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contents/aims

Part | - Very Brief Introduction to Scattering Theory

e Scattering theory overview (stationary-state picture).
e Partial wave expansion.

e Radial continuum wavefunctions for Coulombic and non-Coulombic potentials.

e The importance of the scattering phase shift. Written notes will be
available at the end of
Part Il - Very Brief Introduction to Angular Momentum the seminars!

e Angular momentum overview - what is angular momentum?

Angular momentum wavefunctions - the spherical harmonics.

Angular momentum coupling - Clebsch-Gordan coefficients and Wigner 3] symbols.

Transformation under rotation - rotation matrix elements.

Angular part of the scattering problem.

Part Ill - Very Brief Introduction to Photoionization & Photoelectron Angular Distributions

e Dipole approximation, dipole matrix elements, explicit formulation of matrix elements from bound and continuum
wavefunctions.

e Integrated and differential cross-sections, including exact result for 1-electron system (Cooper & Zare).
e Examples of PADs from atomic systems, in particular case of O~ photodetachement and s-d wave interference.

e Examples of PADs from molecular systems - case of many partial wave components due to non-central potentials,
l-mixing,/scattering etc.
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what is angular momentum?

(i) The angular extension of linear momentum - a dynamical quantity. Quantum
theory can be developed from classical mechanics to describe orbital angular
momentum.

(i) Geometric properties of a system under coordinate frame rotations.
Applicable to classical and quantum systems. Gives rise to essentially the same
machinery as (i), but more intuitive picture for, e.g., molecular rotations.

References for angular momentum:

Zare, Angular Momentum - standard reference.

Edmunds, Angular Momentum - very mathematical treatment.
Thompson, Angular Momentum - more visual/geometric treatment.

Most standard Q.M. textbooks will also have introductory material.




classical picture

L=rxp

T=r = F
L=rxp

http://en.wikipedia.org/wiki/Angular_momentum



gquantum correspondence
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gquantum correspondence

Commutation relations

Total angular momentum,
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Commutation properties mean we can
define the total angular momentum

of the system, but only one cartesian
component. We will see later how this
relates to the uncertainty principle.




gquantum correspondence

So far we have defined the properties of the orbital angular momentum 1 by comparison
with classical angular momentum.

This has given us the operator 1 and commutation relations, but no real physical picture of
what we’re considering beyond the classical.

If we carry on to consider a general eigenfunction treatment we can develop a vector
picture of angular momentum which gives more insight.



eigenfunctions

Define general angular momentum operator as j (1 will be reserved for orbital ang. mom.)

P =424+ 52

Define states which are eigenfunctions of the total angular momentum, and one projection
term (chosen by convention as ; ):

Plim) = 3G+ 1D]im)

J.lgm) = mljm)

m takes values -;...j in integer steps.



vector model

Reproduced from Zare, Angular Momentum

In this picture the total angular
momentum defines a vector j.

j has a fixed projection onto the z-axis,
and also precesses about the axis.

The precession ensures that the x and y
components are undefined, as required
by the commutation relations.

We can also consider this in terms

of uncertainty - if we try to fix all
components then we would have a
classical orbit in which both r and p are
defined.



spherical harmonics

It can be shown (e.g. Zare section 1.3) that the spherical harmonics provide suitable
eigenfunctions for integer values of j in spherical polar coordinates.

‘lm> — lem(ea ¢)

The functional form of the spherical harmonic is quite complex:
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spherical harmonics

The spherical harmonics are much easier to visualize....
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spherical harmonics
Y
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spherical harmonics
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spherical harmonics
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spherical harmonics

How do the spherical harmonics link to the vector picture?

For m=0 =1 =3
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This is a standing-wave on the ‘classical’ orbit which is azimuthally averaged.
Hence larger angular momentum, more nodes in the standing-wave.



spherical harmonics

m=3

m=2

=3

[

1]

is even more
apparent for high /,
high m cases

orbit confined to the xy

approach a classical
plane.
This

For high m we




spherical harmonics

m:
-

m:

m:

[=6

%&ﬂﬁs \
M.PWM.MQ.“\\\..\\\ 5

=
=
S
~
(<))
<
o el
C — Y—
ie, =0 ® O
= . SeShre
OO 2= nE v+ 35 >
S—_ - —
=) Do 8o D
O ®© a...uew..wg
.IO.Ia rqt |.Im
R ) () o ©
L O no cx E o &
O a ®© Il ..lOOaO..nm
L ©® O S O & ocw




rotations

We have so far considered dynamical angular momentum, building up from a classical
orbital picture. In this picture we can consider a particle undergoing ‘classical’ orbits on a
ring (albeit with wave structure) which are azimuthally averaged.

But we can also consider the spherical standing waves described by Y, to have
geometrical angular momentum. They are just some set of functions which describe a
complete (2/+1) basis on the surface of a sphere.

We will explore this concept in terms of frame rotations, and later link this back to
spherical harmonics.



euler angles

We can parameterize rotations of a 3D body (or axis system) in terms of Euler angles.
Rotation can then be described as an operator R with matrix elements referred to as the
direction cosine matrix elements.

R(¢,0,x)f(X,Y,Z) = f(z,y,2)

R(¢,0,x) = R.(x)Rn(x)Rz(9)

Direction cosine matrix elements

Original Frame ' Final Frame
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direction cosine matrix

As an example, consider rotations about the Z-axis.

This is rotation by ¢, so the rotated frame mixes X and Y components of the initial frame.

X
Y
A

cos¢p sing 0
= | —sing cos¢ 0
0 0 1

Similar transformations can be derived for the other components of R.



wigner rotation matrix

Wigner developed the quantum analogue of the direction cosine matrix element by
considering the behaviour of |jm) under rotation.

In particular we can see that rotation must commute with j - the total angular momentum
of the system (hence energy) is conserved under frame rotation. However, projection

terms m must be mixed by rotation. This is analogous to the classical behaviour of vectors
under the direction cosine matrix elements.

R(¢,0, x)|jm) = ZD (6,0, x)im’)

D} (8,0, x) = (im/|R(¢, 0, x)|5m)

Wigner rotation matrix elements



wigner rotation matrix

What do the rotation matrix elements look like...?

Phase terms

—/

D%@’m<¢? (97 X) — e_i¢mldin’m((9)€_ixm

Reduced matrix
elements
&, 0) = (jm/|le”v|jm)
= [(j+m)(G —m)(G+m)(G—m)]?
Summation index is < Z | | (—1)°
defined to run over all (= =)l +m = o)l (v +m —m)ll

factorials are =2 0 X cos(§) sin(§)

terms for which the [ p ]2j+mm'2v [ 0 ]m'm—|—2v



wigner rotation matrix

B (0) = (jm|e™ "% jm)
= [(G+m)G—m)(G +m)(G—m)*/?

(=1)"
= Z (j—m' —v)l(j+m—v)(v+m' —m)!

v

9 2j—|—m—m'—2v (9 m’ —m~+2v
[008(5)] [sin(i)]

Rotation about the z-axis produces only phase factors, but rotation by 6 mixes m states.
The mixing is defined by terms in 0, but also by factorial terms which we can envisage as
‘counting’ the overlap between m and m' states.

Hence,

1D} (0,0, = &, (6)°



rotation matrix and Y

What about the spherical harmonics under rotation?

R(4,0,X)Yim(0, ¢) = ZD (6,0,X)Yim (0,0) = Vi (6, &)

Hence rotation is equivalent to frame transformation from (6,6)— (0',¢'). Again this reflects
an invariance due to rotation, we just rotate the z-axis to a new direction.

We can identify the rotation matrix elements with spherical harmonics for m'=0 - these
functions are geometrically related.

l _ Am H2 *



rotation matrix and rotations

Following the above it is perhaps not surprising that the rotation matrix elements can also
be used as basis functions to describe rotational motion of a symmetric top.

2J +1
872

1/2
T M) [ ] DI(6,0,%)

We will see more of the rotation matrix elements next week...



coupling angular momenta

We can again return to the vector picture to visualize coupling of angular momenta.

X

Coupled representation.
j,and j, precess about j (=j, +],).
j precesses about z.

Reproduced from Zare, Angular Momentum
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Uncoupled representation.
j,and j, precess about z.
j=1j,*j, j precesses about z.




coupling angular momenta

Formally the coupling follows from a treatment of the commutation relations.

In the uncoupled representation we have:

j1ma, jame) = |Jima)|jame)

We know this is an eigenfunction of j > and j ?, and their z-components:

2 - .

J1 |]1m17]2m2
Jiz|71ma, joms

2 - .

J2 |Jlm1 y J21M2

Joz|J1ma, joms

= J1(J1 +1)|j1imy, joma)
mq|j1ma, joms)
J2(j2 + 1)|j1m1, jama)

= ma|jimiy, joms)

)
)
)
)

It can also be shown that another complete set of commuting angular momentum
operators is given by j 2 j? j*>=(j,*+j,)* andj =j _+j, . This defines the coupled
representation.



coupling angular momenta

In the coupled representation the eigenvalues are then given by:

jilim) = (i +1)jm)
Blim) = j2(jo +1)|im)
ilim) = j(G+1)]jm)
jzlgm) = mlim)

The representations are linked by a unitary transform - they are just expressions of the
same result in different basis spaces.

lym) = Z C(j1j2j; mimam)|jima, jama)

ma,mo

[Jima, jama) = Z C(Jrj2g; mamam)|jm)

J,m \

Vector coupling coefficients
Clebsch-Gordan coefficients



clebsch-gordan coefficients

The Clebsch-Gordan coefficients - the vector coupling matrix elements - are real numbers
given by:

C(j1j2g; mimaom) = (jimy, jama|jm) = (jm|jimi, joma)

Where: 171+ J2| =7 > |71 — J2

m = mi + Mmeo

Hence they act like (quantized) vector addition - the scalar terms add while the vector
terms can be parallel, anti-parallel, or integer steps in-between.



clebsch-gordan coefficients

What do the vector coupling coefficients look like...?

s=Jtit]

|

o (5= 2)(s — 2j2)!(s — 23 1]
(Jima, jamaljm) = Omymam (27 +1) (s+1)!

x [+ ma)! (G = m)l(z + ma)! (G2 —ma)! (G +m)l( —m)!]

(=1)"
ZU: Vi1 +J2— 7 —v)l (g1 —m1 —v)!(Jo + mo — 0)I(j — jo + m1 +0)!(j — j1 — m2 + v)!

T

Summation index is

defined to run over all Note the passing resemblance to the reduced rotation
terms_for Wh'C>h the matrix elements - we are again dealing with quantized
factorials are = 0 vector overlap integrals.

This looks nasty, but is just a number we can
calculate.



3/ symbols

A useful alternative to Clebsch-Gordan coefficients are Wigner 3/ symbols. These can be
regarded as essentially the same, but have slightly different symmetry properties which
are useful when manipulating angular momentum expressions algebraically.

JuoJ2 T\ g Vii—da—mo 12, | |
(m1 ma m) (=1) (27 +1) (Jima, jama|jm)

We will see a lot of these next week!



3/ symbols - alignment

Finally, a quick example to show how we might use angular momentum coupling.

JlKZleMl X S(JZK“ Jg
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Single photon absorption, leads
to a diagonal density matrix
describing the excited state
alignment.

AJ=+1

-10 10
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3/ symbols - alignment

A more complex example is 2 photon absorption followed by frame rotation, this leads to
off-diagonal density matrix elements.

e Y 30T 0Ny 4 (0N, £ 1(2Q 4 1)( 1y
Q,Uo,U p,pu’ My

. . 2
Jp Jp Q@ .
x ( b Jp UO) d2(0)d3 .(6)

mp My

o 2
< (_1)mi+m; Ng Q N; Ng Q N; Jp Jp Q N; Q Ng
—mg B my —mg pom, 1 pe U -K, -U K,

Pmm’

(6=0) Pt 0=

0.8\,_‘5'__,__.-,_....




summary

In this session we have covered:

- Dynamical and geometrical pictures of angular momentum.
- Spherical harmonics as angular momentum wavefunctions.
- Frame rotations: the Wigner rotation matrix elements.

- Angular momentum coupling: Clebsch-Gordan coefficients and 3; symbols.

NEXT TIME... photoelectron angular distributions



addendum - alignment

Following discussions after the session, here’s a little more on alignment...
Note that the final written notes | am preparing will present this a little more thoroughly.

Atomic case
Consider an electronic dipole transition (spin neglected). The transition probability is given
by the dipole matrix element:

(nelymy|p.Elnlim;)

Final state / ‘ \ Initial state

Dipole operator and incident field

|

We can write the dipole operator and radiation field in spherical basis functions:

,u:—erzz,uq E:Eé:EZeq
q

q

Ho — €Ty €hp — €4

e . 1
U1 = :F—(T:I:izry) eLr = :F—(ewiiey)

N
N



addendum - alignment

The dot product now becomes:

pE=Epe) =E> (—1)ue_,

This is the most general form of the equations, for specific cases it can be shown that:

q=0 7
[J,E — eEm/ %Yl’o(e, ¢)
g=+/-1
47
pE = Febry/ ?Ygil(@, )

Hence we end up with spherical harmonics again!

In this spherical basis ¢=0 is the case for linearly polarized light (along the z-axis) while
g=+/-1 represents circularly polarized light. In the case where the sample is isotropic
(unpolarized) before interaction we can always choose the z-axis to coincide with the laser
polarization.



addendum - alignment

The dipole matrix element now becomes

vy
(nplymylpBlnilimi) = (=1)TeEq [ o= {nslpmy|rY,q (6, ¢)[nilim;)

The eigenstates in radial and angular parts: inlm) = xni(r)Yim (0, ¢)

Hence,

(nflpmy|pElnlim;) = (—1)q6E\/§<anzf("“)|7“|szz- (7)) Yipm (0, 0)|Y1,4(0, 9)[Yiim, (6, 0))

Radial part Angular part

We can deal with the angular part analytically using standard angular momentum
algebra. This will give the relative transition intensity for different m, and hence alignment
information.



addendum - alignment

The angular part of the dipole matrix element gives:

(Vi (0, 8)|Yi,4(60, ) Vi, (0,0)) = / Yy 1, YigYi,m, sin 0d0de

— //(—1)melf_me1,qYlimi sin 8d0d¢

_ (g |3+ D) N N PN A A T
B At 0 0 0 mi q —my

If we're only interested in alignment (polarization) of the final state for some given
transition then we just need to consider the final term here:

L1 2
i !
prems = Z( mi q —my )

/ mi
Density matrix describes \ Sum over initial state m_levels. Here
populations of mflevels. we assume these levels are equally

populated.



addendum - alignment

This looks very similar to the first case shown in the main talk, except generalized for any
g. In the atomic case this shows alignment is independent of the transition, assuming
that only a single transition is excited (i.e. we don’t need to know about the weighting of
different », / in the radial part of the dipole matrix element).

This follows from general symmetry considerations - before the laser field there is no
quantization axis, so all m. are degenerate and isotropic (no polarization of sample). For
linearly polarized light g=0 and the alignment is then just induced by the cosine term
(Y,,) from the dipole, so we always get a final result which looks like cos? for any allowed
transition.

For circularly polarized light g=+/-1 (note also that the z-axis is conventionally taken to

be the propagation axis in this case, while propagation axis is in the xy plane for linearly
polarized case).

In this case the polarization is purely electronic - it is the [ vector which is aligned or
polarized by the excitation.



addendum - alignment

Initial state -
isotropic

Example: p — d transition

Relative population/arb
o
d

Relative population/arb
Relative population/arb
Relative population/arb




addendum - alignment

Molecular case
Very similar to the atomic case, except we now also have quantization along the molecular
axis, i.e. we can define a molecular frame (MF) which is distinct from the lab frame (LF).

Recall for the atomic case we had:
pE=E(pe)=E Z ) Hae—g

In the LF we can write something equivalent:
94 E(p.€ :EZ —1)Pupe_y

p
p are the spherical basis

Generally we want to describe the incident radiation :
vectors in the LF.

in the LF, but the transition dipole moments in the
MF... we can allow for this by introducing a frame
rotation:

=EY (=1)Pe_,Dpi (9,6, X)11q



addendum - alignment

We also need different basis states for angular momentum as we now have two projection
terms to consider.

| 27+ 1 1/2 .
|Ozj]€m> = [ ]871'2 ] (I)oz(r)Dfnk(qvavX)

This collects all other \ \ Angular

quantum numbers wavefunction.
required

jkm are general Radial wavefunction.
angular momentum

quantum numbers -

see later!



addendum - alignment

Proceeding as before the angular part of the dipole matrix element is now given by:

. . , 2j; + 1)(277 + 1 e
<]fkfmf|Dglyq(¢>QaX)‘]ikz‘mi>:\/( 8722( b / D" DD’ | sinfdfde

mfk:f ™m

_ 3 - i 1 Jf i 1 gy
e (Bt (8 L)

This looks very similar to the atomic case shown before, except we now have terms in £, ¢
- the MF part of the transition.



addendum - alignment

The density matrix is now given by:

Jf 2
pmfmedZ( —p —mf>‘

’L

Defined for specific LF polarization p.

Again this assumes that transitions pertaining to different states (different a) are not
mixed - in that case we would also need to know something about the relative transition
intensities given by the radial part of the transition matrix elements.

The MF part in general does not affect the LF alignment, except for removing transitions
which are not allowed, e.g. for j =; O we can't also have £, =k= 0.



addendum - alignment

Examples... ~p=-A ~pr=0 |
091 091 0.9
081 081 0.8
- 0.7¢ - 0.7¢ - 0.7
ji= 1’kz’= O Eo.e— EO'G’ EO_G
A] =1 §°5 éos _éoes
Ak = O, +1 %M— %o.m %o.ﬁr
(i.e. alignment not £ 0sl £ ool % 05
affected by k) 02| 02 02
017 01¢ 0.1

0

j=2,k=1
Aj=0
Ak =0, 1

Relative population/arb
Relative population/arb
Relative population/arb

The important thing here is Aj, this chooses whether we prepare j, parallel or perpendicular
to the lab frame, i.e. couple to low or high m_ - we can just consider this as vector addition.



addendum - alignment

What does alignment mean in this case? In the atomic case we only have electronic
angular momentum (orbital + spin, although we often ignore the latter, similarly nuclear
spin is ignored), so alignment of angular momentum can only mean alignment of
electronic angular momentum.

In the molecular case we can have electronic, rotational and even vibrational contributions
to the total angular momentum. Exactly how these components relate to j will depend

on the coupling of these factors, hence will depend on which Hund'’s case is most
appropriate.

Hund’'s cases a -d

a

Reproduced from Zare, Angular Momentum




addendum - alignment

The clearest (!) cases are (a) and (d)...

Here j is the coupling between rotational angular momentum and
electronic angular momentum projected onto the molecular axis,
hence J =R + Q (using Zare’s notation, 2 is equivalent to k£ as
previously used).

For a singlet state 2 = 0 hence J = R and we align purely rotational
angular momentum - the plane of rotation of the molecule is confined
in the vector picture.

More generally we have Q2 # 0 so we align both electronic and
rotational angular momentum to some degree. Because L is coupled
to the internuclear axis aligning this axis is equivalent to aligning L.

Here j is the coupling between rotational angular momentum and the
total electronic angular momentum, hence J =R + L + S.

In this case the electronic angular momentum is not tied to the
internuclear axis (e.g. we have a Rydberg state). This means that
there are no longer ‘parallel’ and ‘perpendicular’ transitions defined
in the MF. If we make an electronic transition we align L, but not the
molecular axis; if we make a rotational transition we change R but
don'’t affect L.




