
Supplementary Methods 
 

RNA-seq data quality and variance estimation 

We estimated the data quality of each sample using an estimate of the 5’/3’ bias of the sequence 

coverage as a proxy for RNA degradation. We scanned the reads distribution across gene body 

using “geneBody_coverage” module in the RSeQC package (Wang et al., 2012). Samples with 

regression coefficient of the reads distribution curve greater than 0.013 were removed from 

further analysis. Outliers were further removed based on principle components analysis of the 

expression data performed using the “prcomp” function in the R “stats” package. In total, 38 

control, 25 autism, 31 chimpanzee and 31 macaque samples were retained in downstream 

analysis. The RNA quality estimated using “geneBody_coverage” module correlated well with 

the RNA integrity values (RIN) measured by Agilent Bioanalyzer (Pearson correlation, r = -0.62, 

p < 0.001).  

We used Principal Variance Component Analysis (PVCA) to calculate the variance explained by 

various factors among human samples as described elsewhere (Boedigheimer et al., 2008; Fu et 

al., 2011; Li et al., 2009). In brief, principal components explaining more than 5% the total 

variance were used as response variables to fit a mixed linear model with different sources of 

variation, such as disease status, age, sex, RNA quality estimated using “geneBody_coverage” 

module as described above, and experimental batch information as random effects, using “lmer” 

function in the R package “lme4”. The model was fit using restricted maximum likelihood 

(REML) to get the variance component estimates. The weighted average variance was then 

calculated based on the eigenvalues obtained in the principal component analysis.  

 

Identifying the differentially expressed genes in autism by ANCOVA 

We identified differential expression between autistic samples and healthy controls using analysis 

of covariance (ANCOVA) (Faraway, 2002) as described in (Somel et al., 2009b). Briefly, the test 

aims to identify whether disease and control groups have different curves of age-dependent 

expression changes. The test is performed twice, using one of the two groups as a reference per 

time. For each gene in the reference group, the effect of age on expression level, by using RPKM 

values as inputs, is estimated using polynomial regression models: we choose the best polynomial 

regression with age as predictor and expression level as response from a family of polynomial 

regression models using the “adjusted r2” criterion (Faraway, 2002). We then test whether such a 



regression model with disease-status parameters is significantly better than the model with 

common parameters for both groups. For example, if the null model for gene i was a linear one:  

Yij = β0i + β1iAj + εij,   

we compare it to the alternative model: 

Yij = β0iC + β0iA + β1iCAjC + β1iAAjA + εij ,  

where Yij is the expression level of individual j, β0iC and β1iC are the control-specific intercept 

and slope, β0iA and β1iA are the autism-specific intercept and slope, AjC and AjA are control and 

autism ages, respectively. The null model (with no disease-status parameters) and alternative 

models are compared using the F-test. We test each sub-model of the full alternative model, each 

containing one or more disease- status parameters. For each gene, if either of the two tests was 

significant at  a defined cutoff, we considered it as differentially expressed in autism. The 

permutations were performed by dividing samples into eight age intervals and permuting disease-

status identifiers within each interval in order to preserve the age-structure of the data. The FDR 

was calculated by 1,000 random permutations of sample labels.  

 

Normalization of expression levels of primates and autism microarray datasets 

In order to directly compare age-dependent expression profiles between published autism data 

and non-human primate data, we normalized the expression profiles from a primates microarray 

dataset and an autism microarray dataset measured in two different studies (Liu et al., 2012; 

Voineagu et al., 2011) using the following procedure: (i) we quantile normalized the expression 

values of the genes across both datasets (gene number = 8,431); (ii) within each dataset we chose 

sample subsets consisting of five age-matched human controls with ages from 20 to 60 years; and 

(iii) we standardized the mean of each dataset based on the sample subsets: for each gene in each 

dataset, we subtracted the mean calculated using a subset of five individuals subsampled from 

this dataset. We then added the combined mean based on all 10 subsampled individuals to all 

genes in both datasets. 

 

Comparison of expression change between autism and control in RNA-seq and array 

To estimate the robustness of gene expression changes in autism detected in our data, we 

compared it to a published study conducted in PFC of individuals with autism and healthy 

controls using microarrays (Liu et al., 2012; Voineagu et al., 2011). The expression difference 



was calculated based on 8 pairs of age-matched autism and control samples measured in both 

datasets (Figure S1). We then calculated the mean expression change between autism and control 

across these age-matched samples in each dataset. The comparison of mean expression changes in 

autism in two datasets was used to test the robustness of expression change estimates. 

 

Comparison of expression change between autism and control at gene expression level and 

H3K4me3 modification level 

H3K4me3 modification data from 16 autism samples and 14 age-matched controls conducted by 

ChIP-Seq was downloaded from (Shulha et al., 2011). The raw sequencing reads were mapped to 

human genome (hg19) by Bowtie (Langmead et al., 2009) allowing up to two mismatches. Only 

uniquely mapped reads were used in downstream analysis. 

To calculate the correlation of gene expression and H3K4me3 histone modification changes in 

autism, we classified the 4 kb region surrounding the transcription start site (TSS), defined using 

Ensembl human gene annotation (v66), as a promoter region (Cheung et al., 2010). For each 

sample, number of reads within each promoter region was normalized by the total reads mapped 

to all promoter regions in a sample. The normalized read coverage was used to perform the 

correlation with gene expression measurements. Specifically, for each gene in the control or 

autism group, the expression difference or modification difference was calculated based on 8 

pairs of age-matched autism and control samples in both datasets. We then calculated Pearson 

correlation between gene expression and histone modification measurements across these age-

matched autism and control samples.  

 

Functional enrichment analysis  

Enrichment analysis of function terms or pathways was performed as described previously (Liu et 

al., 2012; Somel et al., 2011). Briefly, human Kyoto Encylopedia of Genes and Genomes (KEGG) 

pathway annotation (Kanehisa et al., 2008) and Gene Ontology (GO) annotation (Ashburner et al., 

2000) were downloaded from KEGG (http://www.genome.jp/kegg/) and Ensembl databases, 

respectively. We used the GO “term” and “graph path” tables downloaded from the GO database 

(http://archive.geneontology.org/latest-termdb/) to associate each GO term with higher terms. To 

identify overrepresented KEGG pathways and GO terms, we used the hypergeometric test and 

adjusted p-values for multiple-testing using Benjamini-Hochberg correction. Only 

pathways/terms containing more than three genes were tested.  



Enrichment analysis of cell type-specific genes was performed as previously described (Somel et 

al., 2009a). Briefly, we used 1,155 and 578 human genes described to be enriched in gray and 

white matter from the human frontal cortex (Erraji-Benchekroun et al., 2005). For the cell-type 

analysis, we used expression levels measured from purified mouse neurons, astrocytes, and 

oligodendrocytes (Cahoy et al., 2008). We defined 1116, 965, and 991 human-mouse one-to-one 

orthologs as neuron-, astrocyte-, and oligodendrocyte-specific, using an effect size cutoff of 2. 

Additionally, we used the marker genes of cell types and cortical layers reported in (Courchesne 

et al., 2011; Hutsler and Zhang, 2010) to test their enrichment within each cluster. 
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