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contents/aims

Part | - Very Brief Introduction to Scattering Theory

e Scattering theory overview (stationary-state picture).
e Partial wave expansion.

e Radial continuum wavefunctions for Coulombic and non-Coulombic potentials.

e The importance of the scattering phase shift. Written notes will be
available at the end of
Part Il - Very Brief Introduction to Angular Momentum the seminars!

e Angular momentum overview - what is angular momentum?

Angular momentum wavefunctions - the spherical harmonics.

Angular momentum coupling - Clebsch-Gordan coefficients and Wigner 3] symbols.

Transformation under rotation - rotation matrix elements.

Angular part of the scattering problem.

Part Ill - Very Brief Introduction to Photoionization & Photoelectron Angular Distributions

e Dipole approximation, dipole matrix elements, explicit formulation of matrix elements from bound and continuum
wavefunctions.

e Integrated and differential cross-sections, including exact result for 1-electron system (Cooper & Zare).
e Examples of PADs from atomic systems, in particular case of O~ photodetachement and s-d wave interference.

e Examples of PADs from molecular systems - case of many partial wave components due to non-central potentials,
l-mixing,/scattering etc.
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preview...

Photoelectron angular distributions (PADs) are angular interference patterns
arising from interference between different partial wave components of the
photoelectron wavefunction.

The interferences depend on the scattering phase shifts of the partial waves;
hence the scattering potential surface.

The partial wave components populated upon ionization depend upon radial
and angular overlap integrals, hence orbital structure and angular momentum
coupling of the initial state, final (ion) state, photoelectron and incidence
radiation.




overview of scattering

Scattering from a point target
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Fig. X.2. Stages of the scattering phenomenon of a wave packet: (a) before
collision; (b) during collision; (c) after collision.

Figure reproduced from Messiah, Quantum Mechanics Vol. 1



Incident wave

k = wave vector
 —

Incident plane wave .
: a
Win: e1k.r @ ( )
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r = radial position vector relative to
scattering centre.



transmitted wave

Transmitted plane wave

W — eik.r
t

Scattered spherical wave

w, = (€"/r) f(6,9)
A

Scattering amplitude




scattering theory

Stationary scattering state:

O = wincident + wtransmitted + wscatte'red

In the region of the scattering centre the exact form of these functions may be very
complicated, reflecting the precise details of the scattering centre.

However, asymptotically, as r—oo, these functions must reflect a plane wave and a
spherical scattered wave:

B(r) == A |ekr 4 (H,Qb)eikr
[+ foo ]
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scattering theory definitions

The differential, or angle-resolved, scattering cross-section is given by:
do
i 0, )|
5= f (6,9)]

The total, angle-integrated cross-section is given by:
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So, we want to understand ][(9,(/5)
k




scattering theory summary

The main task in scattering theory is to apply these very general
results to a specific problem of interest, and determine the
functional form of ][(9,¢).

k

This will depend on the boundary conditions imposed on the
scattering system, and the precise details of the scattering centre.

References for scattering theory:

Atkins, Molecular Quantum Mechanics - Short treatment of scattering.

Rae, Quantum Mechanics - Short treatment.

Messiah, Quantum Mechanics (Vol. 1) - Longer treatment, very good source.

Rodberg & Thaler, Introduction to the Quantum Theory of Scattering - Comprehensive!




partial wave expansion

The time-independent Schrodinger equation for scattering can be written:

[—h—QVQ +U (r)] ®(r) = E®(r)

2m

It will turn out that by using spherical polar coordinates this can be written in terms of radial
and angular components, and solved in terms of radial functions and angular functions.



partial waves - angular part

Expand kinetic energy operator in spherical polars:

1 0 %, 1 [ 1 0 s, 1 0
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This is the angular part of the expansion.

Angular momentum operator (to be discussed further next time).
Eigenfunctions given by spherical harmonics:

L2(0,0)Yim (0, ¢) = 1(1 +

1)A2Yn (0, 6)




partial waves - radial part

Solutions to the radial part of the scattering SE are more complicated. They must satisfy
the equation:

Effective potential

xalr) (k2 i+ QmU(r)> () =0

dr? r? h2

Radial eigenfunctions
Kinetic energy



partial waves - effective potential

Momentum (scalar)
Energy dependent

Centrifugal barrier
Angular momentum dependent

Effective potential for scattering mixes angular
quantum numbers with radial potential.

Effective Pot.




partial waves - general form

Putting the radial and angular solutions together gives:

Partial waves

/

Z Ale 1/lm Z wlm

TN

I-dependent pre-factor Angular eigenfunctions

Radial eigenfunctions

In the asymptotic limit each partial wave is
an independent scattering channel.




radial eigenfunctions

Q: Whatdo Xi(7) look like?
A: Depends on potential...

Coulombic Non-coulombic... but can describe as Coulombic
(long-range) part plus short range part

l 1

U(r) o< Z1Zs/r U(r > re) Ur < re)



radial eigenfunctions - coulombic

Solutions given by (regular) Coulomb functions F (r):

Coulomb phase

AV
o =argl [l—|—1—i 1k 2]

Fl(r ; 0




radial eigenfunctions - coulombic




radial eigenfunctions - coulombic

A Asymptotic form

AN -
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sinlkr-(1/k)In(2kr)+o ]




radial eigenfunctions - coulombic

Coulomb Phase o /(k), I=0-3

1 kla.u.
4

\ Region of poles in T" function



radial eigenfunctions - coulombic

To determine the complete radial wavefunction we also need: A = 2041 il pio
kr

b (r), 1=0-3, k=1 a.u.

Re(®(r))

—r/a.u.

[=2




radial eigenfns - non-coulombic

The Coulomb potential is the exact form for a point charge, more generally a scattering
system may have an additional short-range contribution to the potential (one which scales
as 1/, where n>1), and this contribution may be non-centrally symmetric (anisotropic).

The strength of these short-range interactions and multi-polar contributions to the potential
will fall to zero much faster than the Coulombic term, and we can define a boundary, 7,
beyond which the potential is purely Coulombic.

Coulombic Non-coulombic




radial eigenfns - non-coulombic

In the Coulombic region the radial wavefunction still has an analytic form, and is now
described by:

Xl(T > TC> = COS(5lm)Fl(T> + Sin(5lm>Gl(T)

T—00 l Z Z
Gi(r) — cos [kr - 7; - 1k 2 In(2kr) + al]

A = —21 T 1ilei(0l+5lm)
kr

Irregular Coulomb function Short-range or scattering phase shift

In the non-Coulombic region /-channels may be
mixed by the potential, but they are still good
asymptotically.




radial eigenfns - non-coulombic

The additional phase shift defines the mixing of the regular and irregular Coulomb
functions, and this mixing also determines the total asymptotic phase shift:

r—oo . 7l leQ
X: — sin |kr — — —

2 k

1n<2]€7“) + o7 + O,

Hence the scattering phase ¢, describes the effect of the non-Coulombic part of the
potential, U'(r), and is labelled with m to show that this may affect different components of
each /[-wave differently in an anisotropic scattering system.



scattering phase shift

Compare:
r—oo . VAV
X: — sin [kfr — % — 1k & In(2kr) + o + 5lm]
To: ¥ = sin(kr) Free-particle wavefunction

It is clear that there is a phase shift in the asymptotic form of the radial wavefunction, with
contributions from several terms.

The Coulomb and scattering phase-shifts in particular are important - they carry all of the
information on the scattering potential U(»)+U'(r).

[Note - this is clearer in the S and K matrix form of scattering theory, see refs for details]



scattering phase shift

Repulsive
potential

Attractive
potential

Zero
potential

A scattering potential shifts the phase of the scattered
wave at points beyond the scattering region
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For an attractive potential the phase shift will
be negative, and the outgoing wave retarded
relative to a free particle.

For a repulsive potential the outgoing wave
is advanced relative to a free particle.

http://www.physics.gla.ac.uk/~donnelly/files/xsection/Lecture7.htm



scattering phase shift

Although we don’t have an analytic solution for the wavefunction for

r <r, all of the information on the potential is carried in the short-
range phase shift.

Hence: if we can measure the scattering phases we obtain all
possible information on the scattering potential. We will see later
that PADs are uniquely sensitive to the scattering phase shifts...



summary

In this session we have covered:

- General formulation of scattering problems.

- Partial wave expansion of the stationary scattering state wavefunction in spherical polar
coordinates, which allows the separation of the radial and angular components of the

wavefunction.

- Solution of the radial wavefunctions for a Coulomb potential, and a more general
potential with additional ‘short range’ terms.

- The phase shift of the asymptotic solution. This carries all of the information on the
strength of the scattering potential.

NEXT TIME - Angular momentum...



