciles, can only be used with alpha = 0.05, and does not work well
with tied values. To circumvent these problems, Wilcox's recently proposed a new version of
the shift function that uses a straightforward percentile bootstrap without estimation of the
standard error of the decile differences (Wilcox & Erceg-Hurn, 2012; Wilcox et al., 2014).
This new approach allows tied values, can be applied to any quantile and can have more
power when looking at extreme quantiles (q<=0.1, or ¢>=0.9). This version of the shift
function gives the opportunity to quantify the effects at different resolutions, to create sparser
or denser shift functions, as demonstrated in Figure 6. The choice of resolution depends on
the application, the precision of the hypotheses, and the sample size. For dependent variables,
at least 30 observations are recommended to compare the 0.1 or 0.9 quantiles (Wilcox &
Erceg-Hurn, 2012). To compare the quartiles, 20 observations appear to be sufficient. The
same recommendations hold for independent variables; in addition, to compare the .95
quantiles, at least 50 observations per group should be used (Wilcox ez al., 2014). For the
difference asymmetry function, if sample sizes are equal, it seems that n=10 is sufficient to
assess quantiles 0.2 and above. To estimate lower quantiles, n should be at least 20 in each
group (Wilcox, 2012). Such large numbers of observations might seem daunting in certain
fields, but there is simply no way around this fundamental limitation: the more precise and

detailed our inferences, the more observations we need.

Conclusion

The techniques presented here provide a very useful perspective on group differences, by
combining detailed illustrations and quantifications of the effects. The different techniques
address different questions, so which technique to use depends on what is the most interesting
question in a particular experimental context. This choice should be guided by experience: to
get a good sense of the behaviour of these techniques requires practice with both real and
simulated data. By following that path, the community will soon realise that classic
approaches such as t-tests on means combined with bar graphs are far too limited, and richer
information can be captured in datasets, which in turn can lead to better theories and

understanding of the brain.
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One might think that such detailed analyses will increase false positives, and risk to focus on
trivial effects. However, the tools presented here control for multiple comparisons, thus
limiting false positives. Nevertheless, applying multiple tests to the same dataset, such as a t-
test, a Kolmogorov-Smirnov test, a shift function, and difference asymmetry function, will
inevitably increase false positives. There is a simple safeguard against these problems:
replication. Drawing inspiration from genetic studies, we should consider two samples, one
for discovery, one for replication. The tools described in this article are particularly useful to
explore distributions in a discovery sample. Effects of interest can then be tested in a
replication sample. Our approach has also the advantage of taking the focus away from
binary outcomes (significant vs. non-significant), towards robust effect sizes and the

quantification of exactly how distributions differ.
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