
observation rate. An easy extension to account for other types of correlation would be to

do a power transformation on one of the frailty terms. For example, model the intensity

function of event process following Sun et al. (2007),

λ(t|x, z) = zρλ0(t) exp(x′β), t ∈ [0, τ ],

where ρ is an unknown parameter which partly determines the correlation between the

event and observation processes. Specifically, ρ = 0 means that the two processes are

independent given x. For ρ > 0 and subjects with the same x, subjects with a higher event

rate would have more frequent observations. On the other hand, ρ < 0 means that the

two processes are negatively correlated. The estimating procedures under the two scenarios

with known and unknown start time would remain the same except for estimating equations

(5) and (8), where x∗i changes to (log(ẑi), 1,x
′
i)
′ and β∗ changes to (ρ, log Λ0(τ),β′)′ with

ẑi given by equations (7) and (9), respectively.

In conclusion, our methods were motivated by a real application of labor progression

and have wider applicability to any panel count data scenario where the interest not just

lies on the number of recurrences but also on the duration of time that they are recurrence

free.

APPENDIX: PROOF OF LARGE SAMPLE PROPERTIES

Proof of Theorem 1:

Before we start the proof, we’d like to make a remark about the conditions. For (C7), we

can set a very small ρ to truncate the gap times between observations, say, ρ = 1e − 10.

In general, with finite sample size, {tj − tj−1, j = 1, . . . , K} would be greater than or equal

to ρ. Condition (C8) is satisfied by a large class of distributions namely, Gamma, Weibull,

Normal etc.
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We focus on the proof of more difficult Scenario II, while a sketch is provided for Scenario

I. In the following, we use the notation a . b to denote that there exists a non-random

constant C > 0 which is independent of n such that a ≤ Cb; a & b is similarly defined. We

will also denote

Pf(X) = EPf(X) and Pnf(X) = EPnf(X) =
1

n

n∑
i=1

f(Xi).

Denote the observed data by X and the parameter θ = (η, F ) where η is the p−

dimensional (possibly covariate dependent) parameter for fA and F (t) = Λ0(t)
Λ0(τ)

, 0 < t < τ .

Define

Θn = {θn = (η, Fn)} = B ⊗Mn,

where B = {η ∈ Rp, ‖η‖ ≤ M} and Mn = {Fn : Fn(t) =
∑l+kn

j=1 ξjIj(t), ξj ≥ 0,
∑l+kn

j=1 ξj ≤

Mn}. The likelihood and the log-likelihood are denoted by L(θ, X) and l(θ, X) respectively

and let αj = F (t̃j + A), j = 1, . . . , K − 1 and α−1 = 0. Recall also that tj = t̃j−1 + A,

M0 =
∑
mj ≤ N(τ) a.s. and

L(θ, X) =

∫ K∏
j=1

[
αj−1 − αj−2

αK−1

]mj
f(A) dA.

Observe that
[
αj−1−αj−2

αK−1

]
≤ 1; consequently the likelihood L(θ, X) ≤ 1. Moreover, by

the mean value theorem and assumptions (C5), (C7) and (C3), we have

αj−1 − αj−2 = F ′(t∗)(t̃j−1 − t̃j−2) & 1, αK−1 & 1, a.s., (A.1)

where t∗ is a point between t̃j−1 and t̃j−2, which in turn implies
[
αj−1−αj−2

αK−1

]
≥ C for an

adequate constant C. Thus,

|l(θ, X)| . N(τ), a.s. (A.2)
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In other words, N(τ) is an envelope function for the class

Ln := {l(θ, X) : θ ∈ Θn}.

We will need the following partial derivatives:

∂l
∂αj

= 1
L(θ,X)

∫ ( mj+1

αj−αj−1
− mj+2

αj+1−αj

)∏K
j=1

[
(αj−1−αj−2)

αK−1

]mj
f(A) dA, j < K − 1,

∂l
∂αK−1

= 1
L(θ,X)

∫ (
mK

αK−1−αK−2
− M0

αK−1

)∏K
i=1

[
(αj−1−αj−2)

αK−1

]mi
f(A) dA and

∂l
∂δ

= 1
L(θ,X)

∫ ∏K
j=1

[
(αj−1−αj−2)

αK−1

]mj
∂f
∂δ

(A) dA


Using the analytic expression for the derivatives above, the mean value theorem, assumption

(C8) and (A.1), we have

|l(θ1, X)− l(θ2, X)| . N(τ){‖F1 − F2‖∞ + ‖η1 − η2‖},

for any θ1 = (η1, F1) and θ2 = (η2, F2) ∈ Θn. Let ξk = (ξk1 , . . . , ξ
k
l+kn

) denote the I-spline

coefficients of Fk for k = 1, 2. It follows that

‖F1 − F2‖∞ ≤

(
l+kn∑
j=1

|ξ1
j − ξ2

j |

)
max

1≤j<∞
‖Ij‖∞ . ‖ξ1 − ξ2‖.

Let ΩJ = {N(τ) ≤ J} for a fixed J ∈ N. In view of the estimate above and by the result

in problem 6 on page 94 of van der Vaart and Wellner (1996) and the inequality above, it

follows that on the set ΩJ , the covering number N (ε,Ln, L1(Pn)) satisfies the estimate

N (ε,Ln, L1(Pn)) . JpM l+kn
n ε−pn , pn = p+ l + kn. (A.3)

Proceeding in a similar manner, one can establish an analogous estimate for the covering

number N2 (ε,Ln, L2(Pn)) based on the L2-norm ‖f‖L2(Pn) = (Pnf
2)1/2.

Lemma 1. Assume that conditions (C1)–(C8) hold, we have

sup
θ∈Θn

|Pnl(θ, X)− Pl(θ, X)| → 0, a.s.
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Proof. Let ν/2 < φ1 < 1/2 and εn = ε n−1/2+φ1(log n)1/2. For any l(θ, X) ∈ Ln and

sufficiently large n, we have

V ar(Pnl(θ, X))/16ε2n ≤
1/nP l2(θ, X)

16ε2n
.

1

16nε2n
<

1

2
,

where, we used (A.2) and the fact that Pl2(θ, X) . EN2(τ) <∞. By applying inequality

(31) of Pollard (1984), we have

P

(
{sup
Ln
|Pnl(θ, X)− Pl(θ, X)| > 8εn} ∩ ΩJ

)
≤ 8EPN (ε,Ln, L1(Pn)) exp(−nε2n/128)1(sup

Ln
Pnl

2(θ, X) ≤ 64) +

EP1(sup
Ln

Pnl
2(θ, X) > 64/J2)

≤ 8EPN (ε,Ln, L1(Pn)) exp(−nε2n/128) + P (sup
Ln

Pnl
2(θ, X) > 64/J2)

= In + IIn.

Using (A.3) and the calculation on page 4, supplementary material in Ma et al. (2015), we

obtain∑
n

In = 8
∑
n

EPN (ε,Ln, L1(Pn)) exp(−nε2n/128) . Jp
∑
n

exp(−Cn2φ1 log n) <∞.

The last inequality holds because exp(−Cn2φ1 log n) = n−Cn
2φ1 is decreasing when n in-

creases. And n−Cn
2φ1 < n−2 when n ≥ d(2/C)1/(2φ1)e = C2. Thus

∑
n

exp(−Cn2φ1 log n) <

C2∑
n=1

exp(−Cn2φ1 log n) +
∞∑

n=C2+1

n−2 <∞

Now applying Lemma 33 of Pollard (1984) to the term IIn above, we have

IIn = P (sup
Ln

Pnl
2(θ, X) > 64/J2) ≤ EPN2 (ε,Ln, L2(Pn)) exp(−n/J2).
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A similar calculation now yields∑
n

IIn ≤
∑
n

exp(−Cn2φ1/J2) <∞.

The last inequality holds because there exist a finite integer C3 such that Cn2φ1/J2 >

2 log(n) for any n > C3. The calculation follows that of
∑

n In. Thus, we have shown that∑
n

P

(
{sup
Ln
|Pnl(θ, X)− Pl(θ, X)| > 8εn} ∩ ΩJ

)
<∞.

By the Borel-Cantelli lemma, for each J , there exists a null set NJ such that

sup
θ∈Θn

|Pnl(θ, X)− Pl(θ, X)| → 0 a.s.on ΩJ ∩N c
J .

Since N(τ) <∞ a.s., Ω = ∪JΩJ . By discarding the null set N = ∪JNJ , we conclude that

supθ∈Θn |Pnl(θ, X)− Pl(θ, X)| → 0 a.s.

Thus we have established

N (ε,Ln, L1(Pn)) . JpM l+kn
n ε−pn ,

and

sup
θ∈Θn

|Pnl(θ, X)− Pl(θ, X)| → 0, a.s. (A.4)

We now complete the proof of Theorem 1 following Chapter 5 of van der Vaart (2000).

Proof. Let G(θ, X) = −l(θ, X) and

ζ1n = sup
θ∈Θn

|PnG(θ, X)− PG(θ, X)|, ζ2n = PnG(θ0, X)− PG(θ0, X),

where P = Pθ0 . Denote

Kε = {θ = (η, F ) : ‖η − η0‖ ≥ ε, ‖F − F0‖∞ ≥ ε,θ ∈ Θn}.
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It is easy to see that

inf
Kε
PM(θ, X) = inf

Kε
{PG(θ, X)− PnG(θ, X) + PnG(θ, X)}

≤ ζ1n + inf
Kε
PnG(θ, X).

If θ̂n := infθ∈Θn PnG(θ, X) ∈ Kε, we have

inf
Kε
PnG(θ, X) = PnG(θ̂n, X) ≤ PnG(θ0, X) + o(1) = ζ2n + o(1) + PG(θ0, X).

Since PG(θ, X) attains its unique minimum at the true value θ = θ0 (van der Vaart, 2000,

p. 62) and Kε is a compact set, we have that{
inf
θ∈Kε

PG(θ, X)

}
− PG(θ0, X) = δε > 0.

Thus,

inf
Kε
PG(θ, X) ≤ ζ1n + ζ2n + o(1) + PG(θ0, X) = ζn + o(1) + PG(θ0, X),

with ζn = ζ1n + ζ2n. Hence we have ζn ≥ δε and {θ̂n ∈ Kε} ⊆ {ζn ≥ δε}. By (A.4) and

strong law of large numbers, we conclude that ζ1n = o(1) and ζ2n = o(1), almost surely. By

∪∞k=1 ∩∞n=k {θ̂n ∈ Kε} ⊆ ∪∞k=1 ∩∞n=k {ζn ≥ δε}, we proved that ‖F̂n − F‖∞ → 0 a.s., which

immediately implies ‖F̂n − F‖2 → 0 a.s.

Consistency of Λ̂n and β̂: We will prove that Λ̂n(t) is a consistent estimator of Λ0(t) for

t ∈ [0, τ ] by showing that α̂ converges to log{Λ0(τ)}. Recall that α̂ is obtained by solving the

estimating function (8). Define the function U(β∗) = n−1
∑n

i=1 w3ix
∗′
i [M0iEAi{F̂−1

n (tiK̃i +

Ai)} − exp(x∗
′
i β
∗)]. It can be shown that the function U converges to 0 almost surely

when evaluated at β∗ = [log{Λ0(τ)},β′]′. Furthermore, it is easy to see that the derivative
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of U evaluated at [log{Λ0(τ)},β′]′ is negative definite. Applying Taylor expansion on

U(β∗), one can show that the solution of estimating equation (8), i.e. β̂∗ = (α̂, β̂′)′,

converges to β∗ almost surely. Thus, we proved that α̂ converges to log{Λ0(τ)} almost

surely. Along with the fact that ‖F̂n−F0‖2 → 0 almost surely as n→∞, it can be shown

that ‖Λ̂n − Λ0‖2 = ‖F̂n exp(α̂)− Λ0‖2 → 0 almost surely as n→∞.

Consistency of the survival functions: This proof will follow given the strong consis-

tency of Λ̂n, β̂ and f̂z. The consistency of Λ̂n, β̂ has already been established.

Note that if zi = K̃i/ exp(x∗
′
i γ), then zi are i.i.d. and, by Huang and Wang (2004),

1
n

∑n
i=1 zi → E(Z) as n → ∞. Consequently, by strong law of large numbers, the kernel

density estimator f̂z(u) = 1
n

∑
iKh(u − zi) converges uniformly to fz(u) as n → ∞ and

h → 0, provided |f ′′z (u)| ≤ C. Since ẑi = K̃i/ exp(x∗
′
i γ̂), and one can easily prove that

γ̂ → γ a.s. following the proof of strong consistency of β̂, the asymptotic consistency of

f̂z(u) = 1
n

∑
iKh(u− ẑi) follows using (C6).

The strong consistency of survival function in case of Scenario I with known start

time follows analogously to Theorem 1 for the case of F (t) being approximated by I-

splines without the condition (C8). Alternatively, the proof of strong consistency in case of

estimating Λ0 through self-consistency algorithm in Scenario I follows by suitably modifying

Huang et al. (2006) strong consistency results for Λ̂0, β̂ and the consistency of γ̂ delineated

above, and the fact that the survival function of the gap time distribution is a smooth

function of these quantities as shown in equation (2).

Proof of Theorem 2:

We now establish the rate of convergence of the proposed estimators. The proof is based on

Theorem 3.4.1 of van der Vaart and Wellner (1996). First note that there exists I-splines

Fn0 such that ‖Fn0 − F0‖∞ = OP (n−rν), where r is as in (C5) and ν as in (C4) using Lu

et al. (2009). Further, for any δ > 0 define Fδ = {l(θn, X)− l(θ,X) : θ ∈ Θn, d(θ, θn) < δ},
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where θn = (η, Fn). Using (Shen and Wong, 1994, p. 597), the bracketing number can be

shown to be bounded by

logN[](ε,Fδ, ‖ · ‖2) < CN log(δ/ε).

with N = 2(m+ kn). Recall that

|l(θn, X)− l(θ,X)| . N(τ){‖Fn − F‖∞ + ‖ηn − η‖}.

Consequently,

‖l(θn, X)− l(θ,X)‖2
2 ≤ Cδ2

for l(θn, X)− l(θ,X) ∈ Fδ. Finally, using Lemma 3.4.2 of van der Vaart and Wellner (1996)

we get

EP‖n1/2(Pn − P )‖Fδ ≤ CJδ(ε,Fδ, ‖ · ‖2)

{
1 +

Jδ(ε,Fδ, ‖ · ‖2)

δ2n1/2

}
,

where Jδ(ε,Fδ, ‖ · ‖2) =
∫ τ

0
(1 + logN[](ε,Fδ, ‖ · ‖2))1/2dε. The right hand side of the above

equation can be shown to be ≤ φn(δ) = C{N1/2δ+ N
n1/2}. Observe that φn(δ)/δ is decreasing

in δ and for rn = N−1/2n1/2 = n(1−ν)/2, 0 < ν < 0.5, we have r2
nφn(rn) < 2n1/2. Thus,

invoking Theorem 3.4.1 of van der Vaart and Wellner (1996) yields n(1−ν)/2‖θ̂ − θn0)‖2 =

OP (1). Combining with ‖θn0 − θ0‖2 = OP (n−rν), we get ‖θ̂ − θ0‖2 = OP (n−(1−ν)/2 + n−rν).

We can also establish the n−1/2 rate of convergence for β̂ using standard techniques as they

are solution to estimating equation U.

Further, note that for every k, ŜMk,0
is a smooth and bounded function of Λ̂0 and that

β̂ is consistent estimator of β, using Taylor series expansion and the consistency properties

proven in Theorem 1, we have

‖ŜMk,0
− SMk,0

‖2 = OP (n−(1−ν)/2 + n−rν).
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