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contents/aims

Part | - Very Brief Introduction to Scattering Theory

e Scattering theory overview (stationary-state picture).
e Partial wave expansion.

e Radial continuum wavefunctions for Coulombic and non-Coulombic potentials.

e The importance of the scattering phase shift. Written notes will be
available at the end of
Part Il - Very Brief Introduction to Angular Momentum the seminars!

e Angular momentum overview - what is angular momentum?

Angular momentum wavefunctions - the spherical harmonics.

Angular momentum coupling - Clebsch-Gordan coefficients and Wigner 3] symbols.

Transformation under rotation - rotation matrix elements.

Angular part of the scattering problem.

Part Ill - Very Brief Introduction to Photoionization & Photoelectron Angular Distributions

e Dipole approximation, dipole matrix elements, explicit formulation of matrix elements from bound and continuum
wavefunctions.

e Integrated and differential cross-sections, including exact result for 1-electron system (Cooper & Zare).
e Examples of PADs from atomic systems, in particular case of O~ photodetachement and s-d wave interference.

e Examples of PADs from molecular systems - case of many partial wave components due to non-central potentials,
l-mixing,/scattering etc.
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overview

Photoelectron angular distributions (PADs) are angular interference patterns

arising from interference between different partial wave components of the
photoelectron wavefunction.

The interferences depend on the scattering phase shifts of the partial waves;
hence the scattering potential surface.

The partial wave components populated upon ionization depend upon radial
and angular overlap integrals, hence orbital structure and angular momentum

coupling of the initial state, final (ion) state, photoelectron and incident
radiation.
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overview

We will build up a description of PADs using the ionization dipole matrix elements.

This treatment was first derived for the one and multi-electron atomic case by Cooper
and Zare (J. Cooper and R. N. Zare, in Lectures in Theoretical Physics: Atomic Collision
Processes, Vol. XI-C, ed. K. T. Mahanthappa, S. Geltman and W. E. Brittin, 1969).

It was extended to molecules by Dill (D. Dill, J. Chem Phys 65, 1130, 1976). Several

complementary/alternative treatments have since been published - see further reading at
the end of the talk.

For a recent (and thorough) derivation and discussion see Stolow & Underwood, in
Advances in Chemical Physics, ed. S. A. Rice, 2008, vol. 139.

For a less mathematical review see Reid, Ann. Rev. Phys. Chem. 54, 397, 2003



dipole matrix elements

d= <\I,—|-; we‘/:bE‘\Ijz>

Final state / \ Initial state

lon + electron Dipole operator and incident field

We have already seen the machinery to deal with all the parts of this matrix element.

We will follow the derivation in Cooper & Zare to begin, then generalize to the molecular
case.



c&z - one electron case

Dipole operator for one-electron system (neglecting spin)...

pEoxrz=rC50,0)

\ o W5} = s (1))
r /




c&z - one electron case

Bound state wavefunction

[Wi) = Xt (r)|I'm)
ol N

Radial part Angular part



c&z - one electron case

Free electron wavefunction (c.f. partial wave expansion)

Wy) =dmy ile ™y,

l,m I,m l,m
// / \\
Scattering phase Radial part
Spherical harmonics - z
A

angular part in electron
recoil frame and lab/
polarization frame.
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c&z - one electron case

Dipole operator (see also alignment addendum from last week)

pE oxrz=1rC;(0,0)

/

Case for linear polarization
along z-axis.

General case

C; ((9, ¢) = Yl,q(ev ¢)

N\

Spherical tensor describing electric
field polarization.

4
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c&z - one electron case

Put these components together.

(U s|rYio(7) ZAlm (Xt (1) [ xtnrr () (Im | Y10 (7)]1'm”)

Radial part /

O (P s (1) = / (P (P = 17

Angular part

m 0 m

(imYao (7)|1'm’) = <—1>l—m<1||Pl<e>||Z’>( Lo )

’_ 1/2
B0y = (1) =10/

Reduced matrix element Takes value of / or /'
depending which is largest



c&z - one electron case

Hence we find that the ionization matrix element becomes:

. (I — [ 1 7
<‘I’f\”’Y10(7“)|‘I’i>:;Alm(_l)l e “”/211!2”( 0 )

Here we end up with a matrix element in which the angular momentum terms can be
treated analytically, while the radial integrals are contracted into the », parameters.

In this case of a one-electron system the radial part could be treated analytically using
Coulomb functions. More generally the radial part cannot be evaluated analytically and
numerical methods are required.



observables

We now have the ionization matrix elements for the 1-electron case. What can we
observe experimentally?

The angle-resolved cross-section, i.e. the PAD, is the coherent square of the ionization
dipole matrix element.

1(0,0) = (Vi |t ElW;) (Vs | 0. E|V 5 1)e)

The angle-integrated cross-section, i.e. the total photoelectron yield, is the modulus
squared of the ionization dipole matrix element.

I= (Ui | E[T;)[*

We can continue to follow the CZ treatment and use the results shown so far to derive
explicit expressions for these observables...



c&z - one electron case

In the 1-electron notation used so far we want to evaluate:

1(0,0) oc (Wr|rYio(F)[W) (WilrYio(7)|[ V)

A

Proportional as we have
dropped terms such as
field strength.



c&z - one electron case

Sum over degenerate initial state components
m'. Equal population of all m'is assumed.

1
200+ 1

S: S: y: AllmlAZ;mQ

We now have coherent final state

terms labelled by subscript 1 and 2.

Complex factors including
scattering phase.

m’ li1,mq la,mo
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Radial integrals
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Parity and degeneracy.

Angular momentum coupling




c&z - one electron case

In this case the angular momentum coupling restricts the allowed terms in the summation:

L = U'+1
lo, = 1U'+1

Using this, and dropping the ' notation for clarity (i.e. all QN’s refer to initial state):

1672 , 12 — m? 2o [ U+1)2—m? (2
16,0) o 577 i [(21+ 1) (20 — 1)] Yietm (D) + i [(21+ 1)(2z+3)] Yirrm(7)]

m

[? —m? 1/2 (I4+1)% —m? 1/2
21—{—1)(2[—1)] [(2l+1)(2l—|—3)]

x Vi (P, (P O =00 Y ()Y, (7O |

+  ri41T—1 [(



c&z - one electron case

Diagonal terms [, = [,

1672 1> —m? [+ 1)2 —m?
[0,0) o 3 I 127 [(2l n 1)(7;; - 1)] Yierm(P) + i [(;l: 1))(21 —T?,)] Vi, m(P)I°
[? —m? 1/2 (I4+1)% — m? 1/2
NG [(zz )20 — 1)] [(21 )2+ 3)]

X {Yzil,m(f)Yl—Lm(f)@_i(élH_5l_1) + Yz+1,m(f)nil,m(f)ei((sm_él_l)}
x o

Oft-diagonal terms [ # [,

Off-diagonal elements contain interference terms between different
partial wave components. These terms depend on the scattering
phase shifts.




c&z - one electron case

This can be further simplified. Note that the sum over all m terms yields a final result
dependent only on 6 in this case.

Total cross-section o}

2ml(l+ 1)

(20 + 1)

[Tl—l + Tl2—|—1 + 2Tl+1rl—1 COS(5Z+1 — 51_1)}

2

_|_

2

@i

[—1)rf 4+ I+ 1)+ 2)rf — 6l + 1)rgam—1 cos(641 — 6—1)] cos” 6

Angular interference term

This can be rewritten in a form which matches the general, symmetry based result for
angular distributions first derived by Yang in 1948.

oF;

1(6) 11+ BP5(cosb)]

ik

Asymmetry or anisotropy parameter

C. N. Yang, Physical Review, 74 764—772 1948




c&z - one electron case

Finally we have equations for the 1(0) and g... this is what we want because these are the
quantities we can obtain experimentally.

1(0) = Z—;[l + BP>(cos0)]

5 (l—Dr7  + I+ 1)+ 2)7“l2Jr1 —6l(l + 1)rjpqr—1cos(6ja1 — 61—1)
B 20+ D)[lr? , + (I + 1)rl2+1]

This highlights two points about the angular distribution, as described by g:

1) The value of # (hence shape of the PAD) is strongly dependent on the interference
terms between partial waves /-1 and /+1.

2) We can related f measured experimentally to the radial part of the ionization matrix
elements, and might therefore hope to determine these quantities from experiment.



c&z - multi-electron case

Cooper & Zare also showed that this equation is applicable to a many electron system
and they used this result to explain the surprising results of Hall & Siegel from O
photodetachment experiments.
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Fi1e. 1. Angular distribution (normalized) of electrons photo-
detached by polarized laser light from a 700-eV beam of carbon
negative ions. The results for two wavelengths of the argon laser
are shown (displaced for clarity) in the figure. The laser beam and
ion beam intersect at 90°, The variable angle O is the angle between
the direction of electron collection and the laser polarization.

Hall & Siegel, J Chem Phys, 48 943 1968 Reid, Ann. Rev. Phys. Chem., 54 397 2003



c&z - multi-electron case

o © ¢
_ _ 1048 ) +
Numerical calculations SRl TR e
d well with th o © o ©=0"paTa } SIEGEL o’ o
agreed well wi e S THEORY o /" o
experimental data. - f[Jm‘ a o / ©
5 0.8 o \D fo
The difference from the e ok /A
‘ H ’ H 2 o _ /i
classpal dipole cos<0 8 o7 _H o ] W o
result is due to the 2 I{J e /s .
interference of the s and d Z 086 e k
. . O // o Q)
partial waves populated in Z 4
this case. < 05 7 %
o o /f
= /é a
g 0.4- // ullo P H_
5 siN?e /’ = cos.?e
‘ 9/ o B .
E 03 /é {/
i o9 B
’.—
@ 0.2 offo} .
% o X
Z oy ¢ ¥/ h O
b d . | // Q o o)
'ol'c % e ANGULAR ACCEPTANCE +
7 OF ANALYSER N lig, _
00 "Tos Zo° B0°  40°  B0°  60°  76° 80°  80°

Cooper & Zare, J Chem Phys, 48 942 1'968

® (DEGREES)



c&z - multi-electron case

We can visualize this result just by considering interference between an s and d wave.

Ve = Yoo + Yoge ™

Although there are other factors which go into g, this illustrates why the PAD is so sensitive
to the phase shifts - it is the interference due to these phase shifts which primarily
determines the shape of the PAD.



atomic PAD examples

Li

Cpo* 925(027)
Cao* -186(.018)
CZI
04
Xll

=-.063 (.021)
:-.025(.020)
2= 0.58

180°

Hansen et al, Phys Rev A, 21 222 1980

Na

Duncanson et al, Phys Rev Lett, 37 987 1976

These don’t look so interesting... if / is a good quantum number for the bound state,
and during ionization, then the ejected electron has only two partial wave components
according to lle;_rl.

Also, as we've already seen, for a single photon event we can only observe PADs of the

form

1(6) =

oF;

47

11+ BPy(cos®)]



atomic PADs - general form

What other tricks can we play to get more information from the PADs...?
Firstly, we can consider obtaining higher-order terms in the angular distribution.

The generalized for of the PAD can be written (based on symmetry) as an expansion in

spherical harmonics:
Generalized form of the
anisotropy parameter, we will
see how this can be calculated

L =2n Depends on geometry of
T experiment - can only have terms
M=0 for cylindrically symmetric
Number of photon absorbed, cases.

determines maximum anisotropy
in lab frame.



atomic PADs - general form

Revisit the sodium example from before. In this
case the ionization is via 2 photon absorption.
The angle between the first and second laser
polarization is varied to break cylindrical
symmetry, hence we can now have M#0.

We can think about this as an alignment effect -
the alignment in the ionization frame defined by
the second laser is not cylindrically symmetric,

and this changes the terms allowed in the PAD.

Duncanson et al, Phys Rev Lett, 37 987 1976



atomic PADs - general form

These types of measurement can provide enough information to obtain the radial part (the
magnitudes and phases) of the ionization matrix elements. This provides a ‘complete’
description of the ionization. The previous example was analysed to yield values r /r, = 2
and cos(5,-9,) = 1.

We could consider mapping the ionization matrix elements as a function of photoelectron
energy, this shows the ‘structure’ of the ionization continuum - it is not flat as we often like
to think when interpreting data!
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molecular photoionization

What about molecules...?

The situation is more interesting (i.e. more
complicated!).

2 main reasons:
1) Molecular orbitals not generally described by a lon-core
single value of /. ; region
2) Short-range, non-Coulombic, potential allows
for [-changing scattering of outgoing electron.

R

Both of these boil down to the same point:
l is not a good quantum number at short
range.

Hence we expect more scattering channels.

Park and Zare, J. Chem. Phys., 104 4554 1996



molecular photoionization

Recall we had a similar situation when describing the radial wavefunctions in scattering
theory...

Coulombic Non-coulombic... but can describe as Coulombic
(long-range) part plus short range part
v v
U(r) o< Z1Zs/r U(r > re) Ur < re)

So, as well as the radial part of the wavefunction having no analytic solution at short
range, we have to deal with the angular momentum quantum numbers being scrambled.



molecular photoionization

As before we are saved by appeal to the asymptotic solution, here / is good so we can
apply essentially the same methodology as for the atomic case.

Asymptotic
region, no further
scattering occurs
here.

Short-range region -

[-mixing/scattering. ¢ lon-core

Park and Zare, J. Chem. Phys., 104 4554 1996



molecular photoionization

In the molecular case we also have more angular momenta to couple, and the lab frame
(defined by the laser polarization) and molecular frame (defined by the symmetry or
molecular axis) cannot be assumed to be coincident (see also Hund’s cases from last

week).

Molecular frame Principal

Lab frame
z symmetry axis




molecular photoionization

Recall that we'’re interested in finding the ionization matrix element in terms of molecular
properties.

1(0,0) = (Vi | o BlW;) (Vs | 0. E|V 5 1)e)

Following essentially the same methodology as the atomic case, we can rewrite this in
terms of the neutral, ion and photoelectron wavefunctions.

We will not follow a complete derivation here, but skip to the result...

[See further reading at end of talk for published examples of such derivations]



molecular photoionization

We can write the final result in a very general form which hides much of the detail but
emphasizes the structure of the equations. This contains two main contributions: the

geometrical and dynamical parameters which relate to the angular and radial parts of
the problem respectively.

Geometrical terms

|

1(0,9) = S: S: S: YimA\,Um/ X [TIXTUN cos(Mmx — M )| Yim (0, 9)Y)7,,0 (0, ¢)

LI m,m’ X\, I

Dynamical terms
Sum over lab and
molecular frame
projections of
photoelectron ang.
mom.



molecular photoionization

Comparing the previous result to the general form

Gives:

16,0) = > > BraYru(6,9)

L M

e = Y S0,

LI mm’ X\,

These terms couple Y, Y°, into

the resultant Y, .

X YimA\/m N TINTUN cos(mx — M xr)

|

N

" L [ 1" L
—m’ M 0 0 O

Radial matrix
elements.

Total phase for /, A
scattering channel.




molecular photoionization

The radial matrix elements are now of the form (assuming Born-Oppenheimer approx.):

Vibrational wavefunctions.

/ \

T\ = / dR Xy, (R) (o, (r; R); Yin(r; R) D rYigltba, (75 R))Xv,, (R)

Electronic part at fixed R,
for all electrons s and the
g™ component of the dipole

Internuclear coordinates.
operator.

Index labels vibrational
states v and electronic
states a.

As for the atomic case this must be evaluated numerically, or determined from
experimental measurements.



molecular photoionization

The exact form of the geometrical parameters will depend on the problem at hand. For

simplicity we will look at the molecular frame result and, hence, ignore molecular rotations.

Electric field projected
into molecular frame.

This gives:
Electric field in lab frame.
'
1 1 P
L 1/2 P *
By = (L+1)Y ;(—1) ( p —p 0 )e—pe—p
/ ]. ]. P P
) %(—1)61 ( ¢ —q¢ ¢ —q )D(q_q')’0(¢’9’X)

x> Y (=DM @+D)YRRU+ 1)

LI AN
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Radial matrix elements and
interference terms.
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A
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L
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) (o0
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|

Electronic angular momenta
coupling in molecular frame.




molecular photoionization

In the molecular frame f,, terms are limited only by the partial waves present and
L =21 . Hencethe MF-PAD can be very complex.

O 1s

W. B. Li, R. Montuoro, J. C. Houver, L. Journel, A. Haouas, M. Simon, R. R. Lucchese and D. Dowek, Physical
Review A (Atomic, Molecular, and Optical Physics), 75 052718 2007.



molecular photoionization

The lab frame result can be considered as the alignment-averaged molecular frame
results.

1 1 P )
Y CI )

P K L
1/2

X ;(2](—%1) (0 0 M)AK’Q7

(11 P P K L

_1q

" Z( ) (q —q' q’—q><q—q’ q —q 0)

1\ 1/2(e7/ 1/2 l ! L [ " L
x ) Y (=DN@I+DVE@ +1) (A Y q’—q>(0 0 0

LI XN

Alignment averaging.

/

X <_7/) _lrlATZ/A/eZ(nlk_nl/A/>

Here Ak _q are the axis distribution moments, which describe rotational angular
momentum coupling and alignment.



molecular photoionization

The lab frame result can thus be considered as a smearing or blurring of the true
molecular frame result.

cos?6 cos?6
Z Z
a (I a, (Il
X Y X 4

Decreasing .
alignment

zZ Z zZ

X : ¥ X y X = y

Underwood and Reid, J. Chem. Phys., 113 1067 2000



use of PADs

We have seen that PADs are rather complex, but very sensitive to scattering phases.
In this sense they can provide “complete” information about ionization, enabling the
experimental determination of the radial matrix elements and scattering phases.

We can also consider using PADs as a probe of:
- Aligned axis distributions.

- Time-evolving axis distributions.

- Time-evolving systems.

Finally, because the scattering phase shifts contain all information about the short-range
part of the scattering potential, the PAD could provide the necessary information to
reconstruct this potential.



example - ammonia

* iér-‘
11

2.2)

3,(3 )+4

172 4

(b) 1,—2,

4| scatter

pr allowed

ds allowed

Recording rotationally-resolved, LF-PADs
provided enough data to obtain all partial
wave amplitudes and phases (except odd/
even phase difference).

= EXpl.
== Calc.

LA TIA mx/deg /% Fi/%
s o 0.357(12) 0* 12.7 (17) 12.7 (17)
p o - - 13.0 (11)
m 0.361 (8) 0* 13.0 (11)
d o 0.137 (4) 31 (9) 1.9 (5) 53.0 (7)
m 0.387 (2) 16 (3) 15.0 (3)
6 0.601(3) 149 (2) 36.1(4)
f o - - 10.7 (2)
m 0.084 (1) 162 (3) 0.7 (1)
6 0143 (1) 153 (1) 2.1 (1)
¢ 0.282(1) 153 (1) 8.0 (1)
g o 0171 (7) 92 (9) 2.9 (10) 10.5(17)
m 0276 (8) 64(23) 7.6(12)
6 0.000 (5) 51 (169) 0.0
é - R
’7 -
Table 8.3: Fitted dynamical parameters. 7r;5 are normalized such that total x-section
is unity. 77 represent the partial x-sections for each |I\) component, expressed as a
percentage. Fj is the x-section for each [ continua. Phases marked * are fixed as reference
phases, one for even-I and one for odd-I. The phases are mod(360), the phase relationship
between the odd and even continua, or the sign of the phases, cannot be deduced in this
work. Components marked - are not allowed according to angular momentum coupling.

Hockett et al, Phys. Rev. Lett., 102 253002 2009



example - ammonia

| pr ' ds | scattering

The dynamical parameters can
be tested by calculating the
rotational spectra.

= Expt.
== Calc.

85950 86000 86050 86100 86150 86200 86250
E /em™
on



example - ammonia
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summary

We have covered:

- lonization dipole matrix elements.

- PAD in atomic case, following Cooper & Zare derivation.
- Atomic PAD examples.

- PAD in molecular case, both MF and LF results.

- Uses of PADs.



further reading

For some further reading on this and related material...

Stolow & Underwood, in Advances in Chemical Physics, ed. S. A. Rice, 2008, vol. 139 -
thorough treatment of MF and LF-PAD.

D. Dill, . Chem Phys 65, 1130, 1976 - First (and brief!) derivation of MF-PADs formalism.
Reid, Ann. Rev. Phys. Chem. 54, 397, 2003 - PADs review article.

Seideman, Ann. Rev. Phys. Chem. 53, 41, 2002 - PADs alternative derivation in non-
perturbative regime, including time-dependence (see also Seideman, Phys. Rev. A 64,

042504, 2001).

Park & Zare, J. Chem. Phys. 104, 4554, 1996 - PADs in eigenchannel (close-coupled)
formalism, includes good discussion of the physical picture behind the mathematics.



