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S1 Appendix

Imputation with Probabilistic PCA

We focus on latent variable models for dimensional reduction; in case so-called
“probabilistic principal component analysis” (for a general discussion and references to
original work see [2]). Under the probabilistic PCA model data are generated by the
process

x̄ = ¯̄Az̄ + ǭ (1)

where the latent variables (principal components) are multivariate normal with unit
covariance matrix z̄ ∼ N (0̄, I), and the additive noise is normal with variance σ2,
hence,ǭ ∼ N (0̄, σ2I). The observations are multivariate normal with covariance matrix

¯̄Σ = ¯̄A ¯̄A
T

+ σ2I. (2)

Using

p
(
x̄, z̄| ¯̄A, σ2

0

)
= p (x̄|z̄) p (z̄) ∝ e−

1

2σ2
|| ¯̄Az̄−x̄||2e−

1

2
z̄
2

, (3)

we get the distribution of the principal components conditioned on observations

log p (z̄|x̄) = −
1

2σ2
|| ¯̄Az̄ − x̄||2 −

1

2
z̄2 + const., (4)

= −
1

2σ2
z̄T ¯̄A ¯̄AT z̄ +

1

σ2
x̄T ¯̄Az̄ −

1

2
z̄2 + const.. (5)

Hence, the conditional distribution of the principal components is the normal

distribution N
(
µ̄z|x,

¯̄Σz|x

)
, with

µ̄z|x =
1

σ2

¯̄Σz|x
¯̄AT x̄,

¯̄Σ−1

z|x =
¯̄A ¯̄AT

σ2
+ I (6)

Inference based on a sample of N complete data points x̄ ∈ Rd forming the data
matrix

¯̄X = [x̄1, x̄2, . . . , x̄N ](centered) (7)

is based on the singular value decomposition,

¯̄X = ¯̄U ¯̄S ¯̄V T . (8)

Let k be the selected subspace dimension, then the subspace of interest is spanned by
the columns of the matrix ¯̄A estimated by

ˆ̄̄
A = ¯̄U1:k

¯̄S1:k. (9)
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The noise variance is estimated from the variance outside the subspace of interest

σ̂2 =
Tr ( ¯̄X ¯̄XT )− Tr ( ¯̄Xr

¯̄XT
r )

N(d− k)
. (10)

where the subspace reconstruction of data is given by

¯̄Xr = ¯̄U1:k
¯̄UT

1:k · x̄. (11)

Now consider inference based on missing data, i.e., the remaining features indexed
by the set m x̄ −→ x̄m. The relevant distribution of principal components conditioned

on the features present x̄m is given simply by N
(
µ̄z|x̄m

, ¯̄Σz|x̄m

)
, with

̂̄̄Σ−1

z|x̄m

=
ˆ̄̄
Am

ˆ̄̄
AT

m

σ̂2

+ I (12)

̂̄µz|x̄m
=

1

σ̂2

̂̄̄Σz̄|x̄m

ˆ̄̄
AT

mx̄m (13)

where
ˆ̄̄
Am are the rows of subspace spanning vectors corresponding to the features

present x̄m.
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