
PADs seminars #3 apri l  2010

Photoelectron Angular 
Distributions Seminar Series

III) Very Brief Introduction to Photoelectron 
Angular Distributions

Paul Hockett
paul.hockett@nrc.ca

(a) 11→32 (b) 11→20 (c) 11→22

(d) 11→10 (e) 10→31 (f) 10→11



contents/aims

Written notes will be 
available at the end of 
the seminars!



background road map

Photoelectron angular 
distributions

(perturbative regime)

Scattering theory
Partial wave 

treatment
Scattering phase

Angular momentum
Angular wavefunctions

Angular coupling
Frame rotations

Photoelectron angular 
distributions

(non-perturbative regime)

Photoelectron angular 
distributions

(strong-field regime)



Y00

Y10 Y11

Y21 Y22Y20

Photoelectron angular distributions (PADs) are angular interference patterns 
arising from interference between different partial wave components of the 
photoelectron wavefunction.

The interferences depend on the scattering phase shifts of the partial waves, 
hence the scattering potential surface.

The partial wave components populated upon ionization depend upon radial 
and angular overlap integrals, hence orbital structure and angular momentum 
coupling of the initial state, final (ion) state, photoelectron and incident 
radiation.

overview



overview
We will build up a description of PADs using the ionization dipole matrix elements.  

This treatment was first derived for the one and multi-electron atomic case by Cooper 
and Zare (J. Cooper and R. N. Zare, in Lectures in Theoretical Physics: Atomic Collision 
Processes, Vol. XI-C, ed. K. T. Mahanthappa, S. Geltman and W. E. Brittin, 1969).

It was extended to molecules by Dill (D. Dill, J. Chem Phys 65, 1130, 1976).  Several 
complementary/alternative treatments have since been published - see further reading at 
the end of the talk.

For a recent (and thorough) derivation and discussion see Stolow & Underwood, in 
Advances in Chemical Physics, ed. S. A. Rice, 2008, vol. 139.

For a less mathematical review see Reid, Ann. Rev. Phys. Chem. 54, 397, 2003



dipole matrix elements

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

Final state
Ion + electron

Initial state
Dipole operator and incident field

We have already seen the machinery to deal with all the parts of this matrix element.

We will follow the derivation in Cooper & Zare to begin, then generalize to the molecular 
case.



c&z - one electron case

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
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3
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lm(k̂)Ylm(r̂)χkl(r) =
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l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

Dipole operator for one-electron system (neglecting spin)...

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉
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3
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∑
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∑
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Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl
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∑
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c&z - one electron case

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2
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µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr
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Y1,0(θ, φ)
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|Ψf 〉 = 4π
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ile−iδlY ∗
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∑
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Bound state wavefunction

Radial part Angular part



d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

Free electron wavefunction (c.f. partial wave expansion)

Scattering phase

Spherical harmonics - 
angular part in electron 
recoil frame and lab/
polarization frame.

Radial part

c&z - one electron case
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d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

c.f.

c&z - one electron case

Dipole operator (see also alignment addendum from last week)

Case for linear polarization 
along z-axis.

General case 

ˆ
I(θ) sin(θ)dθ = σt

I(θ) =
σt

4π
[1 + βP2(cos θ)]

β =
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

(2l + 1)[lr2l−1 + (l + 1)r2l+1]

µ.E ∝ r.ê = rC1
q (θ, φ)

C1
q (θ, φ) ≡ Y1,q(θ, φ)

ψe = Y00 + Y20e
−iδ

I(θ, φ) =
∑
L

∑
M

βLMYLM (θ, φ)

I(θ, φ) =
∑
l,l′

∑
m,m′

∑
λ,λ′

γlmλ,l′m′λ′ rlλrl′λ′ cos(ηlλ − ηl′λ′)Ylm(θ, φ)Y ∗
l′m′(θ, φ)

βLM =
∑
l,l′

∑
m,m′

∑
λ,λ′

(−1)m
(

l l′ L
m −m′ M

)(
l l′ L
0 0 0

)

x γlmλ,l′m′λ′rlλrl′λ′ cos(ηlλ − ηl′λ′)

βLM = (2L+ 1)1/2
∑
P

(−1)P
(

1 1 P
p −p 0

)
e−pe

∗
−p

x
∑
q,q′

(−1)q
′
(

1 1 P
q −q′ q′ − q

)
DP

(q−q′),0(φ, θ, χ)

x
∑
l,l′

∑
λ,λ′

(−1)λ
′
(2l + 1)1/2(2l′ + 1)1/2

(
l l′ L
λ −λ′ M

)(
l l′ L
0 0 0

)

x (−i)l
′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

Spherical tensor describing electric 
field polarization.



c&z - one electron case
Put these components together.

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

〈lm|Y10(r̂)|l′m′〉 = (−1)l−m〈l||Pl(θ)||l′〉
(

l 1 l′

−m 0 m′

)

〈l||Pl(θ)||l′〉 = (−1)(l
′−l+1)/2l

1/2
>

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm(−1)l−m+(l′−l+1)/2l
1/2
> rl

(
l 1 l′

−m 0 m′

)

I(θ, φ) = dd∗ = 〈Ψf |rY10(r̂)|Ψi〉〈Ψi|rY10(r̂)|Ψf 〉

I(θ, φ) ∝ 1

2l′ + 1

∑
m′

∑
l1,m1

∑
l2,m2

Al1m1
A∗

l2m2
(−1)l1−m1+l2−m2+(l′−l1+1)/2+(l′−l2+1)/2l

1/2
1> l

1/2
2>

x rl1r
∗
l2

(
l1 1 l′

−m1 0 m′

)(
l2 1 l′

−m2 0 m′

)

l1 = l′ ± 1

l2 = l′ ± 1

m1 = m2 = m′

I(θ, φ) ∝ 16π2

2l + 1

∑
m

r2l−1

[
l2 −m2

(2l + 1)(2l − 1)

]
|Yl−1,m(r̂)|2 + r2l+1

[
(l + 1)2 −m2

(2l + 1)(2l + 3)

]
|Yl+1,m(r̂)|2

+ rl+1rl−1

[
l2 −m2

(2l + 1)(2l − 1)

]1/2 [
(l + 1)2 −m2

(2l + 1)(2l + 3)

]1/2

x
{
Y ∗
l+1,m(r̂)Yl−1,m(r̂)e−i(δ1+l−δl−1) + Yl+1,m(r̂)Y ∗

l−1,m(r̂)ei(δ1+l−δl−1)
}

I(θ) =
2πl(l + 1)

(2l + 1)2
[
r2l−1 + r2l+1 + 2rl+1rl−1 cos(δl+1 − δl−1)

]

+
2π

(2l + 1)2
[
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

]
cos2 θ

Reduced matrix element Takes value of l or l′ 
depending which is largest

Radial part

Angular part



c&z - one electron case
Hence we find that the ionization matrix element becomes:

〈lm|Y10(r̂)|l′m′〉 = (−1)l−m〈l||Pl(θ)||l′〉
(

l 1 l′

−m 0 m′

)

〈l||Pl(θ)||l′〉 = (−1)(l
′−l+1)/2l

1/2
>

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm(−1)l−m+(l′−l+1)/2l
1/2
> rl

(
l 1 l′

−m 0 m′

)

I(θ, φ) = dd∗ = 〈Ψf |rY10(r̂)|Ψi〉〈Ψi|rY10(r̂)|Ψf 〉

I(θ, φ) ∝ 1

2l′ + 1

∑
m′

∑
l1,m1

∑
l2,m2

Al1m1
A∗

l2m2
(−1)l1−m1+l2−m2+(l′−l1+1)/2+(l′−l2+1)/2l

1/2
1> l

1/2
2>

x rl1r
∗
l2

(
l1 1 l′

−m1 0 m′

)(
l2 1 l′

−m2 0 m′

)

l1 = l′ ± 1

l2 = l′ ± 1

m1 = m2 = m′

I(θ, φ) ∝ 16π2

2l + 1

∑
m

r2l−1

[
l2 −m2

(2l + 1)(2l − 1)

]
|Yl−1,m(r̂)|2 + r2l+1

[
(l + 1)2 −m2

(2l + 1)(2l + 3)

]
|Yl+1,m(r̂)|2

+ rl+1rl−1

[
l2 −m2

(2l + 1)(2l − 1)

]1/2 [
(l + 1)2 −m2

(2l + 1)(2l + 3)

]1/2

x
{
Y ∗
l+1,m(r̂)Yl−1,m(r̂)e−i(δ1+l−δl−1) + Yl+1,m(r̂)Y ∗

l−1,m(r̂)ei(δ1+l−δl−1)
}

I(θ) =
2πl(l + 1)

(2l + 1)2
[
r2l−1 + r2l+1 + 2rl+1rl−1 cos(δl+1 − δl−1)

]

+
2π

(2l + 1)2
[
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

]
cos2 θ

Here we end up with a matrix element in which the angular momentum terms can be 
treated analytically, while the radial integrals are contracted into the rl parameters.

In this case of a one-electron system the radial part could be treated analytically using 
Coulomb functions.  More generally the radial part cannot be evaluated analytically and 
numerical methods are required.



o b s e r v a b l e s
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The angle-resolved cross-section, i.e. the PAD, is the coherent square of the ionization 
dipole matrix element.

The angle-integrated cross-section, i.e. the total photoelectron yield, is the modulus 
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c&z - one electron case
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In the 1-electron notation used so far we want to evaluate:

Proportional as we have 
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Sum over degenerate initial state components 
m′.  Equal population of all m′ is assumed.

We now have coherent final state 
terms labelled by subscript 1 and 2.

c&z - one electron case

Complex factors including 
scattering phase.

Parity and degeneracy.

Radial integrals Angular momentum coupling
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c&z - one electron case

〈lm|Y10(r̂)|l′m′〉 = (−1)l−m〈l||Pl(θ)||l′〉
(

l 1 l′

−m 0 m′

)

〈l||Pl(θ)||l′〉 = (−1)(l
′−l+1)/2l

1/2
>

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm(−1)l−m+(l′−l+1)/2l
1/2
> rl

(
l 1 l′

−m 0 m′

)

I(θ, φ) = dd∗ = 〈Ψf |rY10(r̂)|Ψi〉〈Ψi|rY10(r̂)|Ψf 〉

I(θ, φ) ∝ 1

2l′ + 1

∑
m′

∑
l1,m1

∑
l2,m2

Al1m1
A∗

l2m2
(−1)l1−m1+l2−m2+(l′−l1+1)/2+(l′−l2+1)/2l

1/2
1> l

1/2
2>

x rl1r
∗
l2

(
l1 1 l′

−m1 0 m′

)(
l2 1 l′

−m2 0 m′

)

l1 = l′ ± 1

l2 = l′ ± 1

m1 = m2 = m′

I(θ, φ) ∝ 16π2

2l + 1

∑
m

r2l−1

[
l2 −m2

(2l + 1)(2l − 1)

]
|Yl−1,m(r̂)|2 + r2l+1

[
(l + 1)2 −m2

(2l + 1)(2l + 3)

]
|Yl+1,m(r̂)|2

+ rl+1rl−1

[
l2 −m2

(2l + 1)(2l − 1)

]1/2 [
(l + 1)2 −m2

(2l + 1)(2l + 3)

]1/2

x
{
Y ∗
l+1,m(r̂)Yl−1,m(r̂)e−i(δ1+l−δl−1) + Yl+1,m(r̂)Y ∗

l−1,m(r̂)ei(δ1+l−δl−1)
}

I(θ) =
2πl(l + 1)

(2l + 1)2
[
r2l−1 + r2l+1 + 2rl+1rl−1 cos(δl+1 − δl−1)

]

+
2π

(2l + 1)2
[
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

]
cos2 θ

Diagonal terms l1 = l2

Off-diagonal terms l1 ≠ l2

Off-diagonal elements contain interference terms between different 
partial wave components.  These terms depend on the scattering 
phase shifts.



c&z - one electron case
This can be further simplified.  Note that the sum over all m terms yields a final result 
dependent only on θ in this case.
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This can be rewritten in a form which matches the general, symmetry based result for 
angular distributions first derived by Yang in 1948. 

C. N. Yang, Physical Review, 74 764–772 1948

Asymmetry or anisotropy parameter
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c&z - one electron case
Finally we have equations for the I(θ) and β... this is what we want because these are the 
quantities we can obtain experimentally.
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This highlights two points about the angular distribution, as described by β:

1)  The value of β (hence shape of the PAD) is strongly dependent on the interference 
terms between partial waves l-1 and l+1.

2)  We can related β measured experimentally to the radial part of the ionization matrix 
elements, and might therefore hope to determine these quantities from experiment.



c&z - multi-electron case
Cooper & Zare also showed that this equation is applicable to a many electron system 
and they used this result to explain the surprising results of Hall & Siegel from O- 
photodetachment experiments.
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Figure 1 The photoelectron angular distribution (PAD) following the photodetach-
ment of O− at ∼2.5 eV, showing maximum intensity perpendicular to the polarization
vector of the ionizing light. The data are taken from References 22 and 23.

sensitivity to spatial changes in molecular systems. These ideas are elaborated in
this review.

Over the years, there have been various theoretical developments, but Equation
1 always holds, even outside the electric dipole approximation, and only its lim-
its change. Theoreticians have therefore sought to find appropriate expressions for
the continuum wavefunctions and for the relationship between the BLM parameters
and the magnitudes and phases of the radial dipole matrix elements that connect
the ionized level to the continuum (see Section 2.1). This activity originated soon
after the formulation of quantum mechanics, when hydrogenic systems were con-
sidered (24, 25), and over the years increasingly more complicated systems (23,
26–29) and ionization schemes (30–34) have been considered. The photoelec-
tron partial waves, which are appropriately labeled by orbital angular momentum
quantum numbers for atoms, can be expressed conveniently in terms of symme-
try in the molecular case (35). As well as formulating the problem, a number of
methods have been developed for the numerical calculation of the magnitudes and
phases of the radial dipole matrix elements, thereby allowing the prediction of
PADs in specific situations. Three main methods have been used for molecules:
ab initio (32), multichannel quantum defect theory (36, 36a), and multiple

A
nn

u.
 R

ev
. P

hy
s. 

C
he

m
. 2

00
3.

54
:3

97
-4

24
. D

ow
nl

oa
de

d 
fr

om
 a

rjo
ur

na
ls

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f N

ot
tin

gh
am

 U
K

 o
n 

02
/1

6/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Reid, Ann. Rev. Phys. Chem., 54 397 2003

E

Polar 
plot

θ



c&z - multi-electron case
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Numerical calculations 
agreed well with the 
experimental data.

The difference from the 
‘classical’ dipole cos2θ 
result is due to the 
interference of the s and d 
partial waves populated in 
this case.

O-

H-



c&z - multi-electron case
We can visualize this result just by considering interference between an s and d wave.
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δ

Although there are other factors which go into β, this illustrates why the PAD is so sensitive 
to the phase shifts - it is the interference due to these phase shifts which primarily 
determines the shape of the PAD.



atomic PAD examples

Hansen et al, Phys Rev A, 21 222 1980

Li Na

Duncanson et al, Phys Rev Lett, 37 987 1976

These don’t look so interesting... if l is a good quantum number for the bound state, 
and during ionization, then the ejected electron has only two partial wave components 
according to lf=li±1.

Also, as we’ve already seen, for a single photon event we can only observe PADs of the 
form 
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atomic PADs - general form
What other tricks can we play to get more information from the PADs...?

Firstly, we can consider obtaining higher-order terms in the angular distribution.

The generalized for of the PAD can be written (based on symmetry) as an expansion in 
spherical harmonics:
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Lmax=2n

Number of photon absorbed, 
determines maximum anisotropy 
in lab frame.

Depends on geometry of 
experiment - can only have terms 
M=0 for cylindrically symmetric 
cases.

Generalized form of the 
anisotropy parameter, we will 
see how this can be calculated 
later.



atomic PADs - general form

Revisit the sodium example from before.  In this 
case the ionization is via 2 photon absorption.  
The angle between the first and second laser 
polarization is varied to break cylindrical 
symmetry, hence we can now have M≠0.

We can think about this as an alignment effect - 
the alignment in the ionization frame defined by 
the second laser is not cylindrically symmetric, 
and this changes the terms allowed in the PAD.

Duncanson et al, Phys Rev Lett, 37 987 1976



atomic PADs - general form
These types of measurement can provide enough information to obtain the radial part (the 
magnitudes and phases) of the ionization matrix elements.  This provides a ‘complete’ 
description of the ionization.  The previous example was analysed to yield values rs/rd = 2 
and cos(δ0-δ2) = 1.

We could consider mapping the ionization matrix elements as a function of photoelectron 
energy, this shows the ‘structure’ of the ionization continuum - it is not flat as we often like 
to think when interpreting data!

Becker, J. Elec. Spec., 96 105 1998

Mg, 1-photon 
ionization



molecular photoionization

What about molecules...?

The situation is more interesting (i.e. more 
complicated!).

2 main reasons:
1)  Molecular orbitals not generally described by a 

single value of l.
2)  Short-range, non-Coulombic, potential allows 

for l-changing scattering of outgoing electron.

Both of these boil down to the same point: 
l is not a good quantum number at short 
range.

Hence we expect more scattering channels.

been used to provide a unified description of the ionization
continuum of an atom.15–22 Because the ionic potential under
which the photoelectron moves is a central field within the
independent electron approximation, the partial-wave chan-
nels, each denoted by a definite electronic orbital angular
momentum l , form a complete set of independent ionization
channels in atomic photoionization. Consequently, the phase
difference between dipole-moment matrix elements for dif-
ferent partial-wave channels remains the same for photoion-
ization processes from different electronic states of an atom.
The phase difference is in essence a characteristic of the
ionization continuum of an atom, not the atomic energy level
from which photoionization occurs.

When the photoelectron is far from the ion core, whether
the ion core is atomic or molecular, it moves principally
under the influence of the Coulombic potential because of
the charge on the ion core �see Fig. 1�.23 This region of the
configuration space where the Coulombic potential domi-
nates the photoelectron motion is designated as the asymp-
totic region. Because of the central nature of the Coulombic
potential, the partial-wave description of the ionization con-
tinuum is appropriate in the asymptotic region. On the other
hand, the photoelectron feels the nature of the ionic core
when it is near the core, which we call the ion-core region.24

The dynamics of the photoelectron in this region is what
differentiates the atomic and the molecular ionization con-
tinua. When the ion core is atomic, the photoelectron moves
under the central potential within the independent electron
approximation, although the potential is different from the
Coulombic one because of the shielding caused by the pres-
ence of other electrons. When the ion core is molecular, the
potential under which the photoelectron moves is noncentral
even in the independent electron approximation, and the de-
scription of the ionization continuum based on partial waves
with definite l is not appropriate in the ion-core region.

The separation of the electronic configuration space into
the ion-core region and the asymptotic region is justified
because any multipolar potential that the photoelectron expe-
riences falls much faster with distance than the Coulombic
potential. The multipolar interaction can thus be considered
to be short range as long as the ion-core region is large
enough to encompass a region of the photoelectron configu-
ration space where the bulk of multipolar interactions occur.
Because the ion-core region should be large, however, the
interaction between the photoelectron and the ion-core is not
uniform even inside the ion-core region, and the interaction
can be classified into two distinct types depending on the
distance between the photoelectron and the ion core.25,26

When the photoelectron is inside the ion-core region but is
outside the perimeter of the bound molecular orbitals of the
ion core, the interaction between the photoelectron and the
ion core can be viewed roughly as that between the photo-
electron and the multipoles located at the center of mass of
the ion. We call this region of the configuration space the
multipole-moment-interaction region. When the photoelec-
tron is inside the perimeter of the bound molecular orbitals,
on the other hand, the interaction can no longer be viewed as
that of the photoelectron and the multipole. Instead, the ex-
change interaction between the photoelectron and the bound
electrons in the core dominates the motion of the photoelec-
tron. This region of the configuration space is designated as
the electron-exchange-interaction region.

In this paper, we present a theoretical formalism for the
quantum-state-specific PADs from the direct photoionization
of a diatomic molecule based on the quantum scattering
theory formalism and angular momentum coupling algebra.
Unlike the partial-wave formalism that was the basis of our
previous work,11,27 the present formalism treats explicitly the
mixing between different l partial waves in the ion-core re-
gion, and it thus fully incorporates the molecular nature of
the problem within the independent electron approximation.
The resulting expressions clearly show the commonality be-
tween different photoionization processes and provide the
relationship between the dipole-moment matrix elements that
couples different ionizing states to the same ionization con-
tinuum. We note that most of the theoretical elements that
form the basis of the present article have already appeared in
the literature. The scattering theory formalism used in this
article has been extensively developed to explain atomic Ry-
dberg spectroscopy and photoionization by Seaton and
co-workers28 in the framework of the multichannel quantum
defect theory �MQDT�. MQDT has subsequently been
adapted to molecular problems through the pioneering efforts
of Fano, Jungen, Greene, and co-workers.23,24,26,29 The angu-
lar momentum coupling expressions that appear in this ar-
ticle are, on the other hand, mostly adapted from our previ-
ous work11,27 and that of McKoy and co-workers.30 The
present formalism is unique in its coupling of these two theo-
retical machineries that allows for a unified description of the
direct photoionization of a molecule within the independent
electron approximation.

Because many of the dynamical parameters that appear
in this formalism pertain directly to the ionization continuum

FIG. 1. A schematic illustration of the photoionization of a diatomic mol-
ecule. In the figure r0 designates a radial distance from the center of mass of
the ion core to a �fictitious� surface that divides the ion-core region and the
asymptotic region.
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Coulombic Non-coulombic... but can describe as Coulombic 
(long-range) part plus short range part
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molecular photoionization
Recall we had a similar situation when describing the radial wavefunctions in scattering 
theory...

So, as well as the radial part of the wavefunction having no analytic solution at short 
range, we have to deal with the angular momentum quantum numbers being scrambled. 



molecular photoionization
As before we are saved by appeal to the asymptotic solution, here l is good so we can 
apply essentially the same methodology as for the atomic case.

been used to provide a unified description of the ionization
continuum of an atom.15–22 Because the ionic potential under
which the photoelectron moves is a central field within the
independent electron approximation, the partial-wave chan-
nels, each denoted by a definite electronic orbital angular
momentum l , form a complete set of independent ionization
channels in atomic photoionization. Consequently, the phase
difference between dipole-moment matrix elements for dif-
ferent partial-wave channels remains the same for photoion-
ization processes from different electronic states of an atom.
The phase difference is in essence a characteristic of the
ionization continuum of an atom, not the atomic energy level
from which photoionization occurs.

When the photoelectron is far from the ion core, whether
the ion core is atomic or molecular, it moves principally
under the influence of the Coulombic potential because of
the charge on the ion core �see Fig. 1�.23 This region of the
configuration space where the Coulombic potential domi-
nates the photoelectron motion is designated as the asymp-
totic region. Because of the central nature of the Coulombic
potential, the partial-wave description of the ionization con-
tinuum is appropriate in the asymptotic region. On the other
hand, the photoelectron feels the nature of the ionic core
when it is near the core, which we call the ion-core region.24

The dynamics of the photoelectron in this region is what
differentiates the atomic and the molecular ionization con-
tinua. When the ion core is atomic, the photoelectron moves
under the central potential within the independent electron
approximation, although the potential is different from the
Coulombic one because of the shielding caused by the pres-
ence of other electrons. When the ion core is molecular, the
potential under which the photoelectron moves is noncentral
even in the independent electron approximation, and the de-
scription of the ionization continuum based on partial waves
with definite l is not appropriate in the ion-core region.

The separation of the electronic configuration space into
the ion-core region and the asymptotic region is justified
because any multipolar potential that the photoelectron expe-
riences falls much faster with distance than the Coulombic
potential. The multipolar interaction can thus be considered
to be short range as long as the ion-core region is large
enough to encompass a region of the photoelectron configu-
ration space where the bulk of multipolar interactions occur.
Because the ion-core region should be large, however, the
interaction between the photoelectron and the ion-core is not
uniform even inside the ion-core region, and the interaction
can be classified into two distinct types depending on the
distance between the photoelectron and the ion core.25,26

When the photoelectron is inside the ion-core region but is
outside the perimeter of the bound molecular orbitals of the
ion core, the interaction between the photoelectron and the
ion core can be viewed roughly as that between the photo-
electron and the multipoles located at the center of mass of
the ion. We call this region of the configuration space the
multipole-moment-interaction region. When the photoelec-
tron is inside the perimeter of the bound molecular orbitals,
on the other hand, the interaction can no longer be viewed as
that of the photoelectron and the multipole. Instead, the ex-
change interaction between the photoelectron and the bound
electrons in the core dominates the motion of the photoelec-
tron. This region of the configuration space is designated as
the electron-exchange-interaction region.

In this paper, we present a theoretical formalism for the
quantum-state-specific PADs from the direct photoionization
of a diatomic molecule based on the quantum scattering
theory formalism and angular momentum coupling algebra.
Unlike the partial-wave formalism that was the basis of our
previous work,11,27 the present formalism treats explicitly the
mixing between different l partial waves in the ion-core re-
gion, and it thus fully incorporates the molecular nature of
the problem within the independent electron approximation.
The resulting expressions clearly show the commonality be-
tween different photoionization processes and provide the
relationship between the dipole-moment matrix elements that
couples different ionizing states to the same ionization con-
tinuum. We note that most of the theoretical elements that
form the basis of the present article have already appeared in
the literature. The scattering theory formalism used in this
article has been extensively developed to explain atomic Ry-
dberg spectroscopy and photoionization by Seaton and
co-workers28 in the framework of the multichannel quantum
defect theory �MQDT�. MQDT has subsequently been
adapted to molecular problems through the pioneering efforts
of Fano, Jungen, Greene, and co-workers.23,24,26,29 The angu-
lar momentum coupling expressions that appear in this ar-
ticle are, on the other hand, mostly adapted from our previ-
ous work11,27 and that of McKoy and co-workers.30 The
present formalism is unique in its coupling of these two theo-
retical machineries that allows for a unified description of the
direct photoionization of a molecule within the independent
electron approximation.

Because many of the dynamical parameters that appear
in this formalism pertain directly to the ionization continuum

FIG. 1. A schematic illustration of the photoionization of a diatomic mol-
ecule. In the figure r0 designates a radial distance from the center of mass of
the ion core to a �fictitious� surface that divides the ion-core region and the
asymptotic region.
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Short-range region - 
l-mixing/scattering.

Asymptotic 
region, no further 
scattering occurs 
here.
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In the molecular case we also have more angular momenta to couple, and the lab frame 
(defined by the laser polarization) and molecular frame (defined by the symmetry or 
molecular axis) cannot be assumed to be coincident (see also Hund’s cases from last 
week).
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Following essentially the same methodology as the atomic case, we can rewrite this in 
terms of the neutral, ion and photoelectron wavefunctions.

We will not follow a complete derivation here, but skip to the result...

[See further reading at end of talk for published examples of such derivations]

d = 〈Ψ+; ψe|µ̂.E|Ψi〉

I(θ, φ) = 〈Ψ+; ψe|µ̂.E|Ψi〉〈Ψi|µ̂.E|Ψ+; ψe〉

I(θ, φ) = |〈Ψ+; ψe|µ̂.E|Ψi〉|2

〈Ψf |µ̂.E|Ψi〉 ≡ 〈ψe|µ̂.E|Ψi〉

µ.E ∝ r.z = rC1
0 (θ, φ)

µ.E = eEr

√
4π

3
Y1,0(θ, φ)

|Ψi〉 = χnl′(r)|l′m′〉

|Ψf 〉 = 4π
∑
l,m

ile−iδlY ∗
lm(k̂)Ylm(r̂)χkl(r) =

∑
l,m

AlmYlm(r̂)χkl(r) =
∑
l,m

Almχkl(r)|lm〉

〈Ψf |rY10(r̂)|Ψi〉 =
∑
l,m

Alm〈χkl(r)|r|χnl′(r)〉〈lm|Y10(r̂)|l′m′〉

〈χkl(r)|r|χnl′(r)〉 =
ˆ

χ∗
kl(r)rχnl′(r)dr = rl

Recall that we’re interested in finding the ionization matrix element in terms of molecular 
properties.



ˆ
I(θ) sin(θ)dθ = σt

I(θ) =
σt

4π
[1 + βP2(cos θ)]

β =
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

(2l + 1)[lr2l−1 + (l + 1)r2l+1]

µ.E ∝ r.ê = rC1
q (θ, φ)

C1
q (θ, φ) ≡ Y1,q(θ, φ)

ψe = Y00 + Y20e
−iδ

I(θ, φ) =
∑
L

∑
M

βLMYLM (θ, φ)

I(θ, φ) =
∑
l,l′

∑
m,m′

∑
λ,λ′

γlmλ,l′m′λ′ rlλrl′λ′ cos(ηlλ − ηl′λ′)Ylm(θ, φ)Y ∗
l′m′(θ, φ)

βLM =
∑
l,l′

∑
m,m′

∑
λ,λ′

(−1)m
(

l l′ L
m −m′ M

)(
l l′ L
0 0 0

)

x γlmλ,l′m′λ′rlλrl′λ′ cos(ηlλ − ηl′λ′)

βLM = (2L+ 1)1/2
∑
P

(−1)P
(

1 1 P
p −p 0

)
e−pe

∗
−p

x
∑
q,q′

(−1)q
′
(

1 1 P
q −q′ q′ − q

)
DP

(q−q′),0(φ, θ, χ)

x
∑
l,l′

∑
λ,λ′

(−1)λ
′
(2l + 1)1/2(2l′ + 1)1/2

(
l l′ L
λ −λ′ M

)(
l l′ L
0 0 0

)

x (−i)l
′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

Sum over lab and 
molecular frame 
projections of 
photoelectron ang. 
mom.

Geometrical terms

Dynamical terms

We can write the final result in a very general form which hides much of the detail but 
emphasizes the structure of the equations.  This contains two main contributions: the 
geometrical and dynamical parameters which relate to the angular and radial parts of 
the problem respectively.

molecular photoionization
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ˆ
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I(θ) =
σt

4π
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β =
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(2l + 1)[lr2l−1 + (l + 1)r2l+1]

µ.E ∝ r.ê = rC1
q (θ, φ)

C1
q (θ, φ) ≡ Y1,q(θ, φ)

ψe = Y00 + Y20e
−iδ

I(θ, φ) =
∑
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∑
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∑
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)(
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∑
P

(−1)P
(

1 1 P
p −p 0

)
e−pe

∗
−p

x
∑
q,q′
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′
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(
l l′ L
λ −λ′ M

)(
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0 0 0

)

x (−i)l
′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

ˆ
I(θ) sin(θ)dθ = σt

I(θ) =
σt

4π
[1 + βP2(cos θ)]

β =
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

(2l + 1)[lr2l−1 + (l + 1)r2l+1]

µ.E ∝ r.ê = rC1
q (θ, φ)

C1
q (θ, φ) ≡ Y1,q(θ, φ)

ψe = Y00 + Y20e
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I(θ, φ) =
∑
L

∑
M

βLMYLM (θ, φ)

I(θ, φ) =
∑
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∑
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∑
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γlmλ,l′m′λ′ rlλrl′λ′ cos(ηlλ − ηl′λ′)Ylm(θ, φ)Y ∗
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βLM =
∑
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∑
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(
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∑
P
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∗
−p

x
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(
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x
∑
l,l′

∑
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(−1)λ
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(
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λ −λ′ M

)(
l l′ L
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)

x (−i)l
′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

Comparing the previous result to the general form

Gives:

Total phase for l, λ 
scattering channel.

Radial matrix 
elements.

These terms couple YlmY*
l′m′ into 

the resultant YLM.
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The radial matrix elements are now of the form (assuming Born-Oppenheimer approx.):

βLM = (2L+ 1)1/2
∑
P

(−1)P
(

1 1 P
p −p 0

)
e−pe

∗
−p

x
∑
K

(2K + 1)1/2
(

P K L
0 −Q M

)
AK,−Q

x
∑
q,q′

(−1)q
′
(

1 1 P
q −q′ q′ − q

)(
P K L

q − q′ q′ − q 0

)

x
∑
l,l′

∑
λ,λ′

(−1)λ
′
(2l + 1)1/2(2l′ + 1)1/2

(
l l′ L
λ −λ′ q′ − q

)(
l l′ L
0 0 0

)

x (−i)l
′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

rlλ =

ˆ
dRχνα+

(R)〈ψα+
(r; R); ψlλ(r; R)|

∑
s

rsY1q|ψαi
(r; R)〉χναi

(R)

Vibrational wavefunctions.

Electronic part at fixed R, 
for all electrons s and the 
qth component of the dipole 
operator.Internuclear coordinates.

Index labels vibrational 
states υ and electronic 
states α.

As for the atomic case this must be evaluated numerically, or determined from 
experimental measurements.
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The exact form of the geometrical parameters will depend on the problem at hand.  For 
simplicity we will look at the molecular frame result and, hence, ignore molecular rotations.

This gives:

ˆ
I(θ) sin(θ)dθ = σt

I(θ) =
σt

4π
[1 + βP2(cos θ)]

β =
l(l − 1)r2l−1 + (l + 1)(l + 2)r2l+1 − 6l(l + 1)rl+1rl−1 cos(δl+1 − δl−1)

(2l + 1)[lr2l−1 + (l + 1)r2l+1]

µ.E ∝ r.ê = rC1
q (θ, φ)

C1
q (θ, φ) ≡ Y1,q(θ, φ)

ψe = Y00 + Y20e
−iδ

I(θ, φ) =
∑
L

∑
M

βLMYLM (θ, φ)

I(θ, φ) =
∑
l,l′

∑
m,m′

∑
λ,λ′

γlmλ,l′m′λ′ rlλrl′λ′ cos(ηlλ − ηl′λ′)Ylm(θ, φ)Y ∗
l′m′(θ, φ)

βLM =
∑
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∑
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∑
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(

l l′ L
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)(
l l′ L
0 0 0

)
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∑
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(
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)
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∗
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x
∑
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(−1)q
′
(

1 1 P
q −q′ q′ − q

)
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x
∑
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)
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′−lrlλrl′λ′ei(ηlλ−ηl′λ′ )

Electric field in lab frame. Electric field projected 
into molecular frame.

Electronic angular momenta  
coupling in molecular frame.

Radial matrix elements and 
interference terms.



mined by analyzing the laboratory frame photoion polar
angle distribution with respect to the light propagation axis,
according to the expression

I��� = I0�1 −
�R

2
P2�cos ��� . �6�

We note that when the complete angular distribution
I��e ,�e ,�� is considered �Eq. �2��, the �R asymmetry param-
eter may also be obtained as

�R =

�
0

�

F20 sin� d�

�
0

�

F00 sin� d�

. �7�

For PI of NO �reaction given in Eq. �1�� at a given photon
excitation energy, we measure identical values of the �R
asymmetry parameter for the two main KER regions dis-
cussed in Sec. IV: the peak ranging from 8.5 to 11 eV, and
the broad structure extending from 11.5 to 20 eV where
NO2+ repulsive states are expected to undergo fast dissocia-
tion. This strongly supports the validity of the AR approxi-
mation for K-shell ionization of NO, as previously found for

FIG. 7. �Color online� Measured �a� and computed �b� N�1s�−1 and O�1s�−1 I���e ,�e� MFPADs at h�=418.3 eV and 550.5 eV, for a
molecule aligned parallel ��=0° �, perpendicular ��=90° �, at the magic angle ��=54.7° � with respect to linearly polarized light, and for a
molecule aligned perpendicular ��=90° � to the propagation axis of circularly polarized light �h= +1�. The molecular axis is vertical with the
N end on top as shown. Theory and experiment are normalized such that the total PI cross sections for each reaction are identical.

LI et al. PHYSICAL REVIEW A 75, 052718 �2007�

052718-10

W. B. Li, R. Montuoro, J. C. Houver, L. Journel, A. Haouas, M. Simon, R. R. Lucchese and D. Dowek, Physical 
Review A (Atomic, Molecular, and Optical Physics), 75 052718 2007.

molecular photoionization
In the molecular frame βLM terms are limited only by the partial waves present and 
Lmax=2lmax.  Hence the MF-PAD can be very complex.



molecular photoionization
The lab frame result can be considered as the alignment-averaged molecular frame 
results.

βLM = (2L+ 1)1/2
∑
P

(−1)P
(

1 1 P
p −p 0

)
e−pe

∗
−p

x
∑
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(
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)
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x
∑
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(−1)q
′
(
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rlλ =
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∑
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rsY1q|ψαi
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(R)

Alignment averaging.
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(
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dRχνα+

(R)〈ψα+
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∑
s

rsY1q|ψαi
(r; R)〉χναi

(R)

Here              are the axis distribution moments, which describe rotational angular 
momentum coupling and alignment.
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The lab frame result can thus be considered as a smearing or blurring of the true 
molecular frame result.

Underwood and Reid, J. Chem. Phys., 113 1067 2000

experiment would be sensitive only to the vibrationally av-
eraged electric dipole transition moments which would then
be constant at all times. Any evolution therefore of the LF
PAD must therefore reflect a change in the LF axis distribu-
tion described by the axis polarization moments, AKQ . This
allowed the development of a theoretical framework in
which the evolution of the moments of the axis distribution
could be extracted from LF PADs taken at various pump–
probe time delays.24 Such information can provide detailed
insight into vibration–rotation coupling within polyatomic
molecules12 and also an alternative detection method for ro-
tational coherence spectroscopy.24 If the ensemble is probed
on the �femtosecond� time scale of vibrational motion, the
molecular orientation is essentially fixed throughout the ex-
periment �i.e., at all time delays�, and any evolution of the
PAD will reflect the dependence of the dynamical parameters
upon the internuclear coordinates and electronic nature of the
state being ionized. Any change in the PAD is therefore
caused by a time dependence of the dynamical coefficients

aLKQ . In both cases, electronically nonadiabatic processes
affecting the state being ionized will give rise to a time de-
pendence of the aLKQ parameters.21,22 In the next section we
illustrate the differences between PADs measured in the LF
and MF, and also investigate the effect of the symmetry of
the orbital undergoing ionization upon the observed PADs.

B. Illustration

In order to illustrate the connection between the LF and
MF PADs we consider the ionization of a C3v molecule. In
Figs. 1–4 we present photoelectron angular distributions cal-
culated using Eq. �2.7� for the lab frame and Eq. �2.9� for the
molecular frame.29,30,32 As discussed by Reid and Powis we
define h���� for C3v symmetry.30 Group theoretical consid-
erations dictate that for an a1 orbital, ionization may occur
via a parallel transition in which the continuum orbital of the
photoelectron belongs to the A1 irreducible representation, or
via a perpendicular transition in which the continuum orbital
of the photoelectron belongs to the doubly degenerate E ir-
reducible representation. Hence for each partial wave there
are five symmetrized dipole matrix elements, D ���l

A1 (0) and
D ���l

E� (�1). Conversely, for an a2 orbital, ionization may
only occur via a perpendicular transition in which the con-
tinuum orbital of the photoelectron belongs to the doubly
degenerate E irreducible representation, described by the
four symmetrized dipole matrix elements, D ���l

E� (�1). In Ap-

FIG. 1. Molecular frame PADs for single photon ionization of a1 and a2
symmetry orbitals of a C3v molecule for light linearly polarized along dif-
ferent axes of the molecule �indicated in parentheses�. Note that no photo-
ionization can occur from the a2 orbital for light polarized along the z-axis
�molecular symmetry axis�.

FIG. 2. Lab frame PADs for single photon ionization of a1 and a2 symme-
try orbitals of a C3v molecule for a distribution of molecular axes with
A20� /A00� �2/(5�5) in the PF. The z-axis lies along the electric vector of the
linearly polarized ionization light. � designates the PAD calculated with the
polarization vectors of the preparation and ionization light parallel ���0°�,
� designates the PAD calculated with the polarization vector of the ioniza-
tion light perpendicular to the polarization direction of the preparation light
���90°�.

TABLE I. Dynamical parameters.

� l ��� T ���l
�� (q) �hlq

��

A1 1 0 1.0 ��/4
A1 2 0 1.0 0.0
E 1 1 1/& �
E 2 1 1/2 ��/2
E 2 2 1/2 ��/2
E 3 2 1/2 0.0
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experiment would be sensitive only to the vibrationally av-
eraged electric dipole transition moments which would then
be constant at all times. Any evolution therefore of the LF
PAD must therefore reflect a change in the LF axis distribu-
tion described by the axis polarization moments, AKQ . This
allowed the development of a theoretical framework in
which the evolution of the moments of the axis distribution
could be extracted from LF PADs taken at various pump–
probe time delays.24 Such information can provide detailed
insight into vibration–rotation coupling within polyatomic
molecules12 and also an alternative detection method for ro-
tational coherence spectroscopy.24 If the ensemble is probed
on the �femtosecond� time scale of vibrational motion, the
molecular orientation is essentially fixed throughout the ex-
periment �i.e., at all time delays�, and any evolution of the
PAD will reflect the dependence of the dynamical parameters
upon the internuclear coordinates and electronic nature of the
state being ionized. Any change in the PAD is therefore
caused by a time dependence of the dynamical coefficients

aLKQ . In both cases, electronically nonadiabatic processes
affecting the state being ionized will give rise to a time de-
pendence of the aLKQ parameters.21,22 In the next section we
illustrate the differences between PADs measured in the LF
and MF, and also investigate the effect of the symmetry of
the orbital undergoing ionization upon the observed PADs.

B. Illustration

In order to illustrate the connection between the LF and
MF PADs we consider the ionization of a C3v molecule. In
Figs. 1–4 we present photoelectron angular distributions cal-
culated using Eq. �2.7� for the lab frame and Eq. �2.9� for the
molecular frame.29,30,32 As discussed by Reid and Powis we
define h���� for C3v symmetry.30 Group theoretical consid-
erations dictate that for an a1 orbital, ionization may occur
via a parallel transition in which the continuum orbital of the
photoelectron belongs to the A1 irreducible representation, or
via a perpendicular transition in which the continuum orbital
of the photoelectron belongs to the doubly degenerate E ir-
reducible representation. Hence for each partial wave there
are five symmetrized dipole matrix elements, D ���l

A1 (0) and
D ���l

E� (�1). Conversely, for an a2 orbital, ionization may
only occur via a perpendicular transition in which the con-
tinuum orbital of the photoelectron belongs to the doubly
degenerate E irreducible representation, described by the
four symmetrized dipole matrix elements, D ���l

E� (�1). In Ap-

FIG. 1. Molecular frame PADs for single photon ionization of a1 and a2
symmetry orbitals of a C3v molecule for light linearly polarized along dif-
ferent axes of the molecule �indicated in parentheses�. Note that no photo-
ionization can occur from the a2 orbital for light polarized along the z-axis
�molecular symmetry axis�.

FIG. 2. Lab frame PADs for single photon ionization of a1 and a2 symme-
try orbitals of a C3v molecule for a distribution of molecular axes with
A20� /A00� �2/(5�5) in the PF. The z-axis lies along the electric vector of the
linearly polarized ionization light. � designates the PAD calculated with the
polarization vectors of the preparation and ionization light parallel ���0°�,
� designates the PAD calculated with the polarization vector of the ioniza-
tion light perpendicular to the polarization direction of the preparation light
���90°�.

TABLE I. Dynamical parameters.

� l ��� T ���l
�� (q) �hlq

��

A1 1 0 1.0 ��/4
A1 2 0 1.0 0.0
E 1 1 1/& �
E 2 1 1/2 ��/2
E 2 2 1/2 ��/2
E 3 2 1/2 0.0
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pendix B we use the independent electron approximation29 to
find the relationships between the different D ���l

E� (�1) and so
reduce the number of independent parameters in our calcu-
lations.

The symmetry coefficients specific to the C3v point
group are given in Appendix A. The symmetry adapted tran-
sition dipole matrix elements in Eq. �2.8� are in general com-
plex, and include explicitly the scattering phase shift, �hlq

�� ,
which arises due to the nonspherical nature of the molecular
potential. We separate out here the complex phase and real
amplitude for convenience. Additionally the scattering phase
shift is combined with the Coulomb phase shift, � l , intro-
duced in Eq. �2.1�,

e�i� lDhl
���q ��e�i�hlq

��
Thl

���q �, �hlq
�� �� l��hlq

�� . �3.2�

As discussed in Appendix B, for ionization of an a1 or an a2
orbital in the independent electron approximation, the sym-
metrized radial dipole matrix elements in Eq. �2.8� may be
expressed in terms of the independent dynamical parameters
D ���l

A (0) and D ���l
E (1) only, with corresponding real transi-

tion amplitudes T ���l
A1 (0) and T ���l

E (1) and phases � ���l
E and

� ���l
A1 . Relationships �B7� and �B8� are then used to derive the

nonindependent symmetrized radial dipole matrix elements.
For the calculations presented in this article, we chose the set
of parameters in Table I �all others being set as zero�.

By using the same set of parameters for the two symme-
tries of the orbital undergoing ionization, we have assumed
that the differences in the ionization dynamics arise solely
due to the differing symmetries of the bound molecular or-
bital. This assumption may provide a good first approxima-

tion for an experiment in which both orbitals are ionized to
form the same ion electronic state. Furthermore in these cal-
culations we have assumed that the ion vibrational state is
totally symmetric. Whereas for ionization of the a1 orbital,
partial waves with all values of l and ��� are possible, exami-
nation of the symmetry adapted spherical harmonic decom-
position of the a2 orbital �see Appendix B� reveals that l i
�3 and �� i��3 and hence perpendicular ionization of this
state will produce photoelectron partial waves with l�2 �d-
waves� and ����2 only.

In Fig. 1 we show calculated MF PADs for ionization of
an a1 orbital and an a2 orbital. Here we show how the an-
gular distribution varies depending on where the polarization
vector of the ionizing light points with respect to the molecu-
lar frame. It should be noted that in a laboratory frame mea-
surement this will not be a fixed direction and so an approxi-
mation to a lab frame PAD can be imagined as a coherent
average over the three possible mutually perpendicular direc-
tions of the polarization vector direction with appropriate
weightings determined by the lab frame axis distribution.

In Figs. 2–4 we show the effect of ionizing an increas-
ingly aligned ensemble of molecules, i.e., distributions that
tend towards an ensemble of molecules with their axes fixed
along one direction in space. We consider the case where the
axis alignment prior to ionization has been created through
n-photon absorption of linearly polarized light. In the weak
field limit, the rank of the highest nonzero axis moment is
given by Kmax�2n. The dipole nature of the photon means
that only moments in the expansion Eq. �2.4� with K even are
nonzero in the preparation frame �PF, defined with the z-axis
along the linear polarization direction of the light bringing

FIG. 3. As in Fig. 2 for a cos2 � distribution of molecular axes in the PF
(A20� /A00� �2/�5).

FIG. 4. As in Fig. 2 for a cos6 � distribution of molecular axes in the PF
�A20� /A00� �2�5/3, A40� /A00� �8/11, A60� /A00� �16/(33�13)�.
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nonindependent symmetrized radial dipole matrix elements.
For the calculations presented in this article, we chose the set
of parameters in Table I �all others being set as zero�.

By using the same set of parameters for the two symme-
tries of the orbital undergoing ionization, we have assumed
that the differences in the ionization dynamics arise solely
due to the differing symmetries of the bound molecular or-
bital. This assumption may provide a good first approxima-

tion for an experiment in which both orbitals are ionized to
form the same ion electronic state. Furthermore in these cal-
culations we have assumed that the ion vibrational state is
totally symmetric. Whereas for ionization of the a1 orbital,
partial waves with all values of l and ��� are possible, exami-
nation of the symmetry adapted spherical harmonic decom-
position of the a2 orbital �see Appendix B� reveals that l i
�3 and �� i��3 and hence perpendicular ionization of this
state will produce photoelectron partial waves with l�2 �d-
waves� and ����2 only.

In Fig. 1 we show calculated MF PADs for ionization of
an a1 orbital and an a2 orbital. Here we show how the an-
gular distribution varies depending on where the polarization
vector of the ionizing light points with respect to the molecu-
lar frame. It should be noted that in a laboratory frame mea-
surement this will not be a fixed direction and so an approxi-
mation to a lab frame PAD can be imagined as a coherent
average over the three possible mutually perpendicular direc-
tions of the polarization vector direction with appropriate
weightings determined by the lab frame axis distribution.

In Figs. 2–4 we show the effect of ionizing an increas-
ingly aligned ensemble of molecules, i.e., distributions that
tend towards an ensemble of molecules with their axes fixed
along one direction in space. We consider the case where the
axis alignment prior to ionization has been created through
n-photon absorption of linearly polarized light. In the weak
field limit, the rank of the highest nonzero axis moment is
given by Kmax�2n. The dipole nature of the photon means
that only moments in the expansion Eq. �2.4� with K even are
nonzero in the preparation frame �PF, defined with the z-axis
along the linear polarization direction of the light bringing

FIG. 3. As in Fig. 2 for a cos2 � distribution of molecular axes in the PF
(A20� /A00� �2/�5).

FIG. 4. As in Fig. 2 for a cos6 � distribution of molecular axes in the PF
�A20� /A00� �2�5/3, A40� /A00� �8/11, A60� /A00� �16/(33�13)�.
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experiment would be sensitive only to the vibrationally av-
eraged electric dipole transition moments which would then
be constant at all times. Any evolution therefore of the LF
PAD must therefore reflect a change in the LF axis distribu-
tion described by the axis polarization moments, AKQ . This
allowed the development of a theoretical framework in
which the evolution of the moments of the axis distribution
could be extracted from LF PADs taken at various pump–
probe time delays.24 Such information can provide detailed
insight into vibration–rotation coupling within polyatomic
molecules12 and also an alternative detection method for ro-
tational coherence spectroscopy.24 If the ensemble is probed
on the �femtosecond� time scale of vibrational motion, the
molecular orientation is essentially fixed throughout the ex-
periment �i.e., at all time delays�, and any evolution of the
PAD will reflect the dependence of the dynamical parameters
upon the internuclear coordinates and electronic nature of the
state being ionized. Any change in the PAD is therefore
caused by a time dependence of the dynamical coefficients

aLKQ . In both cases, electronically nonadiabatic processes
affecting the state being ionized will give rise to a time de-
pendence of the aLKQ parameters.21,22 In the next section we
illustrate the differences between PADs measured in the LF
and MF, and also investigate the effect of the symmetry of
the orbital undergoing ionization upon the observed PADs.

B. Illustration

In order to illustrate the connection between the LF and
MF PADs we consider the ionization of a C3v molecule. In
Figs. 1–4 we present photoelectron angular distributions cal-
culated using Eq. �2.7� for the lab frame and Eq. �2.9� for the
molecular frame.29,30,32 As discussed by Reid and Powis we
define h���� for C3v symmetry.30 Group theoretical consid-
erations dictate that for an a1 orbital, ionization may occur
via a parallel transition in which the continuum orbital of the
photoelectron belongs to the A1 irreducible representation, or
via a perpendicular transition in which the continuum orbital
of the photoelectron belongs to the doubly degenerate E ir-
reducible representation. Hence for each partial wave there
are five symmetrized dipole matrix elements, D ���l

A1 (0) and
D ���l

E� (�1). Conversely, for an a2 orbital, ionization may
only occur via a perpendicular transition in which the con-
tinuum orbital of the photoelectron belongs to the doubly
degenerate E irreducible representation, described by the
four symmetrized dipole matrix elements, D ���l

E� (�1). In Ap-

FIG. 1. Molecular frame PADs for single photon ionization of a1 and a2
symmetry orbitals of a C3v molecule for light linearly polarized along dif-
ferent axes of the molecule �indicated in parentheses�. Note that no photo-
ionization can occur from the a2 orbital for light polarized along the z-axis
�molecular symmetry axis�.

FIG. 2. Lab frame PADs for single photon ionization of a1 and a2 symme-
try orbitals of a C3v molecule for a distribution of molecular axes with
A20� /A00� �2/(5�5) in the PF. The z-axis lies along the electric vector of the
linearly polarized ionization light. � designates the PAD calculated with the
polarization vectors of the preparation and ionization light parallel ���0°�,
� designates the PAD calculated with the polarization vector of the ioniza-
tion light perpendicular to the polarization direction of the preparation light
���90°�.

TABLE I. Dynamical parameters.

� l ��� T ���l
�� (q) �hlq

��

A1 1 0 1.0 ��/4
A1 2 0 1.0 0.0
E 1 1 1/& �
E 2 1 1/2 ��/2
E 2 2 1/2 ��/2
E 3 2 1/2 0.0
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experiment would be sensitive only to the vibrationally av-
eraged electric dipole transition moments which would then
be constant at all times. Any evolution therefore of the LF
PAD must therefore reflect a change in the LF axis distribu-
tion described by the axis polarization moments, AKQ . This
allowed the development of a theoretical framework in
which the evolution of the moments of the axis distribution
could be extracted from LF PADs taken at various pump–
probe time delays.24 Such information can provide detailed
insight into vibration–rotation coupling within polyatomic
molecules12 and also an alternative detection method for ro-
tational coherence spectroscopy.24 If the ensemble is probed
on the �femtosecond� time scale of vibrational motion, the
molecular orientation is essentially fixed throughout the ex-
periment �i.e., at all time delays�, and any evolution of the
PAD will reflect the dependence of the dynamical parameters
upon the internuclear coordinates and electronic nature of the
state being ionized. Any change in the PAD is therefore
caused by a time dependence of the dynamical coefficients

aLKQ . In both cases, electronically nonadiabatic processes
affecting the state being ionized will give rise to a time de-
pendence of the aLKQ parameters.21,22 In the next section we
illustrate the differences between PADs measured in the LF
and MF, and also investigate the effect of the symmetry of
the orbital undergoing ionization upon the observed PADs.

B. Illustration

In order to illustrate the connection between the LF and
MF PADs we consider the ionization of a C3v molecule. In
Figs. 1–4 we present photoelectron angular distributions cal-
culated using Eq. �2.7� for the lab frame and Eq. �2.9� for the
molecular frame.29,30,32 As discussed by Reid and Powis we
define h���� for C3v symmetry.30 Group theoretical consid-
erations dictate that for an a1 orbital, ionization may occur
via a parallel transition in which the continuum orbital of the
photoelectron belongs to the A1 irreducible representation, or
via a perpendicular transition in which the continuum orbital
of the photoelectron belongs to the doubly degenerate E ir-
reducible representation. Hence for each partial wave there
are five symmetrized dipole matrix elements, D ���l

A1 (0) and
D ���l

E� (�1). Conversely, for an a2 orbital, ionization may
only occur via a perpendicular transition in which the con-
tinuum orbital of the photoelectron belongs to the doubly
degenerate E irreducible representation, described by the
four symmetrized dipole matrix elements, D ���l

E� (�1). In Ap-

FIG. 1. Molecular frame PADs for single photon ionization of a1 and a2
symmetry orbitals of a C3v molecule for light linearly polarized along dif-
ferent axes of the molecule �indicated in parentheses�. Note that no photo-
ionization can occur from the a2 orbital for light polarized along the z-axis
�molecular symmetry axis�.

FIG. 2. Lab frame PADs for single photon ionization of a1 and a2 symme-
try orbitals of a C3v molecule for a distribution of molecular axes with
A20� /A00� �2/(5�5) in the PF. The z-axis lies along the electric vector of the
linearly polarized ionization light. � designates the PAD calculated with the
polarization vectors of the preparation and ionization light parallel ���0°�,
� designates the PAD calculated with the polarization vector of the ioniza-
tion light perpendicular to the polarization direction of the preparation light
���90°�.

TABLE I. Dynamical parameters.

� l ��� T ���l
�� (q) �hlq

��

A1 1 0 1.0 ��/4
A1 2 0 1.0 0.0
E 1 1 1/& �
E 2 1 1/2 ��/2
E 2 2 1/2 ��/2
E 3 2 1/2 0.0
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pendix B we use the independent electron approximation29 to
find the relationships between the different D ���l

E� (�1) and so
reduce the number of independent parameters in our calcu-
lations.

The symmetry coefficients specific to the C3v point
group are given in Appendix A. The symmetry adapted tran-
sition dipole matrix elements in Eq. �2.8� are in general com-
plex, and include explicitly the scattering phase shift, �hlq

�� ,
which arises due to the nonspherical nature of the molecular
potential. We separate out here the complex phase and real
amplitude for convenience. Additionally the scattering phase
shift is combined with the Coulomb phase shift, � l , intro-
duced in Eq. �2.1�,

e�i� lDhl
���q ��e�i�hlq

��
Thl

���q �, �hlq
�� �� l��hlq

�� . �3.2�

As discussed in Appendix B, for ionization of an a1 or an a2
orbital in the independent electron approximation, the sym-
metrized radial dipole matrix elements in Eq. �2.8� may be
expressed in terms of the independent dynamical parameters
D ���l

A (0) and D ���l
E (1) only, with corresponding real transi-

tion amplitudes T ���l
A1 (0) and T ���l

E (1) and phases � ���l
E and

� ���l
A1 . Relationships �B7� and �B8� are then used to derive the

nonindependent symmetrized radial dipole matrix elements.
For the calculations presented in this article, we chose the set
of parameters in Table I �all others being set as zero�.

By using the same set of parameters for the two symme-
tries of the orbital undergoing ionization, we have assumed
that the differences in the ionization dynamics arise solely
due to the differing symmetries of the bound molecular or-
bital. This assumption may provide a good first approxima-

tion for an experiment in which both orbitals are ionized to
form the same ion electronic state. Furthermore in these cal-
culations we have assumed that the ion vibrational state is
totally symmetric. Whereas for ionization of the a1 orbital,
partial waves with all values of l and ��� are possible, exami-
nation of the symmetry adapted spherical harmonic decom-
position of the a2 orbital �see Appendix B� reveals that l i
�3 and �� i��3 and hence perpendicular ionization of this
state will produce photoelectron partial waves with l�2 �d-
waves� and ����2 only.

In Fig. 1 we show calculated MF PADs for ionization of
an a1 orbital and an a2 orbital. Here we show how the an-
gular distribution varies depending on where the polarization
vector of the ionizing light points with respect to the molecu-
lar frame. It should be noted that in a laboratory frame mea-
surement this will not be a fixed direction and so an approxi-
mation to a lab frame PAD can be imagined as a coherent
average over the three possible mutually perpendicular direc-
tions of the polarization vector direction with appropriate
weightings determined by the lab frame axis distribution.

In Figs. 2–4 we show the effect of ionizing an increas-
ingly aligned ensemble of molecules, i.e., distributions that
tend towards an ensemble of molecules with their axes fixed
along one direction in space. We consider the case where the
axis alignment prior to ionization has been created through
n-photon absorption of linearly polarized light. In the weak
field limit, the rank of the highest nonzero axis moment is
given by Kmax�2n. The dipole nature of the photon means
that only moments in the expansion Eq. �2.4� with K even are
nonzero in the preparation frame �PF, defined with the z-axis
along the linear polarization direction of the light bringing

FIG. 3. As in Fig. 2 for a cos2 � distribution of molecular axes in the PF
(A20� /A00� �2/�5).

FIG. 4. As in Fig. 2 for a cos6 � distribution of molecular axes in the PF
�A20� /A00� �2�5/3, A40� /A00� �8/11, A60� /A00� �16/(33�13)�.
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pendix B we use the independent electron approximation29 to
find the relationships between the different D ���l

E� (�1) and so
reduce the number of independent parameters in our calcu-
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nonindependent symmetrized radial dipole matrix elements.
For the calculations presented in this article, we chose the set
of parameters in Table I �all others being set as zero�.

By using the same set of parameters for the two symme-
tries of the orbital undergoing ionization, we have assumed
that the differences in the ionization dynamics arise solely
due to the differing symmetries of the bound molecular or-
bital. This assumption may provide a good first approxima-

tion for an experiment in which both orbitals are ionized to
form the same ion electronic state. Furthermore in these cal-
culations we have assumed that the ion vibrational state is
totally symmetric. Whereas for ionization of the a1 orbital,
partial waves with all values of l and ��� are possible, exami-
nation of the symmetry adapted spherical harmonic decom-
position of the a2 orbital �see Appendix B� reveals that l i
�3 and �� i��3 and hence perpendicular ionization of this
state will produce photoelectron partial waves with l�2 �d-
waves� and ����2 only.

In Fig. 1 we show calculated MF PADs for ionization of
an a1 orbital and an a2 orbital. Here we show how the an-
gular distribution varies depending on where the polarization
vector of the ionizing light points with respect to the molecu-
lar frame. It should be noted that in a laboratory frame mea-
surement this will not be a fixed direction and so an approxi-
mation to a lab frame PAD can be imagined as a coherent
average over the three possible mutually perpendicular direc-
tions of the polarization vector direction with appropriate
weightings determined by the lab frame axis distribution.

In Figs. 2–4 we show the effect of ionizing an increas-
ingly aligned ensemble of molecules, i.e., distributions that
tend towards an ensemble of molecules with their axes fixed
along one direction in space. We consider the case where the
axis alignment prior to ionization has been created through
n-photon absorption of linearly polarized light. In the weak
field limit, the rank of the highest nonzero axis moment is
given by Kmax�2n. The dipole nature of the photon means
that only moments in the expansion Eq. �2.4� with K even are
nonzero in the preparation frame �PF, defined with the z-axis
along the linear polarization direction of the light bringing

FIG. 3. As in Fig. 2 for a cos2 � distribution of molecular axes in the PF
(A20� /A00� �2/�5).

FIG. 4. As in Fig. 2 for a cos6 � distribution of molecular axes in the PF
�A20� /A00� �2�5/3, A40� /A00� �8/11, A60� /A00� �16/(33�13)�.
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use of PADs
We have seen that PADs are rather complex, but very sensitive to scattering phases.  
In this sense they can provide “complete” information about ionization, enabling the 
experimental determination of the radial matrix elements and scattering phases.

We can also consider using PADs as a probe of:
- Aligned axis distributions.
- Time-evolving axis distributions.
- Time-evolving systems.

Finally, because the scattering phase shifts contain all information about the short-range 
part of the scattering potential, the PAD could provide the necessary information to 
reconstruct this potential.



example - ammonia
32 11

Calc: 20=0.375, 40=0.055, 60=-0.034
Expt: 20=0.022, 40=-0.022, 60=-0.051

32 21
Calc: 20=-0.074, 40=0.063, 60=-0.029
Expt: 20=-0.100, 40=0.102, 60=-0.022

32 31
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 44
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 41
Calc: 20=-0.403, 40=0.175, 60=0.005
Expt: 20=-0.364, 40=0.161, 60=-0.025

32 54
Calc: 20=-0.368, 40=0.003, 60=0.003
Expt: 20=-0.420, 40=0.051, 60=0.008

32 51
Calc: 20=-0.299, 40=-0.068, 60=-0.000
Expt: 20=-0.288, 40=0.010, 60=-0.006

32 61
Calc: 20=0.022, 40=-0.021, 60=0.002
Expt: 20=0.000, 40=0.000, 60=0.000

32 64
Calc: 20=-0.201, 40=-0.126, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

32 71
Calc: 20=-0.144, 40=-0.141, 60=-0.011
Expt: 20=0.000, 40=0.000, 60=0.000

32 74
Calc: 20=0.244, 40=0.027, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,32)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
r =0 276 =63 587

32 11
Calc: 20=0.375, 40=0.055, 60=-0.034
Expt: 20=0.022, 40=-0.022, 60=-0.051

32 21
Calc: 20=-0.074, 40=0.063, 60=-0.029
Expt: 20=-0.100, 40=0.102, 60=-0.022

32 31
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 44
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 41
Calc: 20=-0.403, 40=0.175, 60=0.005
Expt: 20=-0.364, 40=0.161, 60=-0.025

32 54
Calc: 20=-0.368, 40=0.003, 60=0.003
Expt: 20=-0.420, 40=0.051, 60=0.008

32 51
Calc: 20=-0.299, 40=-0.068, 60=-0.000
Expt: 20=-0.288, 40=0.010, 60=-0.006

32 61
Calc: 20=0.022, 40=-0.021, 60=0.002
Expt: 20=0.000, 40=0.000, 60=0.000

32 64
Calc: 20=-0.201, 40=-0.126, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

32 71
Calc: 20=-0.144, 40=-0.141, 60=-0.011
Expt: 20=0.000, 40=0.000, 60=0.000

32 74
Calc: 20=0.244, 40=0.027, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,32)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
r =0 276 =63 587

32 11
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 21
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 31
Calc: 20=-0.114, 40=-0.183, 60=-0.011
Expt: 20=-0.066, 40=-0.165, 60=-0.012

32 11
Calc: 20=0.375, 40=0.055, 60=-0.034
Expt: 20=0.022, 40=-0.022, 60=-0.051

32 21
Calc: 20=-0.074, 40=0.063, 60=-0.029
Expt: 20=-0.100, 40=0.102, 60=-0.022

32 31
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 44
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 41
Calc: 20=-0.403, 40=0.175, 60=0.005
Expt: 20=-0.364, 40=0.161, 60=-0.025

32 54
Calc: 20=-0.368, 40=0.003, 60=0.003
Expt: 20=-0.420, 40=0.051, 60=0.008

32 51
Calc: 20=-0.299, 40=-0.068, 60=-0.000
Expt: 20=-0.288, 40=0.010, 60=-0.006

32 61
Calc: 20=0.022, 40=-0.021, 60=0.002
Expt: 20=0.000, 40=0.000, 60=0.000

32 64
Calc: 20=-0.201, 40=-0.126, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

32 71
Calc: 20=-0.144, 40=-0.141, 60=-0.011
Expt: 20=0.000, 40=0.000, 60=0.000

32 74
Calc: 20=0.244, 40=0.027, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,32)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
r =0 276 =63 587

32 11
Calc: 20=0.375, 40=0.055, 60=-0.034
Expt: 20=0.022, 40=-0.022, 60=-0.051

32 21
Calc: 20=-0.074, 40=0.063, 60=-0.029
Expt: 20=-0.100, 40=0.102, 60=-0.022

32 31
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 44
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 41
Calc: 20=-0.403, 40=0.175, 60=0.005
Expt: 20=-0.364, 40=0.161, 60=-0.025

32 54
Calc: 20=-0.368, 40=0.003, 60=0.003
Expt: 20=-0.420, 40=0.051, 60=0.008

32 51
Calc: 20=-0.299, 40=-0.068, 60=-0.000
Expt: 20=-0.288, 40=0.010, 60=-0.006

32 61
Calc: 20=0.022, 40=-0.021, 60=0.002
Expt: 20=0.000, 40=0.000, 60=0.000

32 64
Calc: 20=-0.201, 40=-0.126, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

32 71
Calc: 20=-0.144, 40=-0.141, 60=-0.011
Expt: 20=0.000, 40=0.000, 60=0.000

32 74
Calc: 20=0.244, 40=0.027, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,32)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
r =0 276 =63 587

32 11
Calc: 20=0.375, 40=0.055, 60=-0.034
Expt: 20=0.022, 40=-0.022, 60=-0.051

32 21
Calc: 20=-0.074, 40=0.063, 60=-0.029
Expt: 20=-0.100, 40=0.102, 60=-0.022

32 31
Calc: 20=-0.034, 40=-0.242, 60=-0.004
Expt: 20=-0.025, 40=-0.225, 60=0.023

32 44
Calc: 20=-0.428, 40=0.051, 60=-0.039
Expt: 20=-0.266, 40=0.012, 60=-0.100

32 41
Calc: 20=-0.403, 40=0.175, 60=0.005
Expt: 20=-0.364, 40=0.161, 60=-0.025

32 54
Calc: 20=-0.368, 40=0.003, 60=0.003
Expt: 20=-0.420, 40=0.051, 60=0.008

32 51
Calc: 20=-0.299, 40=-0.068, 60=-0.000
Expt: 20=-0.288, 40=0.010, 60=-0.006

32 61
Calc: 20=0.022, 40=-0.021, 60=0.002
Expt: 20=0.000, 40=0.000, 60=0.000

32 64
Calc: 20=-0.201, 40=-0.126, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

32 71
Calc: 20=-0.144, 40=-0.141, 60=-0.011
Expt: 20=0.000, 40=0.000, 60=0.000

32 74
Calc: 20=0.244, 40=0.027, 60=0.000
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,32)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
r =0 276 =63 587

(a) 11→32

11* 21(22) 41 54 5131(32)+44

20 11
Calc: 20=-0.284, 40=0.084, 60=-0.074
Expt: 20=-0.352, 40=0.098, 60=-0.028

20 22
Calc: 20=-0.007, 40=-0.150, 60=-0.054
Expt: 20=0.043, 40=-0.173, 60=-0.025

20 32
Calc: 20=-0.218, 40=0.043, 60=0.006
Expt: 20=-0.284, 40=0.070, 60=-0.014

20 42
Calc: 20=-0.378, 40=0.011, 60=-0.002
Expt: 20=-0.520, 40=0.151, 60=-0.047

20 41
Calc: 20=-0.370, 40=-0.039, 60=0.005
Expt: 20=-0.357, 40=0.002, 60=0.000

20 52
Calc: 20=-0.005, 40=0.000, 60=0.012
Expt: 20=0.080, 40=-0.043, 60=-0.000

20 51
Calc: 20=0.063, 40=0.004, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 62
Calc: 20=0.192, 40=0.011, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 61
Calc: 20=-0.325, 40=-0.084, 60=0.008
Expt: 20=0.000, 40=0.000, 60=0.000 X(0,11)  B(4,20)  X(4, NK )

05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

20 11
Calc: 20=-0.284, 40=0.084, 60=-0.074
Expt: 20=-0.352, 40=0.098, 60=-0.028

20 22
Calc: 20=-0.007, 40=-0.150, 60=-0.054
Expt: 20=0.043, 40=-0.173, 60=-0.025

20 32
Calc: 20=-0.218, 40=0.043, 60=0.006
Expt: 20=-0.284, 40=0.070, 60=-0.014

20 42
Calc: 20=-0.378, 40=0.011, 60=-0.002
Expt: 20=-0.520, 40=0.151, 60=-0.047

20 41
Calc: 20=-0.370, 40=-0.039, 60=0.005
Expt: 20=-0.357, 40=0.002, 60=0.000

20 52
Calc: 20=-0.005, 40=0.000, 60=0.012
Expt: 20=0.080, 40=-0.043, 60=-0.000

20 51
Calc: 20=0.063, 40=0.004, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 62
Calc: 20=0.192, 40=0.011, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 61
Calc: 20=-0.325, 40=-0.084, 60=0.008
Expt: 20=0.000, 40=0.000, 60=0.000 X(0,11)  B(4,20)  X(4, NK )

05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

20 11
Calc: 20=-0.284, 40=0.084, 60=-0.074
Expt: 20=-0.352, 40=0.098, 60=-0.028

20 22
Calc: 20=-0.007, 40=-0.150, 60=-0.054
Expt: 20=0.043, 40=-0.173, 60=-0.025

20 32
Calc: 20=-0.218, 40=0.043, 60=0.006
Expt: 20=-0.284, 40=0.070, 60=-0.014

20 42
Calc: 20=-0.378, 40=0.011, 60=-0.002
Expt: 20=-0.520, 40=0.151, 60=-0.047

20 41
Calc: 20=-0.370, 40=-0.039, 60=0.005
Expt: 20=-0.357, 40=0.002, 60=0.000

20 52
Calc: 20=-0.005, 40=0.000, 60=0.012
Expt: 20=0.080, 40=-0.043, 60=-0.000

20 51
Calc: 20=0.063, 40=0.004, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 62
Calc: 20=0.192, 40=0.011, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 61
Calc: 20=-0.325, 40=-0.084, 60=0.008
Expt: 20=0.000, 40=0.000, 60=0.000 X(0,11)  B(4,20)  X(4, NK )

05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

20 11
Calc: 20=-0.284, 40=0.084, 60=-0.074
Expt: 20=-0.352, 40=0.098, 60=-0.028

20 22
Calc: 20=-0.007, 40=-0.150, 60=-0.054
Expt: 20=0.043, 40=-0.173, 60=-0.025

20 32
Calc: 20=-0.218, 40=0.043, 60=0.006
Expt: 20=-0.284, 40=0.070, 60=-0.014

20 42
Calc: 20=-0.378, 40=0.011, 60=-0.002
Expt: 20=-0.520, 40=0.151, 60=-0.047

20 41
Calc: 20=-0.370, 40=-0.039, 60=0.005
Expt: 20=-0.357, 40=0.002, 60=0.000

20 52
Calc: 20=-0.005, 40=0.000, 60=0.012
Expt: 20=0.080, 40=-0.043, 60=-0.000

20 51
Calc: 20=0.063, 40=0.004, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 62
Calc: 20=0.192, 40=0.011, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 61
Calc: 20=-0.325, 40=-0.084, 60=0.008
Expt: 20=0.000, 40=0.000, 60=0.000 X(0,11)  B(4,20)  X(4, NK )

05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

20 11
Calc: 20=-0.284, 40=0.084, 60=-0.074
Expt: 20=-0.352, 40=0.098, 60=-0.028

20 22
Calc: 20=-0.007, 40=-0.150, 60=-0.054
Expt: 20=0.043, 40=-0.173, 60=-0.025

20 32
Calc: 20=-0.218, 40=0.043, 60=0.006
Expt: 20=-0.284, 40=0.070, 60=-0.014

20 42
Calc: 20=-0.378, 40=0.011, 60=-0.002
Expt: 20=-0.520, 40=0.151, 60=-0.047

20 41
Calc: 20=-0.370, 40=-0.039, 60=0.005
Expt: 20=-0.357, 40=0.002, 60=0.000

20 52
Calc: 20=-0.005, 40=0.000, 60=0.012
Expt: 20=0.080, 40=-0.043, 60=-0.000

20 51
Calc: 20=0.063, 40=0.004, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 62
Calc: 20=0.192, 40=0.011, 60=-0.001
Expt: 20=0.000, 40=0.000, 60=0.000

20 61
Calc: 20=-0.325, 40=-0.084, 60=0.008
Expt: 20=0.000, 40=0.000, 60=0.000 X(0,11)  B(4,20)  X(4, NK )

05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

(b) 11→20

11 5221(22) 31(32) 41+42

22 11
Calc: 20=-0.078, 40=0.031, 60=-0.017
Expt: 20=-0.079, 40=0.019, 60=-0.008

22 21
Calc: 20=-0.180, 40=0.002, 60=0.022
Expt: 20=-0.178, 40=0.039, 60=-0.008

22 31
Calc: 20=-0.298, 40=0.039, 60=-0.003
Expt: 20=-0.330, 40=0.033, 60=-0.012

22 44
Calc: 20=-0.377, 40=0.010, 60=-0.002
Expt: 20=-0.431, 40=0.092, 60=-0.017

22 41
Calc: 20=-0.248, 40=0.010, 60=-0.001
Expt: 20=-0.118, 40=-0.062, 60=0.081

22 54
Calc: 20=0.001, 40=0.002, 60=0.006
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,22)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

22 11
Calc: 20=-0.078, 40=0.031, 60=-0.017
Expt: 20=-0.079, 40=0.019, 60=-0.008

22 21
Calc: 20=-0.180, 40=0.002, 60=0.022
Expt: 20=-0.178, 40=0.039, 60=-0.008

22 31
Calc: 20=-0.298, 40=0.039, 60=-0.003
Expt: 20=-0.330, 40=0.033, 60=-0.012

22 44
Calc: 20=-0.377, 40=0.010, 60=-0.002
Expt: 20=-0.431, 40=0.092, 60=-0.017

22 41
Calc: 20=-0.248, 40=0.010, 60=-0.001
Expt: 20=-0.118, 40=-0.062, 60=0.081

22 54
Calc: 20=0.001, 40=0.002, 60=0.006
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,22)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

22 11
Calc: 20=-0.078, 40=0.031, 60=-0.017
Expt: 20=-0.079, 40=0.019, 60=-0.008

22 21
Calc: 20=-0.180, 40=0.002, 60=0.022
Expt: 20=-0.178, 40=0.039, 60=-0.008

22 31
Calc: 20=-0.298, 40=0.039, 60=-0.003
Expt: 20=-0.330, 40=0.033, 60=-0.012

22 44
Calc: 20=-0.377, 40=0.010, 60=-0.002
Expt: 20=-0.431, 40=0.092, 60=-0.017

22 41
Calc: 20=-0.248, 40=0.010, 60=-0.001
Expt: 20=-0.118, 40=-0.062, 60=0.081

22 54
Calc: 20=0.001, 40=0.002, 60=0.006
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,22)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

22 11
Calc: 20=-0.078, 40=0.031, 60=-0.017
Expt: 20=-0.079, 40=0.019, 60=-0.008

22 21
Calc: 20=-0.180, 40=0.002, 60=0.022
Expt: 20=-0.178, 40=0.039, 60=-0.008

22 31
Calc: 20=-0.298, 40=0.039, 60=-0.003
Expt: 20=-0.330, 40=0.033, 60=-0.012

22 44
Calc: 20=-0.377, 40=0.010, 60=-0.002
Expt: 20=-0.431, 40=0.092, 60=-0.017

22 41
Calc: 20=-0.248, 40=0.010, 60=-0.001
Expt: 20=-0.118, 40=-0.062, 60=0.081

22 54
Calc: 20=0.001, 40=0.002, 60=0.006
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,22)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

22 11
Calc: 20=-0.078, 40=0.031, 60=-0.017
Expt: 20=-0.079, 40=0.019, 60=-0.008

22 21
Calc: 20=-0.180, 40=0.002, 60=0.022
Expt: 20=-0.178, 40=0.039, 60=-0.008

22 31
Calc: 20=-0.298, 40=0.039, 60=-0.003
Expt: 20=-0.330, 40=0.033, 60=-0.012

22 44
Calc: 20=-0.377, 40=0.010, 60=-0.002
Expt: 20=-0.431, 40=0.092, 60=-0.017

22 41
Calc: 20=-0.248, 40=0.010, 60=-0.001
Expt: 20=-0.118, 40=-0.062, 60=0.081

22 54
Calc: 20=0.001, 40=0.002, 60=0.006
Expt: 20=0.000, 40=0.000, 60=0.000

X(0,11)  B(4,22)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

(c) 11→22

11 41*21(22) 31 44
10 11

Calc: 20=-0.038, 40=-0.116, 60=0.000
Expt: 20=-0.057, 40=-0.030, 60=-0.015

10 22
Calc: 20=-0.196, 40=-0.004, 60=0.000
Expt: 20=-0.289, 40=0.036, 60=-0.007

10 32
Calc: 20=-0.386, 40=-0.020, 60=-0.000
Expt: 20=-0.363, 40=0.011, 60=-0.002

10 41
Calc: 20=0.053, 40=0.006, 60=-0.000
Expt: 20=0.081, 40=-0.019, 60=0.036

X(0,11)  B(4,10)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

10 11
Calc: 20=-0.038, 40=-0.116, 60=0.000
Expt: 20=-0.057, 40=-0.030, 60=-0.015

10 22
Calc: 20=-0.196, 40=-0.004, 60=0.000
Expt: 20=-0.289, 40=0.036, 60=-0.007

10 32
Calc: 20=-0.386, 40=-0.020, 60=-0.000
Expt: 20=-0.363, 40=0.011, 60=-0.002

10 41
Calc: 20=0.053, 40=0.006, 60=-0.000
Expt: 20=0.081, 40=-0.019, 60=0.036

X(0,11)  B(4,10)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

10 11
Calc: 20=-0.038, 40=-0.116, 60=0.000
Expt: 20=-0.057, 40=-0.030, 60=-0.015

10 22
Calc: 20=-0.196, 40=-0.004, 60=0.000
Expt: 20=-0.289, 40=0.036, 60=-0.007

10 32
Calc: 20=-0.386, 40=-0.020, 60=-0.000
Expt: 20=-0.363, 40=0.011, 60=-0.002

10 41
Calc: 20=0.053, 40=0.006, 60=-0.000
Expt: 20=0.081, 40=-0.019, 60=0.036

X(0,11)  B(4,10)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

10 11
Calc: 20=-0.038, 40=-0.116, 60=0.000
Expt: 20=-0.057, 40=-0.030, 60=-0.015

10 22
Calc: 20=-0.196, 40=-0.004, 60=0.000
Expt: 20=-0.289, 40=0.036, 60=-0.007

10 32
Calc: 20=-0.386, 40=-0.020, 60=-0.000
Expt: 20=-0.363, 40=0.011, 60=-0.002

10 41
Calc: 20=0.053, 40=0.006, 60=-0.000
Expt: 20=0.081, 40=-0.019, 60=0.036

X(0,11)  B(4,10)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728

(d) 11→10

11 21(22) 31(32) 41

31 20
Calc: 20=-0.111, 40=0.092, 60=-0.026
Expt: 20=-0.076, 40=0.081, 60=-0.017

31 33
Calc: 20=-0.224, 40=-0.223, 60=0.104
Expt: 20=0.134, 40=0.075, 60=0.072

31 43
Calc: 20=-0.432, 40=0.055, 60=-0.040
Expt: 20=-0.246, 40=-0.004, 60=-0.020

31 40
Calc: 20=-0.346, 40=0.131, 60=0.003
Expt: 20=-0.379, 40=0.138, 60=-0.025

31 53
Calc: 20=-0.368, 40=0.004, 60=0.003
Expt: 20=-0.250, 40=-0.006, 60=0.047

X(0,10)  B(4,31)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

31 20
Calc: 20=-0.111, 40=0.092, 60=-0.026
Expt: 20=-0.076, 40=0.081, 60=-0.017

31 33
Calc: 20=-0.224, 40=-0.223, 60=0.104
Expt: 20=0.134, 40=0.075, 60=0.072

31 43
Calc: 20=-0.432, 40=0.055, 60=-0.040
Expt: 20=-0.246, 40=-0.004, 60=-0.020

31 40
Calc: 20=-0.346, 40=0.131, 60=0.003
Expt: 20=-0.379, 40=0.138, 60=-0.025

31 53
Calc: 20=-0.368, 40=0.004, 60=0.003
Expt: 20=-0.250, 40=-0.006, 60=0.047

X(0,10)  B(4,31)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

31 20
Calc: 20=-0.111, 40=0.092, 60=-0.026
Expt: 20=-0.076, 40=0.081, 60=-0.017

31 33
Calc: 20=-0.224, 40=-0.223, 60=0.104
Expt: 20=0.134, 40=0.075, 60=0.072

31 43
Calc: 20=-0.432, 40=0.055, 60=-0.040
Expt: 20=-0.246, 40=-0.004, 60=-0.020

31 40
Calc: 20=-0.346, 40=0.131, 60=0.003
Expt: 20=-0.379, 40=0.138, 60=-0.025

31 53
Calc: 20=-0.368, 40=0.004, 60=0.003
Expt: 20=-0.250, 40=-0.006, 60=0.047

X(0,10)  B(4,31)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

31 20
Calc: 20=-0.111, 40=0.092, 60=-0.026
Expt: 20=-0.076, 40=0.081, 60=-0.017

31 33
Calc: 20=-0.224, 40=-0.223, 60=0.104
Expt: 20=0.134, 40=0.075, 60=0.072

31 43
Calc: 20=-0.432, 40=0.055, 60=-0.040
Expt: 20=-0.246, 40=-0.004, 60=-0.020

31 40
Calc: 20=-0.346, 40=0.131, 60=0.003
Expt: 20=-0.379, 40=0.138, 60=-0.025

31 53
Calc: 20=-0.368, 40=0.004, 60=0.003
Expt: 20=-0.250, 40=-0.006, 60=0.047

X(0,10)  B(4,31)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461
rg =0.000, g =0.000
rg5=0.000, g5=0.000

(e) 10→31

20+31 43 40 53
11 00

Calc: 20=-0.160, 40=0.168, 60=0.000
Expt: 20=-0.199, 40=0.082, 60=-0.016

11 20
Calc: 20=-0.303, 40=0.111, 60=-0.000
Expt: 20=-0.325, 40=0.062, 60=-0.026

11 33
Calc: 20=-0.374, 40=0.004, 60=-0.000
Expt: 20=-0.185, 40=-0.026, 60=0.008

11 40
Calc: 20=-0.007, 40=0.005, 60=0.000
Expt: 20=0.027, 40=0.006, 60=0.007

X(0,10)  B(4,11)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461

11 00
Calc: 20=-0.160, 40=0.168, 60=0.000
Expt: 20=-0.199, 40=0.082, 60=-0.016

11 20
Calc: 20=-0.303, 40=0.111, 60=-0.000
Expt: 20=-0.325, 40=0.062, 60=-0.026

11 33
Calc: 20=-0.374, 40=0.004, 60=-0.000
Expt: 20=-0.185, 40=-0.026, 60=0.008

11 40
Calc: 20=-0.007, 40=0.005, 60=0.000
Expt: 20=0.027, 40=0.006, 60=0.007

X(0,10)  B(4,11)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461

11 00
Calc: 20=-0.160, 40=0.168, 60=0.000
Expt: 20=-0.199, 40=0.082, 60=-0.016

11 20
Calc: 20=-0.303, 40=0.111, 60=-0.000
Expt: 20=-0.325, 40=0.062, 60=-0.026

11 33
Calc: 20=-0.374, 40=0.004, 60=-0.000
Expt: 20=-0.185, 40=-0.026, 60=0.008

11 40
Calc: 20=-0.007, 40=0.005, 60=0.000
Expt: 20=0.027, 40=0.006, 60=0.007

X(0,10)  B(4,11)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461

11 00
Calc: 20=-0.160, 40=0.168, 60=0.000
Expt: 20=-0.199, 40=0.082, 60=-0.016

11 20
Calc: 20=-0.303, 40=0.111, 60=-0.000
Expt: 20=-0.325, 40=0.062, 60=-0.026

11 33
Calc: 20=-0.374, 40=0.004, 60=-0.000
Expt: 20=-0.185, 40=-0.026, 60=0.008

11 40
Calc: 20=-0.007, 40=0.005, 60=0.000
Expt: 20=0.027, 40=0.006, 60=0.007

X(0,10)  B(4,11)  X(4, NK )
05-Mar-2009, set 1 fit #1

rs =0.357, s =0.000
rp =0.000, p =0.000
rp =0.361, p =0.000
rd =0.137, d =30.666
rd =0.387, d =16.459
rd =0.601, d =148.753
rf =0.000, f =0.000
rf =0.084, f =161.944
rf =0.143, f =152.990
rf =0.282, f =152.576
rg =0.171, g =91.728
rg =0.276, g =63.587
rg =0.000, g =51.461

(f) 10→11

00 20 33 40 E
scatter   p� allowed dδ allowed * weak 

Extraction of Ionization Dynamics (v2 = 4)

l λ rlλ ηlλ/deg r2lλ/% Fl/%

s σ 0.357 (12) 0* 12.7 (17) 12.7 (17)

p σ - - 13.0 (11)
π 0.361 (8) 0* 13.0 (11)

d σ 0.137 (4) 31 (9) 1.9 (5) 53.0 (7)
π 0.387 (2) 16 (3) 15.0 (3)
δ 0.601 (3) 149 (2) 36.1 (4)

f σ - - 10.7 (2)
π 0.084 (1) 162 (3) 0.7 (1)
δ 0.143 (1) 153 (1) 2.1 (1)
φ 0.282 (1) 153 (1) 8.0 (1)

g σ 0.171 (7) 92 (9) 2.9 (10) 10.5 (17)
π 0.276 (8) 64 (23) 7.6 (12)
δ 0.000 (5) 51 (169) 0.0
φ - -
γ - -

Table 8.3: Fitted dynamical parameters. rlλ are normalized such that total x-section
is unity. r2lλ represent the partial x-sections for each |lλ〉 component, expressed as a
percentage. Fl is the x-section for each l continua. Phases marked * are fixed as reference
phases, one for even-l and one for odd-l. The phases are mod(360), the phase relationship
between the odd and even continua, or the sign of the phases, cannot be deduced in this
work. Components marked - are not allowed according to angular momentum coupling.

minimizing these features.5 On the other hand, fits with lmax = 4 produced satisfactory
results for both the fitted PADs and the calculated rotational spectra, leading to the
conclusions that l = 4 terms were necessary, and that any l > 4 contributions can be
assumed to be negligible. The sensitivity of the calculated rotational spectra to l = 4
contributions is discussed in Section 8.3.2.

As can be seen from Figures 8.2 and 8.3, the final results give a good fit to the PADs
and rotational spectra across the whole dataset. The PADs arising from scattering and
correlated with weak features (Figure 8.2(a)11, (c)41) are not so well fitted; this may
be due to unreliable experimental PADs in some of these cases (see Section 7.5.2). The
PADs correlated with the formation of the 00 and 33 levels shown in Figure 8.2(f) are
also not quite so well fitted, but there are no obvious reasons for these discrepancies.

The rotational spectra are also well matched by the calculated spectra, with the
striking exception of the 40 feature in Figure 8.3(f). In this instance there is significantly
more scattering than observed in the other spectra. If this feature arises from a scattering
resonance, as tentatively suggested in Section 8.2.1, the intensity would not be correctly
modelled because the dynamical parameters are assumed to be constant over the dataset.
The large difference between the calculated and recorded spectrum shown in Figure 8.3(f)
corroborates this, but does not give any additional insight into the mechanism of the

5The same result was observed in the C2H2 work (Chapter 6), which also demonstrated that the
presence of even a small percentage of high l in the photoelectron wavefunction can significantly change
the calculated spectrum.
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Recording rotationally-resolved, LF-PADs 
provided enough data to obtain all partial 
wave amplitudes and phases (except odd/
even phase difference).



example - ammonia

85950 86000 86050 86100 86150 86200 86250
Eion/cm-1

11 21 31 4144 5154

(a) 11 32

11 21 31 4142 5152

(b) 11 20

11 21 31 4144 54

(c) 11 22

11 2122 3132 41

(d) 11 10

20 33 4043 53

(e) 10 31

00 20 33 40

(f) 10 11

85950 86000 86050 86100 86150 86200 86250

11 2122 3132 414244 51525455

11 2122 3132 4142 52

11 2122 3132 4144

11 2122 3132 41

00 20 33 4043 53

00 20 33 40

Eion/cm−1

(a) 11→32

(b) 11→20

(c) 11→22

(d) 11→10

(e) 10→31

(f) 10→11

pπ dδ scattering

*
*

The dynamical parameters can 
be tested by calculating the 
rotational spectra.



Eion/cm-1

n

n=2 n=4 n=6

(a)

11
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

21
β00=1.000, β20=−0.254

β40=−0.073, β60=−0.004

31
β00=1.000, β20=−0.203

β40=−0.085, β60=−0.008

41
β00=1.000, β20=−0.166

β40=−0.096, β60=−0.010

51
β00=1.000, β20=−0.139

β40=−0.104, β60=−0.012

61
β00=1.000, β20=−0.121

β40=−0.110, β60=−0.013

71
β00=1.000, β20=−0.107

β40=−0.115, β60=−0.014

81
β00=1.000, β20=−0.097

β40=−0.119, β60=−0.015

91
β00=1.000, β20=−0.089

β40=−0.122, β60=−0.015

101
β00=1.000, β20=−0.083

β40=−0.124, β60=−0.016

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→51

11
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

21
β00=1.000, β20=−0.254

β40=−0.073, β60=−0.004

31
β00=1.000, β20=−0.203

β40=−0.085, β60=−0.008

41
β00=1.000, β20=−0.166

β40=−0.096, β60=−0.010

51
β00=1.000, β20=−0.139

β40=−0.104, β60=−0.012

61
β00=1.000, β20=−0.121

β40=−0.110, β60=−0.013

71
β00=1.000, β20=−0.107

β40=−0.115, β60=−0.014

81
β00=1.000, β20=−0.097

β40=−0.119, β60=−0.015

91
β00=1.000, β20=−0.089

β40=−0.122, β60=−0.015

101
β00=1.000, β20=−0.083

β40=−0.124, β60=−0.016

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→51

11
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

21
β00=1.000, β20=−0.254

β40=−0.073, β60=−0.004

31
β00=1.000, β20=−0.203

β40=−0.085, β60=−0.008

41
β00=1.000, β20=−0.166

β40=−0.096, β60=−0.010

51
β00=1.000, β20=−0.139

β40=−0.104, β60=−0.012

61
β00=1.000, β20=−0.121

β40=−0.110, β60=−0.013

71
β00=1.000, β20=−0.107

β40=−0.115, β60=−0.014

81
β00=1.000, β20=−0.097

β40=−0.119, β60=−0.015

91
β00=1.000, β20=−0.089

β40=−0.122, β60=−0.015

101
β00=1.000, β20=−0.083

β40=−0.124, β60=−0.016

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→51

11
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

21
β00=1.000, β20=−0.315
β40=0.194, β60=0.016

31
β00=1.000, β20=−0.217
β40=0.195, β60=0.029

41
β00=1.000, β20=−0.126
β40=0.184, β60=0.042

51
β00=1.000, β20=−0.048
β40=0.168, β60=0.053

61
β00=1.000, β20=0.015
β40=0.148, β60=0.063

71
β00=1.000, β20=0.064
β40=0.129, β60=0.071

81
β00=1.000, β20=0.102
β40=0.111, β60=0.077

91
β00=1.000, β20=0.132
β40=0.095, β60=0.082

101
β00=1.000, β20=0.154
β40=0.081, β60=0.086

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→41

11
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

21
β00=1.000, β20=−0.315
β40=0.194, β60=0.016

31
β00=1.000, β20=−0.217
β40=0.195, β60=0.029

41
β00=1.000, β20=−0.126
β40=0.184, β60=0.042

51
β00=1.000, β20=−0.048
β40=0.168, β60=0.053

61
β00=1.000, β20=0.015
β40=0.148, β60=0.063

71
β00=1.000, β20=0.064
β40=0.129, β60=0.071

81
β00=1.000, β20=0.102
β40=0.111, β60=0.077

91
β00=1.000, β20=0.132
β40=0.095, β60=0.082

101
β00=1.000, β20=0.154
β40=0.081, β60=0.086

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→41

11
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

21
β00=1.000, β20=−0.315
β40=0.194, β60=0.016

31
β00=1.000, β20=−0.217
β40=0.195, β60=0.029

41
β00=1.000, β20=−0.126
β40=0.184, β60=0.042

51
β00=1.000, β20=−0.048
β40=0.168, β60=0.053

61
β00=1.000, β20=0.015
β40=0.148, β60=0.063

71
β00=1.000, β20=0.064
β40=0.129, β60=0.071

81
β00=1.000, β20=0.102
β40=0.111, β60=0.077

91
β00=1.000, β20=0.132
β40=0.095, β60=0.082

101
β00=1.000, β20=0.154
β40=0.081, β60=0.086

Calculations 22/04/09

Labels are n, where rgλ=n*best fit value.

11→32→41

11
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

21
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

31
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

41
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

51
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

61
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

71
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

81
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

91
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

101
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

Calculations
22/04/09

Labels are n, where
rgλ=n*best fit value.

11→32→54

11
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

21
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

31
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

41
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

51
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

61
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

71
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

81
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

91
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

101
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

Calculations
22/04/09

Labels are n, where
rgλ=n*best fit value.

11→32→54

11
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

21
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

31
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

41
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

51
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

61
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

71
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

81
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

91
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

101
β00=1.000, β20=−0.368
β40=0.003, β60=0.003

Calculations
22/04/09

Labels are n, where
rgλ=n*best fit value.

11→32→54

41

54

51

Eion/cm-1

Δηdδ

Δηdδ=0°

(b)

Δηdδ=90° Δηdδ=120° Δηdδ=210°

01
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

301
β00=1.000, β20=−0.593
β40=0.157, β60=−0.006

601
β00=1.000, β20=−0.610
β40=0.145, β60=−0.015

901
β00=1.000, β20=−0.453
β40=0.140, β60=−0.020

1201
β00=1.000, β20=−0.142
β40=0.145, β60=−0.020

1501
β00=1.000, β20=0.270

β40=0.159, β60=−0.015

1801
β00=1.000, β20=0.685

β40=0.180, β60=−0.004

2101
β00=1.000, β20=0.966
β40=0.203, β60=0.009

2401
β00=1.000, β20=0.996
β40=0.218, β60=0.021

2701
β00=1.000, β20=0.761
β40=0.222, β60=0.026

3001
β00=1.000, β20=0.361
β40=0.213, β60=0.024

3301
β00=1.000, β20=−0.065
β40=0.195, β60=0.016

Calculations
22/04/09

Labels are
∆ηdδ
from best fit
value
(in degrees).

01
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

301
β00=1.000, β20=−0.593
β40=0.157, β60=−0.006

601
β00=1.000, β20=−0.610
β40=0.145, β60=−0.015

901
β00=1.000, β20=−0.453
β40=0.140, β60=−0.020

1201
β00=1.000, β20=−0.142
β40=0.145, β60=−0.020

1501
β00=1.000, β20=0.270

β40=0.159, β60=−0.015

1801
β00=1.000, β20=0.685

β40=0.180, β60=−0.004

2101
β00=1.000, β20=0.966
β40=0.203, β60=0.009

2401
β00=1.000, β20=0.996
β40=0.218, β60=0.021

2701
β00=1.000, β20=0.761
β40=0.222, β60=0.026

3001
β00=1.000, β20=0.361
β40=0.213, β60=0.024

3301
β00=1.000, β20=−0.065
β40=0.195, β60=0.016

Calculations
22/04/09

Labels are
∆ηdδ
from best fit
value
(in degrees).

01
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

301
β00=1.000, β20=−0.593
β40=0.157, β60=−0.006

601
β00=1.000, β20=−0.610
β40=0.145, β60=−0.015

901
β00=1.000, β20=−0.453
β40=0.140, β60=−0.020

1201
β00=1.000, β20=−0.142
β40=0.145, β60=−0.020

1501
β00=1.000, β20=0.270

β40=0.159, β60=−0.015

1801
β00=1.000, β20=0.685

β40=0.180, β60=−0.004

2101
β00=1.000, β20=0.966
β40=0.203, β60=0.009

2401
β00=1.000, β20=0.996
β40=0.218, β60=0.021

2701
β00=1.000, β20=0.761
β40=0.222, β60=0.026

3001
β00=1.000, β20=0.361
β40=0.213, β60=0.024

3301
β00=1.000, β20=−0.065
β40=0.195, β60=0.016

Calculations
22/04/09

Labels are
∆ηdδ
from best fit
value
(in degrees).

01
β00=1.000, β20=−0.403
β40=0.175, β60=0.005

301
β00=1.000, β20=−0.593
β40=0.157, β60=−0.006

601
β00=1.000, β20=−0.610
β40=0.145, β60=−0.015

901
β00=1.000, β20=−0.453
β40=0.140, β60=−0.020

1201
β00=1.000, β20=−0.142
β40=0.145, β60=−0.020

1501
β00=1.000, β20=0.270

β40=0.159, β60=−0.015

1801
β00=1.000, β20=0.685

β40=0.180, β60=−0.004

2101
β00=1.000, β20=0.966
β40=0.203, β60=0.009

2401
β00=1.000, β20=0.996
β40=0.218, β60=0.021

2701
β00=1.000, β20=0.761
β40=0.222, β60=0.026

3001
β00=1.000, β20=0.361
β40=0.213, β60=0.024

3301
β00=1.000, β20=−0.065
β40=0.195, β60=0.016

Calculations
22/04/09

Labels are
∆ηdδ
from best fit
value
(in degrees).

01
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

301
β00=1.000, β20=−0.370
β40=−0.030, β60=0.002

601
β00=1.000, β20=−0.430
β40=0.003, β60=0.004

901
β00=1.000, β20=−0.484
β40=0.033, β60=0.005

1201
β00=1.000, β20=−0.532
β40=0.062, β60=0.006

1501
β00=1.000, β20=−0.567
β40=0.087, β60=0.006

1801
β00=1.000, β20=−0.539
β40=0.085, β60=0.002

2101
β00=1.000, β20=−0.279

β40=−0.032, β60=−0.010

2401
β00=1.000, β20=0.130

β40=−0.252, β60=−0.023

2701
β00=1.000, β20=0.091

β40=−0.256, β60=−0.016

3001
β00=1.000, β20=−0.078

β40=−0.178, β60=−0.008

3301
β00=1.000, β20=−0.207

β40=−0.115, β60=−0.003

Calculations 22/04/09

Labels are ∆ηdδ, variation from best fit
value.

11→32→51

01
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

301
β00=1.000, β20=−0.370
β40=−0.030, β60=0.002

601
β00=1.000, β20=−0.430
β40=0.003, β60=0.004

901
β00=1.000, β20=−0.484
β40=0.033, β60=0.005

1201
β00=1.000, β20=−0.532
β40=0.062, β60=0.006

1501
β00=1.000, β20=−0.567
β40=0.087, β60=0.006

1801
β00=1.000, β20=−0.539
β40=0.085, β60=0.002

2101
β00=1.000, β20=−0.279

β40=−0.032, β60=−0.010

2401
β00=1.000, β20=0.130

β40=−0.252, β60=−0.023

2701
β00=1.000, β20=0.091

β40=−0.256, β60=−0.016

3001
β00=1.000, β20=−0.078

β40=−0.178, β60=−0.008

3301
β00=1.000, β20=−0.207

β40=−0.115, β60=−0.003

Calculations 22/04/09

Labels are ∆ηdδ, variation from best fit
value.

11→32→51

01
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

301
β00=1.000, β20=−0.370
β40=−0.030, β60=0.002

601
β00=1.000, β20=−0.430
β40=0.003, β60=0.004

901
β00=1.000, β20=−0.484
β40=0.033, β60=0.005

1201
β00=1.000, β20=−0.532
β40=0.062, β60=0.006

1501
β00=1.000, β20=−0.567
β40=0.087, β60=0.006

1801
β00=1.000, β20=−0.539
β40=0.085, β60=0.002

2101
β00=1.000, β20=−0.279

β40=−0.032, β60=−0.010

2401
β00=1.000, β20=0.130

β40=−0.252, β60=−0.023

2701
β00=1.000, β20=0.091

β40=−0.256, β60=−0.016

3001
β00=1.000, β20=−0.078

β40=−0.178, β60=−0.008

3301
β00=1.000, β20=−0.207

β40=−0.115, β60=−0.003

Calculations 22/04/09

Labels are ∆ηdδ, variation from best fit
value.

11→32→51

01
β00=1.000, β20=−0.299

β40=−0.068, β60=−0.000

301
β00=1.000, β20=−0.370
β40=−0.030, β60=0.002

601
β00=1.000, β20=−0.430
β40=0.003, β60=0.004

901
β00=1.000, β20=−0.484
β40=0.033, β60=0.005

1201
β00=1.000, β20=−0.532
β40=0.062, β60=0.006

1501
β00=1.000, β20=−0.567
β40=0.087, β60=0.006

1801
β00=1.000, β20=−0.539
β40=0.085, β60=0.002

2101
β00=1.000, β20=−0.279

β40=−0.032, β60=−0.010

2401
β00=1.000, β20=0.130

β40=−0.252, β60=−0.023

2701
β00=1.000, β20=0.091

β40=−0.256, β60=−0.016

3001
β00=1.000, β20=−0.078

β40=−0.178, β60=−0.008

3301
β00=1.000, β20=−0.207

β40=−0.115, β60=−0.003

Calculations 22/04/09

Labels are ∆ηdδ, variation from best fit
value.

11→32→51

41

51

example - ammonia

Here the calculations 
show the sensitivity of 
the PADs and spectra 
to a single component.

(a) the magnitude 
of the g-wave 
contribution.

(b) the phase ηdδ.



summary

We have covered:

- Ionization dipole matrix elements.

- PAD in atomic case, following Cooper & Zare derivation.

- Atomic PAD examples.

- PAD in molecular case, both MF and LF results.

- Uses of PADs.



further reading
For some further reading on this and related material...

Stolow & Underwood, in Advances in Chemical Physics, ed. S. A. Rice, 2008, vol. 139 - 
thorough treatment of MF and LF-PAD.

D. Dill, J. Chem Phys 65, 1130, 1976 - First (and brief!) derivation of MF-PADs formalism.

Reid, Ann. Rev. Phys. Chem. 54, 397, 2003 - PADs review article.

Seideman, Ann. Rev. Phys. Chem. 53, 41, 2002 - PADs alternative derivation in non-
perturbative regime, including time-dependence (see also Seideman, Phys. Rev. A 64, 
042504, 2001).

Park & Zare, J. Chem. Phys. 104, 4554, 1996 - PADs in eigenchannel (close-coupled) 
formalism, includes good discussion of the physical picture behind the mathematics.


