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This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for
nonlinear and parameter dependent systems. A new scheme including pre- and post-filtering is proposed
with the assumption that the time-derivative of the controller inputs are not available for feedback
control. It is shown that the proposed control structure can preserve the input-output properties of the
linearized closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence
of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not
introduce unobservable or uncontrollable unstable modes and hence, the internal stability will not be
affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the
numerical simulation results confirm the validity of the proposed approach.

Keywords: Enhanced velocity-based algorithm, Gain-scheduling, Hidden coupling terms

1. Introduction

Gain-scheduling techniques have been successfully used for the design and the implementation
of a great variety of control systems ; the main reason being that gain-scheduling control allows
leveraging the well-established linear system control techniques developed for decades (Leith,
& Leithead, 2000a; Rugh, & Shamma, 2000). Basically, a classic point-to-point gain-scheduling
design consists in first linearizing the nonlinear plant around a finite set of operating points
capturing the system behavior over the operating domain. Then, for each operating point,
a Linear Time Invariant (LTI) controller is designed to achieve stability and performance
requirements of the linearized closed-loop system. Finally, the LTI controllers are interpolated
a posteriori along with the operating point evolving with respect to scheduling signals, yielding
a Linear Parameter Varying (LPV) controller (Lawrence, & Rugh, 1995; Rugh, 1991; Shamma,
& Athans, 1990). Nevertheless, ad hoc interpolation methods do not provide any stability and
performance guarantees for the closed-loop system except at the operating points used in the
synthesis. To solve this problem, more elaborated interpolation strategies have been developed,
aimed at guaranteeing that the underlying closed-loop LPV system is stable as long as the rate
of variation of the operating point remains below a certain upper bound (Stilwell, & Rugh,
2000). Modern LPV approaches, such as Lyapunov-based design, can achieve a LPV controller
with guaranteed closed-loop stability and adequate level of performance for a given predefined
rate of variation of the scheduling variable (Biannic, & Apkarian, 1999; Naus, 2009; Vesel,
& Ilka, 2013; Wu, Yang, Packard, & Becker, 1995). [Reviewer 1 - Remark 1] However, it is
worth mentioning that when endogenous signals are used as scheduling parameters, the behav-
ior of the closed-loop system with the original nonlinear plant still needs to be assessed a posteriori.

The present work addresses an issue related to the implementation of LPV gain-scheduled
controllers obtained by either of the aforementioned techniques, which arises when endogenous
system variables, such as system outputs or state variables, are used as scheduling signals. Specifi-
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cally, in this case, the gain-scheduled controller is quasi-LPV (Rugh, & Shamma, 2000), exhibiting
nonlinear dynamics. Consequently, a naive implementation of the nonlinear gain-scheduled
controller on the original nonlinear system may lead to the occurrence of extra terms in the
linearized dynamics, called hidden coupling terms (Rugh, & Shamma, 2000). The hidden coupling
terms generally introduce a discrepancy between the controller dynamics used in the design and
the actual dynamics of the implemented gain-scheduled controller. To handle such a mismatch, it
is necessary to proceed to an adequate implementation of the nonlinear gain-scheduled controller
such that the linearization of the nonlinear closed-loop dynamics exhibits the same input-output
properties as the feedback of the linearized plant and the corresponding linear controller used
in the synthesis process (Leith, & Leithead, 1998; Leith, 1999). Moreover, the implementation
[Reviewer 1 - Remark 2] must be safe in the sense that it will preserve the internal stability
property, i.e., it does not introduce any unobservable or uncontrollable unstable modes. However,
much attention in the work reported in the literature is only devoted to the controller design.
Consequently, an inadequate implementation of the gain-scheduled controller may induce severe
performance deterioration or even destabilization of the closed-loop system once applied to the
original nonlinear plant (Leith, and Leithead, 2000b; Rugh, & Shamma, 2000).

A solution to avoid such a pitfall is to integrate the hidden coupling terms issue in the control
design process. Indeed, these terms can be cancelled by an appropriate choice of the controller
architecture. The conditions for achieving this objective are given by a set of first-order partial dif-
ferential equations (Lawrence, & Rugh, 1995; Nichols, Reichert, & Rugh, 1993; Rugh, & Shamma,
2000). One can also resort to the Dynamic Gain Scheduled (DSG) technique (Yang, Herrmann,
Lowenberg, & Chen, 2010; Yang, Hammoudi, Herrmann, Lowenberg, & Chen, 2012, 2015). In
this method, a gain-scheduling design is first applied (e.g, classic point-to-point gain-scheduling
with a posteriori interpolation, self-scheduling, LPV design based on Linear and Bilinear Matrix
Inequalities (LMIs and BMIs)) and then, the gains of the nonlinear gain-scheduled controller
are computed via the resolution of a set of partial differential equations. However, these two
aforementioned approaches generally lead to complex controller architectures. In sharp contrast,
taking advantage of recently developed self-scheduling methods (Do Valle, Menegaldo, & Simões,
2014; Lhachemi, Saussié, & Zhu, 2015; Magni, Le Gorrec, & Chiappa, 1998; Saussié, Saydy, &
Akhrif, 2008), another solution developed in (Lhachemi, Saussié, & Zhu, 2016a,b,c) incorporates
explicitly the hidden coupling terms in the synthesis process and avoids to resort to complex
controller architectures.

The above solutions for integrating the hidden coupling terms directly in the synthesis phase
are at the expense of an increased complexity of the synthesis procedure and are not directly
applicable to all the classic or modern gain-scheduling techniques. In this case, assuming that the
time-derivative of the controller inputs are available for feedback control, one can resort to the
velocity-based implementation (Kaminer, Pascoal, Khargonekar, & Coleman, 1995), which is a
generic gain-scheduled controller implementation that allows avoiding the occurrence of the hidden
coupling terms. However, as the time-derivative of the controller inputs are not readily available
in most of the practical applications, it requires to invoke pseudo-derivations. This approach may
fail since pseudo-derivation introduces an extra pole in the controller dynamics, interfering in the
closed-loop system dynamics. Such an interference may not preserve the input-output properties
and hence, it can induce performance degradation or even the destabilization of the closed-loop
system. In this paper, an enhanced velocity-based implementation is developed to tackle the
problems related to pseudo-derivations involved in the standard treatment. The main feature of
the proposed approach is that it preserves both input-output properties and internal stability of
the linearized closed-loop system in the neighbourhood of each equilibrium point. Consequently,
it results in a safe implementation without introducing unobservable or uncontrollable unstable
modes.

2
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The rest of the paper is organized as follows. Various notations and problem statement are
introduced in Section 2. Then, details of the proposed solution and the corresponding theoretical
analysis are presented in Section 3. Finally, the efficiency of the proposed approach is demonstrated
via a case study on the design of a benchmark pitch-axis missile autopilot in Section 4, followed
by some concluding remarks in Section 5.

2. Problem settings

2.1 System model

In this paper, we deal with nonlinear systems of the following state-space form:

S :=

{
ẋ = f(x,u,w)

y = h(x,u,w)
(1)

where x ∈ Rn is the state vector, u ∈ Rm the control input vector, w ∈ Rq the exogenous input
vector and y ∈ Rp the output vector. The vector field f : Rn×Rm×Rq → Rn represents the plant
dynamics and the function h : Rn × Rm × Rq → Rp generates the system outputs. It is assumed
that f and h are both of class C1.

This paper considers the tracking control problem of slow time-varying reference commands. In
this setting, r ∈ Rp1 denotes the reference signals to track. System output vector y can then be

split as follows: y =
[
y>1 y

>
2

]>
, where y1 ∈ Rp1 is the vector of output signals that must track the

vector r, y2 ∈ Rp2 gathers all extra signals available for feedback and p1 + p2 = p. Accordingly, we
have y1 = h1(x,u,w) and y2 = h2(x,u,w). The exogenous input vector is also decomposed as

follows: w =
[
d> w>m

]> ∈ Rq, where d ∈ Rq1 is the vector of non measurable disturbances (e.g.,
sensor noise), wm ∈ Rq2 is the vector of measurable exogenous signals (e.g, altitude, airspeed,
dynamic pressure in an aeronautical context) and q1 + q2 = q.

As the control objective is to make the output signal y1 track the reference r, we are interested in
equilibrium points such that their trimmed values, respectively denoted y1,e and re, coincide. This
requirement can be formulated as a constraint y1,e = re ∈ Ω, where Ω is an open subset of Rp1 .
Furthermore, we consider in this work small disturbances d around their zero nominal value, i.e.,
the disturbance trim condition is such that de = 0. Consequently, the following set of equilibrium
points is introduced:

Eq := {(xe,ue,we) : f(xe,ue,we) = 0, h1(xe,ue,we) = re, de = 0, re ∈ Ω} ,

where xe, ue and we denote, respectively, the trimmed values of the state vector x, the input
vector u and the exogenous input vector w. We assume that Eq can be parametrized by a vector,
called operating point, θ ∈ Θ, where Θ is an open subset of Rs. Accordingly, we assume that there
exists a C1 bijective function µ : Θ→ Eq such that:

(xe,ue,we) ∈ Eq ⇔ ∃θe ∈ Θ : (xe,ue,we) = µ(θe).

Furthermore, it is assumed that the operating point θe depends uniquely on the measured system
output ye and on the measurable endogenous vector wm,e. Note that this assumption directly
implies that for any admissible vectors ye and wm,e, there should be one and only one pair (xe,ue)

3
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such that for (xe,ue,we) ∈ Eq, h(xe,ue,we) = ye. Consequently, we assume there exists a C1

bijective function ν : R → Θ, where

R = {(ye,wm,e) : h(xe,ue,we) = ye, (xe,ue,we) ∈ Eq} ,

such that:

(xe,ue,we) = µ(θe)⇔ θe = ν(ye,wm,e)

For synthesis purposes, the system S is linearized at each operating point θe ∈ Θ (i.e., around
the equilibrium point µ(θe)). Denoting respectively by δx, δu, δw and δy the deviations of x, u,
w and y from their equilibrium value xe, ue, we and ye, the linearization of S yields:

Sl(θe) :=

{
δẋ = AS(θe)δx+ BSu (θe)δu+ BSw(θe)δw

δy = CS(θe)δx+ DSu (θe)δu+ DSw(θe)δw
(2)

where AS(θ), . . . ,DSw(θ) are matrices of suitable dimensions. Thus, the family of linear models
associated to the system S over the operating domain Θ, is defined as follows:

Sl := {Sl(θe) : θe ∈ Θ} .

2.2 Set of linear controllers

In gain-scheduling design, the first objective is to synthesize for each linearized model Sl(θe) ∈ Sl
a linear controller Cl(θe). In this work, it is supposed that the synthesis of the gain-scheduled
controller can be performed based on any gain-scheduling synthesis method, e.g., classic point-to-
point synthesis or modern LPV synthesis methods.

ACc
[
ACi BCr BC1 BC2

]
CCc

[
CCi DCr DC1 DC2

]
× 1

s

δr +

−

δxi

δy1

δy2

δu

θe = ν(ye,wm,e)

Figure 1. Linear controller Cl(θe)

Let the signal δr, δy1 and δy2 be respectively the deviations of r, y1 and y2 from re, y1,e and
y2,e. We consider a linear controller Cl(θe) of the following form (Fig. 1):

Cl(θe) :=


δẋi = δr − δy1

δẋc = ACc (θe)δxc + ACi (θe)δxi + BCr (θe)δr + BC1(θe)δy1 + BC2(θe)δy2

δu = CCc (θe)δxc + CCi (θe)δxi + DCr (θe)δr + DC1(θe)δy1 + DC2(θe)δy2

(3)

where the controller state vector is composed of an integral component δxi ∈ Rp1 , a vector δxc ∈
Rnc and ACi (θ), . . . ,DC2(θ) are matrices of suitable dimensions with all the entries being C1 functions
of the scheduling parameter θ ∈ Θ. Then, the family of linear controllers over the operating domain

4
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Θ is defined as follows:

Cl := {Cl(θe) : θe ∈ Θ} .

In this framework, the design objective is to tune the gains of the fixed structure controller such
that at each operating point θe ∈ Θ, the closed-loop linear system (Fig. 2) composed of Sl(θe)
and Cl(θe), denoted CL(Sl(θe), Cl(θe)), is asymptotically stable and presents an appropriate level
of performance. In the case of LPV control design, one may also guarantee both stability and
performance of the closed-loop LPV system for a predefined rate of variation of the time-varying
parameters.

Sl(θe)

Cl(θe)

δyδu

δr

δw

Figure 2. Closed-loop linear system CL(Sl(θe), Cl(θe))

For the following developments, we introduce a state-space representation (4) of the linear con-

troller Cl(θe) defined in (3) with the controller state vectorX>l =
[
δx>i δx

>
c

]>
, the controller input

U>l =
[
δr> δy>1 δy

>
2

]>
and the controller output Y l = δu. Note that for notational simplicity,

the dependency of controller matrices over the operating point θe has been omitted. Thus, the
linearized dynamics of the controller can be expressed as:{

Ẋ l = AlX l + BlU l

Y l = ClX l + DlU l

(4)

where

Al =

[
0 0

ACi ACc

]
, Bl =

[
Ip1 −Ip1 0
BCr BC1 BC2

]
,

Cl =
[
CCi CCc

]
, Dl =

[
DCr DC1 DC2

]
.

2.3 Problem statement

In the remainder of the paper, we assume that for a given nonlinear system S, a family Cl of
LTI controllers with the structure given by (3) has been designed over the operating domain such
that, at any operating point θe ∈ Θ, CL(Sl(θe), Cl(θe)) is stable and presents an adequate level of
performance. Again, such a family can be obtained by any method of choice (e.g., classic or modern
gain-scheduling synthesis methods). The next step aims at finding a (nonlinear) gain-scheduled

5
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controller:

C :=


ẋk = fk(xk,y, r,θ)

u = hk(xk,y, r,θ)

θ = ν(y,wm)

(5)

that can preserve the input-output property of the linearized closed-loop systems. In other
words, the objective is to find a nonlinear controller C such that, once placed in closed-loop with
S and linearized in the vicinity of any operating point θe ∈ Θ, the resulting dynamic model
coincides with the one obtained during the synthesis phase based on the interconnection of
Sl(θe) and Cl(θe). This is an essential property guaranteeing that the implementation can fully
comply with the controller design. In particular, such an implementation allows avoiding the
occurrence of the hidden coupling terms, which is the main source of performance degradation
and instability once the controller is applied to the original nonlinear plant. In order to formulate
this problem, let CL(Sl(θe), Cl(θe)) : (δr, δw) → δy be the closed-loop system corresponding to
the interconnection of the linear system Sl(θe) and the linear controller Cl(θe). The corresponding
transfer function is denoted by T (Sl(θe), Cl(θe)). The nonlinear closed-loop system corresponding
to the interconnection of the nonlinear system S and the nonlinear controller C is denoted by
CL(S, C) : (r,w) → y. Let CLl(S, C)(θe) be the linearization of CL(S, C) at the operating point
θe ∈ Θ and Tl(S, C)(θe) be the corresponding transfer function. The (nonlinear) gain-scheduled
controller implementation problem can be formulated as follows.

Problem 1. Safe implementation of the gain-scheduled controller: Find a (nonlinear)
gain-scheduled controller C such that for each operating point θe ∈ Θ, the following properties hold:

(1) the closed-loop transfer function Tl(S, C)(θe) coincides with T (Sl(θe), Cl(θe));
(2) if CL(Sl(θe), Cl(θe)) is internally stable (i.e., do not present any unobservable or uncontrol-

lable unstable mode), then so is CLl(S, C)(θe).

In Problem 1, requirement (1) aims at finding a nonlinear gain-scheduled controller C that can
preserve, once linearized in the vicinity of any operating point θe ∈ Θ, the linearized input-output
properties of the closed-loop system CL(Sl(θe), Cl(θe)). As the strategy for elaborating such a
nonlinear controller C might introduce hidden modes, requirement (2) imposes that such hidden
modes must be stable, in order to guarantee the internal stability of the closed-loop system.

If a nonlinear gain-scheduled controller C that solves Problem 1 can be found, the stability and
the performance of the closed-loop nonlinear system depend significantly on the design of the LTI
controllers Cl(θe). However, assuming that the set of LTI controllers Cl is designed such that for
any operating point θe ∈ Θ, CL(Sl(θe), Cl(θe)) is internally stable, the stability of the resulting
closed-loop nonlinear system CL(S, C) can be guaranteed for slow time variations of the reference
input r and the exogenous input w (Lawrence, D., & Rugh, 1990; Rugh, & Shamma, 2000).

2.4 A motivating example

Before presenting a solution to Problem 1, let us consider the following second-order nonlinear
system (Khalil, & Grizzle, 1996): 

ẋ1 = tanx1 + x2

ẋ2 = x1 + u

y = x2

(6)

6
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where u and y are respectively the system input and output. It is assumed that the state variables
x1 and x2 are all available for feedback. The objective is to make the system output y track the
reference signal r.

2.4.1 Controller synthesis

The system equilibrium point such that ye = θe ∈ R is characterized by:

x1,e(θe) = − tan−1 θe, x2,e(θe) = ye(θe) = θe, ue(θe) = tan−1 θe.

Then, the linearization of the system around this equilibrium point yields:
δẋ1 = (1 + θ2

e)δx1 + δx2

δẋ2 = δx1 + δu

δy = δx2

(7)

where δx1, δx2, δy and δu represent deviations of x1, x2, y and u from x1,e(θe), x2,e(θe), ye(θe)
and ue(θe). Around a given operating point characterized by θe, the following linear controller has
been proposed in (Khalil, & Grizzle, 1996):{

δẋi = δr − δy
δu = ki(θe)δxi + k1(θe)δx1 + k2(θe)δx2

(8)

where δr denotes the deviation of the reference signal r from its equilibrium re = θe and with
feedback gains:

ki(θe) = − 1

1 + θ2
e

, k1(θe) = −3− (1 + θ2
e)(3 + θ2

e)−
1

1 + θ2
e

, k2(θe) = −3− θ2
e .

Feedback gains ki(θe), k1(θe) and k2(θe) have been designed so the closed-loop eigenvalues of
system (7) are −1, −1/2± j

√
3/2, for any θe ∈ R.

2.4.2 Naive implementations

A gain-scheduling scheme is required to implement controllers (8) along with the nonlinear system
(6). A naive approach is to substitute δx1, δx2, δy and δu by x1−x1,e(y), x2−x2,e(y), y−ye(y) and
u− ue(y) respectively, and replacing θe by y in (8). This implementation is not adequate because
in this case δx2 is replaced by x2 − x2,e(y) = y − y = 0, leading to the cancellation of the output
feedback with gain k2. Another naive approach is to implement the following nonlinear controller:{

ẋi = r − y
u = ki(y)xi + k1(y)x1 + k2(y)y

(9)

Linearizing the controller dynamics yields{
δẋi = δr − δy
δu = k∗i (θe)δxi + k∗1(θe)δx1 + k∗2(θe)δy

(10)

7
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with k∗i = ki, k
∗
1 = k1 and, denoting xi,e(θe) the controller integral component trim condition,

k∗2(θe) = k2(θe) +
dki
dy

∣∣∣∣
θe

xi,e(θe) +
dk1

dy

∣∣∣∣
θe

x1,e(θe) +
dk2

dy

∣∣∣∣
θe

θe

= k2(θe)− 4(1 + θ2
e) +

4

1 + θ2
e

+ 2

[
θe(7 + 3θ2

e) +
2θe

1 + θ2
e

]
tan−1(θe).

Thus, the considered nonlinear controller (9) admits linearized dynamics (10) different from that
given in (8) which is the one used in the design. Although scheduled gains have been selected in
order to assign the closed-loop eigenvalues at −1, −1/2± j

√
3/2 for all θe ∈ R, this is not the case

for controller (9). In fact, with the naive approach, the closed-loop system is stable for |θe| < θlim

with θlim ≈ 0.417 and unstable otherwise. Obviously, such a naive implementation cannot preserve
the input-output property of the linear closed-loop systems with linear controllers (8).

2.4.3 Velocity-based implementation

In order to preserve the input-output property of the linearized closed-loop systems with linear
controllers (8), one may resort to the velocity-based implementation (Kaminer, Pascoal, Khar-
gonekar, & Coleman, 1995). However, such an implementation requires the temporal derivative of
the variables used for feedback, i.e., ṙ, ẏ1 and ẏ2, which are not readily available in most of the
practical applications. To overcome this issue, it has been proposed in (Kaminer, Pascoal, Khar-
gonekar, & Coleman, 1995) to employ pseudo-derivative of the inputs. Denoting by τ > 0 the
pseudo-derivative parameter, signals ṙ, ẏ1 and ẏ2 are estimated from r, y1 and y2 by resorting to
the transfer function s/(τs+1). The resulting implementation scheme for the set of LTI controllers
Cl is given by (11), as illustrated in Fig. 3. Note that in Fig. 3, the transfer function s/(τs + 1)
has been split for comparison purposes with the subsequent implementation strategy proposed in
Section 3. 

ẋr,f =− τ−1xr,f + τ−1r

ẋy1,f =− τ−1xy1,f + τ−1y1

ẋy2,f =− τ−1xy2,f + τ−1y2

ẋc =Ac(θ)xc + τAi(θ)[r − y1]

+ Br(θ)[r − xr,f ] + B1(θ)[y1 − xy1,f ] + B2(θ)[y2 − xy2,f ]

v =Cc(θ)xc + τCi(θ)[r − y1]

+ Dr(θ)[r − xr,f ] + D1(θ)[y1 − xy1,f ] + D2(θ)[y2 − xy2,f ]

u̇ =τ−1v

θ =ν(y,wm)

(11)

The application of the velocity-based implementation with pseudo-derivative of the inputs (11)
to the motivating example leads to the following implementation of the family of LTI controllers
given by (8): 

ẋx1,f = −τ−1xx1,f + τ−1x1

ẋy,f = −τ−1xy,f + τ−1y

v = τki(y)(r − y) + k1(y)(x1 − xx1,f ) + k2(y)(y − xy,f )

u̇ = τ−1v

(12)

8
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ACc
[
τACi BCr BC1 BC2

]
CCc

[
τCCi DCr DC1 DC2

]
×

1

τs+ 1

×

1

τs+ 1

×

1

τs+ 1

×

1

τs

r + −

xr,f

y1 + −

xy1,f

y2 + −

xy2,f

+

−

v u

θ = ν(y,wm)

Figure 3. Velocity-based implementation with pseudo-derivative of the inputs

The linearization of this controller dynamics at the operating point θe yields in the Laplace domain:

∆u(s) =
ki(θe)

s
(∆r(s)−∆y(s)) +

k1(θe)

τs+ 1
∆x1(s) +

k2(θe)

τs+ 1
∆y(s), (13)

where ∆u(s), ∆r(s), ∆x1(s) and ∆y(s) denote respectively the Laplace transforms of δu, δr, δx1

and δy. Comparing (8) and (13) shows that the pseudo-derivative introduces an undesired pole
in the linearized controller dynamics. It has been proven in (Kaminer, Pascoal, Khargonekar, &
Coleman, 1995; Khalil, & Grizzle, 1996) that for any frozen operating point, the closed-loop system
with this approximation recovers the nominal performances when τ tends to zero. However, there
is no guarantee that this property holds uniformly over the operating domain. Hence, it may be
impossible to find a suitable value of τ over the operating domain. For instance, based on the
Routh Hurwitz criterion, a necessary condition for the closed-loop stability1 with controller (12)
is τ < 1/(1 + θ2

e). Therefore, it is impossible to find a unique τ > 0 such that the closed-loop
system is stable for all θe ∈ R. In practice, it may be sufficient to guarantee the stability over a
compact operating domain, e.g., |θe| ≤ θlim. Even in this case, practical difficulties arise when τ is
too close to zero, because the pseudo derivative amounts to implementing a first order filter with
a pole located in −1/τ . For instance, at the operating point θe = 10, the aforementioned necessary
condition implies τ < 0.01 for closed-loop stability.

3. Enhanced velocity-based implementation

In this section, assuming that the time-derivative of the controller inputs are not available for
feedback control, we introduce an enhanced velocity-based implementation that preserves both
input-output properties and internal stability of the linearized closed-loop system in the neigh-
bourhood of each equilibrium point.

3.1 Proposed strategy

Given the set of linearized controllers Cl, designed to stabilize the closed-loop system
CL(Sl(θe), Cl(θe)) at each operating point θe ∈ Θ, the following gain-scheduled controller is pro-

1Note that this condition is necessary but not sufficient to guarantee the closed-loop stability.

9
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posed for τ > 0, as illustrated in Fig. 4:

C :=



ẋr,f =− τ−1xr,f + τ−1r

ẋy1,f =− τ−1xy1,f + τ−1y1

ẋy2,f =− τ−1xy2,f + τ−1y2

ẋc =ACc (θ)xc + τACi (θ)[xr,f − xy1,f ]

+ BCr (θ)[r − xr,f ] + BC1(θ)[y1 − xy1,f ] + BC2(θ)[y2 − xy2,f ]

v =CCc (θ)xc + τCCi (θ)[xr,f − xy1,f ]

+ DCr (θ)[r − xr,f ] + DC1(θ)[y1 − xy1,f ] + DC2(θ)[y2 − xy2,f ]

ẋv,f =τ−1v

u =xv,f + v

θ =ν(y,wm)

(14)

ACc
[
τACi BCr BC1 BC2

]
CCc

[
τCCi DCr DC1 DC2

]
×

1

τs+ 1

×

1

τs+ 1

×

1

τs+ 1

×

1

τs
×

r + −

y1 + −

y2 + −

xy2,f

+xr,f

−

xy1,f

v xv,f + + u

θ = ν(y,wm)

Figure 4. Enhanced velocity-based implementation

Note that for simplicity, the dependency of controller matrices over the operating point θ has
been omitted on Fig. 4. It can be observed that the proposed strategy presents a similar architecture
to the velocity-based implementation with pseudo-derivative of the inputs (see Fig. 3). Indeed, the
state-space matrices of the set of LTI controllers Cl are involved in an identical manner in these
two strategies. Moreover, pre-filtering and an integral component at the controller output are also
considered. However, as illustrated in the motivating example via the transfer function given in
(13), the pseudo-derivative scheme with pre-filtering components introduces an undesired pole at
−1/τ . In order to cancel this harmful pole, the controller output, which was generated by an
integral component with gain τ−1 (see Fig. 3), is augmented to also include a zero component
located at −1/τ . This can be observed on Fig. 4 because the transfer function between v and u
is given by (τs + 1)/(τs). Finally, in the implementation shown in Fig. 3 the error signal r − y1

is not pre-filtered. Thus, the post-filtering component introduces an uncompensated zero at −1/τ .
To avoid such a problem, the error signal is also pre-filtered in the proposed strategy. From the
controller architecture C, we can draw the following additional observations.

• Every controller input signal z ∈ {r,y1,y2} is pre-filtered by a low-pass filter 1/(τs + 1),
resulting in signal xz,f . Thus, the error signal z−xz,f , which is used for feedback, is composed
of only medium and high frequencies components of the input signal z. Note that for a signal
z evolving around a frozen equilibrium value ze, one can expect that xz,f ≈ ze, thus the

10
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error signal is such that z−xz,f ≈ z−ze. This situation recovers the classic implementation
of a linear controller around a given equilibrium point where only the deviations of the signal
around the equilibrium point are used for feedback.
• The low frequency signal xr,f − xy1,f is also used in the feedback for tracking purposes.

As detailed in the remainder of the paper, it is used to guarantee that in closed-loop the
equilibrium condition y1,e = re is satisfied.
• The controller output is generated via post-filtering. At the equilibrium, one can find that

the signal v generated by the controller is null in steady state, i.e., ve = 0. Therefore, the
adequate controller output signal u in steady state ue is generated by post-filtering via an
integral component.
• The filtering parameter τ is involved in both xc-dynamics and v-equation as a multiplying

factor of both matrices ACi (θ) and CCi (θ). As demonstrated in the next subsection, this
multiplying factor is required to preserve the input-output properties of the linearized closed-
loop system.

3.2 Properties of the enhanced velocity-based implementation

In order to establish the properties of the enhanced velocity-based implementation, the following
assumptions are made:

(A1) for any operating point θe ∈ Θ, the matrix[
ACc (θe) ACi (θe)
CCc (θe) CCi (θe)

]
∈ R(nc+m)×(nc+p1) (15)

is full column rank;
(A2) the dimension of the control input u coincides with the one of the reference signal r, i.e,

m = p1;
(A3) for any operating point θe ∈ Θ, the state-space representation of the linear controller

(Al(θe),Bl(θe),Cl(θe),Dl(θe)) introduced in (4) is stabilizable and detectable.

In particular, (A2) implies that for Cl(θ) the number of integrator channels coincides with the
dimension of the reference signal r. Assumption (A3) implies that all the hidden modes in controller
dynamics correspond to stable poles.

3.2.1 Input-output properties

The main result of this section is the following theorem.

Theorem 1: Suppose that (A1) holds and consider the nonlinear gain-scheduled controller C given
in (14). Then, for any operating point θe ∈ Θ, the closed-loop matrix transfer functions Tl(S, C)(θe)
and T (Sl(θe), Cl(θe)) coincide.

Proof: Let θe ∈ Θ be a given operating point. The equilibrium point of gain-scheduled controller

11
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C is characterized by the following set of algebraic equations:

xr,f,e = re

xy1,f,e = y1,e

xy2,f,e = y2,e

0 = ACc (θe)xc,e + τACi (θe) [re − y1,e]

0 = CCc (θe)xc,e + τCCi (θe) [re − y1,e]

0 = ve

ue = xv,f,e

(16)

In particular the fourth and fifth rows of the above system can be rewritten as follows:[
ACc (θe) ACi (θe)
CCc (θe) CCi (θe)

] [
xc,e

τ [re − y1,e]

]
= 0. (17)

Based on (A1), it follows that re = y1,e, xc,e = 0.

To prove that the matrix transfer functions Tl(S, C)(θe) and T (Sl(θe), Cl(θe)) are equal, it is
sufficient to show that the transfer function resulting from the linearization of the nonlinear gain-
scheduled controller C at the operating point θe coincides with the one resulting from Cl(θe) given
in (3). To this end, the first step is to compute the linearization of controller C given by (14). For
the given operating point θe, the deviation of the controller signals xr,f , xy1,f , xy2,f , xc, v and
xv,f from their equilibrium values specified above are denoted respectively by δxr,f , δxy1,f , δxy2,f ,
δxc, δv and δxv,f . The linarization of the pre-filter and the post-filter gives:

δẋr,f =− τ−1δxr,f + τ−1δr

δẋy1,f =− τ−1δxy1,f + τ−1δy1

δẋy2,f =− τ−1δxy2,f + τ−1δy2

δẋv,f =τ−1δv

δu =δxv,f + δv

(18)

12
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The linearization of the xc-dynamics and v-equation, with θ = ν(y,wm), is given by:

δẋc =ACc (θe)δxc +
∂

∂y

[
ACc (θ)xc]

]∣∣∣∣
e

δy +
∂

∂wm

[
ACc (θ)xc]

]∣∣∣∣
e

δwm

+ τACi (θe)[δxr,f − δxy1,f ] + τ
∂

∂y

[
ACi (θ)[xr,f − xy1,f ]

]∣∣∣∣
e

δy

+ τ
∂

∂wm

[
ACi (θ)[xr,f − xy1,f ]

]∣∣∣∣
e

δwm

+ BCr (θe)[δr − δxr,f ] +
∂

∂y

[
BCr (θ)[r − xr,f ]

]∣∣∣∣
e

δy

+
∂

∂wm

[
BCr (θ)[r − xr,f ]

]∣∣∣∣
e

δwm

−BC1(θe)δxy1,f +
∂

∂y1

[
BC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δy1

+
∂

∂y2

[
BC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δy2 +
∂

∂wm

[
BC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δwm

−BC2(θe)δxy2,f +
∂

∂y1

[
BC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δy1

+
∂

∂y2

[
BC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δy2 +
∂

∂wm

[
BC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δwm

(19)

δv =CCc (θe)δxc +
∂

∂y

[
CCc (θ)xc]

]∣∣∣∣
e

δy +
∂

∂wm

[
CCc (θ)xc]

]∣∣∣∣
e

δwm

τCCi (θe)[δxr,f − δxy1,f ] + τ
∂

∂y

[
CCi (θ)[xr,f − xy1,f ]

]∣∣∣∣
e

δy

+ τ
∂

∂wm

[
CCi (θ)[xr,f − xy1,f ]

]∣∣∣∣
e

δwm

+ DCr (θe)[δr − δxr,f ] +
∂

∂y

[
DCr (θ)[r − xr,f ]

]∣∣∣∣
e

δy

+
∂

∂wm

[
DCr (θ)[r − xr,f ]

]∣∣∣∣
e

δwm

−DC1(θe)δxy1,f +
∂

∂y1

[
DC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δy1

+
∂

∂y2

[
DC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δy2 +
∂

∂wm

[
DC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

δwm

−DC2(θe)δxy2,f +
∂

∂y1

[
DC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δy1

+
∂

∂y2

[
DC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δy2 +
∂

∂wm

[
DC2(θ)[y2 − xy2,f ]

]∣∣∣∣
e

δwm

(20)

Note that the derivatives are evaluated at the equilibrium point characterized by the frozen oper-

13
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ating point θe. In order to simplify (19) and (20), one can note that for z ∈ {y,wm}:

∂

∂z

[
ACc (θ)xc

]∣∣∣∣
e

=

nc∑
k=1

xc,e(k)
∂

∂z

[
ACc,Ck

(ν(y,wm))
]∣∣∣∣
e

= 0 (21)

since xc,e = 0. In (21), xc,e(k) denotes the k-th element of vector xc,e andACc,Ck
denotes the k-th col-

umn of matrix ACc . Similarly, since xr,f,e − xy1,f,e = 0, xc,e = 0, re − xr,f,e = 0, y1,e − xy1,f,e = 0,
and y2,e − xy2,f,e = 0, all the derivatives involved in (19) and (20) are equal to zero except
(∂/∂y1)

[
BC1(θ)[y1 − xy1,f ]

]∣∣
e
, (∂/∂y1)

[
DC1(θ)[y1 − xy1,f ]

]∣∣
e
, (∂/∂y2)

[
BC2(θ)[y2 − xy2,f ]

]∣∣
e

and

(∂/∂y2)
[
DC2(θ)[y2 − xy2,f ]

]∣∣
e
. The first derivative becomes:

∂

∂y1

[
BC1(θ)[y1 − xy1,f ]

]∣∣∣∣
e

=
∂

∂y1

[
p1∑
k=1

[y1(k)− xy1,f (k)]BC1,Ck
(ν(y,wm))

]∣∣∣∣∣
e

=

p1∑
k=1

 ∂

∂y1

[
[y1(k)− xy1,f (k)]BC1,Ck

(θe)
]∣∣∣∣
e

+ [y1,e(k)− xy1,f,e(k)]︸ ︷︷ ︸
=0

∂

∂y1

[
BC1,Ck

(ν(y,wm))
]∣∣∣∣
e


=

p1∑
k=1

[0| . . . |0| BC1,Ck
(θe)︸ ︷︷ ︸

k−th column

|0| . . . |0]

=BC1(θe)

Similarly, the three other derivatives become (∂/∂y1)
[
DC1(θ)[y1 − xy1,f ]

]∣∣
e

= DC1(θe),

(∂/∂y2)
[
BC2(θ)[y2 − xy2,f ]

]∣∣
e

= BC2(θe) and (∂/∂y2)
[
DC2(θ)[y2 − xy2,f ]

]∣∣
e

= DC2(θe). Then, (19)
and (20) can be simplified as:

δẋc =ACc (θe)δxc + τACi (θe)[δxr,f − δxy1,f ] + BCr (θe)[δr − δxr,f ]

+ BC1(θe)[δy1 − δxy1,f ] + BC2(θe)[δy2 − δxy2,f ]

δv =CCc (θe)δxc + τCCi (θe)[δxr,f − δxy1,f ] + DCr (θe)[δr − δxr,f ]

+ DC1(θe)[δy1 − δxy1,f ] + DC2(θe)[δy2 − δxy2,f ]

(22)

It is now straightforward to compute the transfer function of the linearized gain-scheduled con-
troller dynamics at the operating point θe. First, based on (18), the transfer function of the pre-filter
and the post-filter are given by:

∆xr,f (s) =
1

τs+ 1
∆r(s), ∆xy1,f (s) =

1

τs+ 1
∆y1(s),

∆xy2,f (s) =
1

τs+ 1
∆y2(s), ∆u(s) =

τs+ 1

τs
∆v(s),

where ∆u(s), ∆v(s), ∆r(s), ∆y1(s), ∆y2(s), ∆xr,f (s), ∆xy1,f (s) and ∆xy2,f (s) denote respec-
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tively the Laplace transforms of δu, δv, δr, δy1, δy2, δxr,f , δxy1,f and δxy2,f . Thus, it yields

∆r(s)−∆xr,f (s) =
τs

τs+ 1
∆r(s), ∆y1(s)−∆xy1,f (s) =

τs

τs+ 1
∆y1(s),

∆y2(s)−∆xy2,f (s) =
τs

τs+ 1
∆y2(s), ∆xr,f (s)−∆xy1,f (s) =

1

τs+ 1
(∆r(s)−∆y1(s)) .

Finally, based on these transfer functions and by taking the Laplace transformation of (22), the
linearized dynamics of the gain-scheduled controller C can be expressed by the following transfer
function:

∆u(s) =
1

s

[
CCi (θe) + CCc (θe)(sIn −ACc (θe))

−1ACi (θe)
]

(∆r(s)−∆y1(s))

+
[
DCr (θe) + CCc (θe)(sIn −ACc (θe))

−1BCr (θe)
]
∆r(s)

+
[
DC1(θe) + CCc (θe)(sIn −ACc (θe))

−1BC1(θe)
]
∆y1(s)

+
[
DC2(θe) + CCc (θe)(sIn −ACc (θe))

−1BC2(θe)
]
∆y2(s)

(23)

To conclude the proof, it is sufficient to note that, based on the linearized dynamics given by
(3), the transfer function of Cl(θe) is identical to the one given by (23).

3.2.2 Internal stability

As shown in Theorem 1, the enhanced velocity-based implementation (14) can preserve the
input-output properties of the set of linear controllers Cl since for any θe ∈ Θ, Tl(S, C)(θe) =
T (Sl(θe), Cl(θe)). However, it introduces a hidden mode as the pre-filtering pole −1/τ does not ap-
pear in the linearized controller dynamics transfer function. The presence of hidden modes requires
the analysis of the internal stability of the closed-loop system. For this purpose, we consider the
state-space representation of the linear controller Cl(θe) given in (4) and of the linearized dynamics
of controller C which is, based on (18) and (22), given by:{

Ẋa = AaXa + BaUa

Y a = CaXa + DaUa

(24)

where X>a =
[
δx>r,f δx

>
y1,f

δx>y2,f δx
>
c δx

>
v,f

]>
is the controller state vector , U>a =[

δr> δy>1 δy
>
2

]>
the controller input, Y a = δu the controller output,

Aa =


−τ−1Ip1 0 0 0 0

0 −τ−1Ip1 0 0 0
0 0 −τ−1Ip2 0 0

τACi −BCr −τACi −BC1 −BC2 ACc 0
CCi − τ−1DCr −CCi − τ−1DC1 −τ−1DC2 τ−1CCc 0

 ,

15
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Ba =


τ−1Ip1 0 0

0 τ−1Ip1 0
0 0 τ−1Ip2

BCr BC1 BC2
τ−1DCr τ−1DC1 τ−1DC2

 ,

Ca =
[
τCCi −DCr −τCCi −DC1 −DC2 CCc Im

]
,

Da =
[
DCr DC1 DC2

]
.

For notational simplicity, the dependency of the matrices in controller dynamics on operating point
θe is omitted. It is worth mentioning that the intermediate signal v involved in the gain-scheduled
controller dynamics C given by (14) is neither a state variable nor a controller output. Therefore,
it does not explicitly appear in the state-space model given by (24). However, the δv-equation
is considered for substituting δv into both δxv,f -dynamics and δu-equation, which results in the
state-space representation given in (24).

Lemma 1: Assume that (A1) holds. For any λ ∈ R+, λ is an unobservable mode of (Aa,Ca) if
and only if it is an unobservable mode of (Al,Cl).

Proof: Let X =
[
x>1 x

>
2 x

>
3 x

>
4 x

>
5

]>
be a non zero vector with suitable dimensions such that

AaX = λX and CaX = 0. Then we have:

−1

τ

x1

x2

x3

 = λ

x1

x2

x3


(τACi −BCr )x1 + (−τACi −BC1)x2 −BC2x3 + ACcx4 = λx4(

CCi − τ−1DCr
)
x1 +

(
−CCi − τ−1DC1

)
x2 − τ−1DC2x3 + τ−1CCcx4 = λx5

(τCCi −DCr )x1 + (−τCCi −DC1)x2 −DC2x3 + CCcx4 + x5 = 0

(25)

As λ ≥ 0 > −1/τ , the first equations of (25) imply that x1, x2 and x3 are zero vectors. Then we
have: 

ACcx4 = λx4

τ−1Ccx4 = λx5

CCcx4 + x5 = 0

(26)

From the two last equations of (26), we obtain (1/τ + λ)x5 = 0, which implies x5 = 0. Thus it
yields: {

ACcx4 = λx4

CCcx4 = 0
(27)

As X is non zero, it implies that x4 is non zero since x1, x2, x3 and x5 are zero vectors.
Consequently, λ is an unobservable mode of (ACc ,C

C
c ). Conversely, if λ is an unobservable mode

of (ACc ,C
C
c ), it is sufficient to consider x1 = 0, x2 = 0, x3 = 0, x5 = 0 and x4 6= 0 such that

16
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ACcx4 = λx4 and CCcx4 = 0 to show that λ is an unobservable mode of (Aa,Ca).

It remains now to show that λ is an unobservable mode of (ACc ,C
C
c ) if and only if it is an

unobservable mode of (Al,Cl). We first consider the case λ 6= 0. If there exists a non zero vector
x such that ACcx = λx and CCcx = 0. Then X = [0> x>]> is a non zero vector such that
AlX = λX and ClX = 0. Conversely, assume that there exists a non zero vector X = [x>1 x

>
2 ]>

such that AlX = λX and ClX = 0. The first equality implies λx1 = 0. As λ 6= 0, we have
x1 = 0, which yields x2 6= 0, ACcx2 = λx2 and CCcx2 = 0.

In the case λ = 0, AlX = λX = 0 and ClX = 0 imply:[
ACi ACc
CCi CCc

]
X = 0.

Based on (A1), we have X = 0, and hence λ = 0 cannot be an unobservable mode of (Al,Cl).
Similarly λ = 0 cannot be an unobservable mode of (ACc ,C

C
c ) since based on (A1), ACcx = λx = 0

and CCcx = 0 imply x = 0.

Lemma 2: For any λ ∈ R∗+, λ is an uncontrollable mode of (Aa,Ba) if and only if it is an
uncontrollable mode of (Al,Bl).

Proof: Let X =
[
x>1 x

>
2 x

>
3 x

>
4 x

>
5

]>
be a non zero vector with suitable dimensions such that

X>Aa = λX> and X>Ba = 0. After some algebra, it is equivalent to the following system:

[
1

λ
x>4 ACi , x

>
4

]
Al = λ

[
1

λ
x>4 ACi , x

>
4

]
[

1

λ
x>4 ACi , x

>
4

]
Bl = 0

x>1 =
τ

λ
x>4 ACi

x2 = −x1

x3 = 0

x5 = 0

(28)

To conclude that λ is an uncontrollable mode of (Al,Bl), it is sufficient to note that X 6= 0 if and

only if x4 6= 0, i.e., if and only if [1/λx>4 Ai , x
>
4 ] 6= 0. Conversely, let Z =

[
z>1 z

>
2

]>
be a non zero

vector with suitable dimensions such that Z>Al = λZ> and Z>Bl = 0. The first equality implies
that z>2 ACi = λz>1 . Consequently, as λ 6= 0 and Z is a non zero vector, we have z2 6= 0. Therefore,
with x4 = z2, it sufficient to consider x1, x2, x3 and x5 as defined by (28) to conclude that λ is
an uncontrollable mode of (Aa,Ba).

Lemma 3: Assume that (A1) and (A2) hold. Then a zero-valued λ cannot be an uncontrollable
mode of (Aa,Ba), neither (Al,Bl).

Proof: Let X =
[
x>1 x

>
2 x

>
3 x

>
4 x

>
5

]>
be a vector with suitable dimensions such that X>Aa = 0

17



August 19, 2016 International Journal of Control Draft

and X>Ba = 0. After some algebra, it is equivalent to the following system:

0 = [τx>4 , x
>
5 ]

[
ACc ACi
CCc CCi

]
x>1 = −τx>4 BCr − x>5 DCr

x>2 = −τx>4 BC1 − x>5 DC1

x>3 = −τx>4 BC2 − x>5 DC2

(29)

Based on assumptions (A1) and (A2), matrix (15) is square and full column rank, and hence, it is
invertible. Consequently, system (29) is equivalent to X = 0.

Now, let X =
[
x>1 x

>
2

]>
be a vector with suitable dimensions such that X>Al = 0 and X>Bl =

0. Then, X>Al = 0 implies: [
x>2 ,0

>
] [

ACc ACi
CCc CCi

]
= 0

Since matrix (15) is invertible, x2 = 0. Furthermore, as X>Bl = 0 implies x>1 + x>2 BCr = 0, we
conclude that x1 = 0 and then X = 0.

We can now introduce the following main result.

Theorem 2: Assume that (A1), (A2) and (A3) hold. Then, (Aa,Ba,Ca,Da) is stabilizable and
detectable. Furthermore, assume that CL(Sl(θe), Cl(θe)) is internally stable, then so is CLl(S, C)(θe).

Proof: Based on Lemmas 1, 2 and 3, it is straightforward to conclude that (Aa,Ba,Ca,Da) is
stabilizable and detectable since (A3) assumes that (Al,Bl,Cl,Dl) is stabilizable and detectable.
Furthermore, if we assume that CL(Sl(θe), Cl(θe)) is internally stable, we can directly conclude that
CLl(S, C)(θe) is internally stable since the internal stability property does not depend on specific
stabilizable and detectable state-space representations of the plant and the controller (Zhou,
Doyle, & Glover, 1996).

Theorems 1 and 2 show that the filtering parameter τ > 0 has no impact on the controller
transfer function and the internal stability of the closed-loop system. Consequently, τ can be
tuned based on the behaviour of the nonlinear closed-loop system CL(S, C). This is a fundamental
difference from the classic velocity-based implementation using pseudo-derivative. Furthermore,
we have demonstrated that a nonlinear gain-scheduled controller C solving Problem 1 can always
be found. Therefore, assuming that the set of LTI controllers Cl has been designed such that for
any operating point θe ∈ Θ, CL(Sl(θe), Cl(θe)) is internally stable, the stability of the resulting
closed-loop nonlinear system CL(S, C) is guaranteed for slow time variations of the reference input
r and the exogenous input w (Lawrence, D., & Rugh, 1990; Rugh, & Shamma, 2000).

3.2.3 Selection of the pre/post-filtering strategy

In this subsection, we investigate what kind of pre/post-filtering can be used in the enhanced
velocity-based implementation so that Theorems 1 and 2 hold.

Based on Fig. 5, we are looking for scalar rational transfer functions Fr(s), Fy1(s), Fy2(s) and

Fv(s) such that the gain-scheduled controller C̃ given by (30) solves Problem 1. In this setting, the
parameter τ ∈ R∗ is still a scaling factor for both ACi (θ) and CCi (θ), and
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ACc
[
τACi BCr BC1 BC2

]
CCc

[
τCCi DCr DC1 DC2

]
×

Fr(s)

×

Fy1(s)

×

Fy2(s)

×

Fv(s)

r + −

y1 + −

y2 + −

xy2,f

+xr,f

−

xy1,f

v u

θ = ν(y,wm)

Figure 5. Enhanced velocity-based implementation: pre/post-filtering strategy

C̃ :=



xr,f =Fr(s)r

xy1,f =Fy1(s)y1

xy2,f =Fy2(s)y2

ẋc =ACc (θ)xc + τACi (θ)[xr,f − xy1,f ]

+ BCr (θ)[r − xr,f ] + BC1(θ)[y1 − xy1,f ] + BC2(θ)[y2 − xy2,f ]

v =CCc (θ)xc + τCCi (θ)[xr,f − xy1,f ]

+ DCr (θ)[r − xr,f ] + DC1(θ)[y1 − xy1,f ] + DC2(θ)[y2 − xy2,f ]

u =Fv(s)v

θ =ν(y,wm)

(30)

Analyzing the proof of Theorem 1, the key point enabling to avoid the emergence of the hidden
coupling terms in the linearized dynamics of the gain-scheduled controller lies in the trim conditions
(16). Indeed, if these trim conditions are not satisfied, (19) and (20) cannot be simplified, leading
to the occurrence of the hidden coupling terms. Therefore, to avoid the emergence of these terms
when linearizing the gain-scheduled controller C̃, the trim conditions must satisfy: xr,f,e = re,
xy1,f,e = y1,e, xy2,f,e = y2,e and ve = 0. In this case, based on Assumption (A1) and equation (17),
it will imply the two remaining key constraints re = y1,e and xc,e = 0. The condition xr,f,e = re,
as xr,f = Fr(s)r, is equivalent to Fr(0) = 1. Similarly, we have Fy1(0) = Fy2(0) = 1. Finally, to
impose ve = 0, as u = Fv(s)v, Fv(s) must contain an integral component, i.e., Fv(s) = F ∗v (s)/s
with F ∗v (s) a rational transfer function such that F ∗v (0) 6= 0. Under these conditions, as they prevent
the emergence of the hidden coupling terms, a direct computation, similar to the one achieved in
the proof of Theorem 1, shows that:

∆u(s) =τFv(s)
[
CCi (θe) + CCc (θe)(sIn −ACc (θe))

−1ACi (θe)
]

(Fr(s)∆r(s)− Fy1(s)∆y1(s))

+ Fv(s)(1− Fr(s))
[
DCr (θe) + CCc (θe)(sIn −ACc (θe))

−1BCr (θe)
]
∆r(s)

+ Fv(s)(1− Fy1(s))
[
DC1(θe) + CCc (θe)(sIn −ACc (θe))

−1BC1(θe)
]
∆y1(s)

+ Fv(s)(1− Fy2(s))
[
DC2(θe) + CCc (θe)(sIn −ACc (θe))

−1BC2(θe)
]
∆y2(s)

(31)

The objective is then to select the pre/post filtering transfer functions such that (31) coincides
with the linear controller dynamics Cl(θe) given in (23). [Reviewer 1 - Remark 3] As we are looking
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for a generic scheme, this equality must hold for any matrices ACc (θe), . . . ,D
C
2(θe) with suitable

dimensions. It allows in the subsequent developments considering specific values of these matrices
in order to derive the properties of the desired filters.

Taking ∆r(s) = ∆y1(s) = 0, since the equality between (31) and (23) must hold for any ∆y2(s),
we have

[Fv(s)(1− Fy2(s))− 1]
[
DC2(θe) + CCc (θe)(sIn −ACc (θe))

−1BC2(θe)
]

= 0.

[Reviewer 1 - Remark 3] Again, as we aim at finding a generic implementation, this equality must
hold for any matrices ACc (θe), . . . ,D

C
2(θe) with suitable dimensions. In particular, it must hold for

CCc (θe) = 0 and a non zero matrix DCc (θe). Thus, we deduce that

Fv(s)(1− Fy2(s)) = 1. (32)

Then, considering the equality between (23) and (31) while taking ∆y2(s) = 0, ∆r(s) = ∆y1(s)
and CCc (θe) = 0, it yields

[Fv(s)(1− Fr(s))− 1] DCr (θe) + [Fv(s)(1− Fy1(s))− 1] DC1(θe) = 0.

In particular, choosing DCr (θe) = Ip1 and DCy1(θe) = 0, the last matrix equality boils down to

Fv(s)(1− Fr(s)) = 1. (33)

Conversely, choosing DCr (θe) = 0 and DCy1(θe) = Ip1 we have

Fv(s)(1− Fy1(s)) = 1. (34)

Thus, based on (32-34),

Fr(s) = Fy1(s) = Fy2(s) = 1− 1

Fv(s)
. (35)

Finally, considering again the equality between (23) and (31) while taking ∆y2(s) = 0, ∆y1(s) =
−∆r(s) and CCc (θe) = 0, we have, based on (35),[

τFv(s)Fr(s)−
1

s

]
CCi (θe) = 0.

Moreover, as this matrix equality must hold for any matrix CCi (θe) with suitable dimensions, we
have

τFv(s)Fr(s) =
1

s
. (36)

Combining (35) and (36), simple algebra yields Fr(s) = Fy1(s) = Fy2(s) = 1/(τs+ 1) and Fv(s) =
1 + 1/(τs). Obviously, these results are compatible with the trim conditions formerly established,
i.e., Fr(0) = Fy1(0) = Fy2(0) = 1 and Fv(s) presents an integral component. Consequently, the
filters proposed in the enhanced velocity-based implementation (14) are the only possible choice
for which Theorem 1 holds.
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4. Case study

In the following, we illustrate the approach proposed in this paper through the implementation of
a pitch-axis missile autopilot.

4.1 Missile Nonlinear Model and Self-Scheduled Controller

4.1.1 Nonlinear Model

The considered pitch-axis model of the missile involving the angle of attack α and the pith rate q
is the one given by (Reichert, 1992):{

α̇ = KαMCn (α, δ,M) cos(α) + q

q̇ = KqM
2Cm (α, δ,M)

(37)

where Cn (α, δ,M) and Cm (α, δ,M) are respectively the lift and the pitching-moment aerodynamic
coefficients. The dynamics of the actual tail deflection δ related to the commanded tail deflection
u are modelled by a second order system. The system output is the normal acceleration η given
by:

η = KzM
2Cn (α, δ,M) . (38)

The measured outputs available for feedback are η and q. The angle of attack α (an endogenous
variable) and the Mach number M (an exogenous variable) are used as scheduling parameters. The
plant input is the commanded tail deflection δc. Further description of the physical parameters
involved in the model, including their numerical values, are given in (Reichert, 1992).

4.1.2 Gain-Scheduled Controller Design

The control objective is to design an autopilot allowing to track commanded normal accelerations
ηc over the flight domain M ∈ [2, 4] and α ∈ [−20˚, 20˚]. Among other possibilities, this design
can be achieved via a self-scheduling approach based on eigenstructure assignment techniques (Le
Gorrec, Magni, Carsten, & Chiappa, 1998). Such a procedure has been applied in (Döll, Le Gorrec,
Ferreres, & Magni, 2001) for the following set of LTI controllers parametrized by the operating
point θe = (αe,Me): {

δẋi = δηc − δη
δu = Ki(θe)δxi +Kη(θe)δη +Kq(θe)δq

(39)

where Ki, Kη and Kq are quadratic functions of the flight condition θe. The scheduled gains have
been tuned based on the six operating points and associated eigenvalue assignment of Tab. 1. Their
numerical values are given in (Döll, Le Gorrec, Ferreres, & Magni, 2001).

4.2 Gain-scheduled controller implementation

This subsection presents the results and the comparison of the performance of the naive, the
velocity-based and the enhanced velocity-based implementations.
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Table 1. Operating points and associated eigenvalue assignment considered in the synthesis

Me αe λr λc

4 20 deg −14 −19± 19j
4 0 deg −13.9 −15± 16j
2 0 deg −12 −12± 12j
2 20 deg −13.5 −13.5± 13.5j
4 10 deg −13.7 −13.7± 13.7j
3 0 deg −12.5 No constraint

4.2.1 Naive implementation

The naive implementation has a structure similar to that of the LTI controllers used for design
purposes:

Cnaive :=

{
ẋi = ηc − η
u = Ki(α,M)xi +Kη(α,M)η +Kq(α,M)q

However, as scheduled gains are varying according to the state signal α, the linearization of Cnaive

at a given operating point θe brings hidden coupling terms that are not present in (39). For
instance, at the operating point Me = 4 and αe = 10 deg, the assigned poles are located at −13.7
and −13.7 ± 13.7j. Nevertheless, with the naive implementation, the actual pole location is very
different, i.e., −47.9 and −1.49±10.6j. Particularly, the complex pair exhibits a very low damping,
leading to large overshoots.

4.2.2 Velocity-based implementation

As the measurement of η̇ and q̇ is not available for feedback, the velocity-based implementation is
achieved via the pseudo derivative of the normal acceleration η and the pitch-rate q with a constant
τ > 0:

Cvel :=


η̇f = τ−1ηf − τ−1η

q̇f = τ−1qf − τ−1q

v = τKi(α,M)(ηc − η) +Kη(α,M)(η − ηf ) +Kq(α,M)(q − qf )

u̇ = τ−1v

As mentioned previously, the pseudo derivative introduces an extra dynamic component in the
controller, which is not considered in the design.

4.2.3 Enhanced velocity-based implementation

The enhanced velocity-based implementation, denoted Cvel+, is of the following form for τ > 0:

Cvel+ :=



η̇c,f = τ−1ηc,f − τ−1ηc

η̇f = τ−1ηf − τ−1η

q̇f = τ−1qf − τ−1q

v = τKi(α,M)(ηc,f − ηf ) +Kη(α,M)(η − ηf ) +Kq(α,M)(q − qf )

ẋv,f = τ−1v

u = xv,f + v
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Assuming that Ki(α,M) 6= 0 over the operating domain, Theorems 1 and 2 guarantee that Cvel+

is a safe implementation of the designed gain-scheduled controller.

4.3 Nonlinear simulations

The temporal behaviour of the three closed-loop systems with nonlinear controllers Cnaive, Cvel and
Cvel+, is simulated for a realistic profile of the Mach number (Reichert, 1992): Ṁ =

1

vs

(
−|η|g sin(|α|) +AxM

2 cos(α)
)

M(0) = 3.0

Simulation results are depicted in Figs. 6 and 7. Note that the open-loop pitch-axis missile
benchmark model, when the normal acceleration η is selected as the output, exhibits unstable
zeros resulting in an initial undershoot in their step-responses. As predicted for the naive imple-
mentation Cnaive, the hidden coupling terms interfere in the closed-loop dynamics, leading to large
overshoots for important command inputs. On the contrary, Fig. 6(a) shows that both velocity-
based Cvel and enhanced velocity-based Cvel+ implementations work well with a similar behaviour
for sufficiently small filtering parameters, e.g., τ = 0.002. The evolution of the Mach number, which
is the exogenous scheduling variable, is depicted in Fig. 6(b). Nevertheless, small values of τ may
not be suitable in practice particularly due to measurement noises in the closed-loop system. As
illustrated, for higher values of the filtering parameters, e.g., τ = 0.02 (see Fig. 7), the closed-
loop system performance of the velocity-based implementation Cvel is significantly degraded due
to the interference of the pole introduced by the pseudo-derivative scheme. In sharp contrast, the
enhanced velocity-base implementation Cvel+ is mostly insensitive to the variation of the filtering
parameter τ .

Time (s)
0 1 2 3 4 5

η
 (

g)

-30

-20

-10

0

10

20

30

40

Naive
Velocity
Enhanced
ηc

(a) Normal acceleration

Time (s)
0 1 2 3 4 5

M

2.3
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Figure 6. Comparison of the closed-loop response to a series of step commands in acceleration - τ = 0.002

Finally, the impact of the choice of the filtering parameter on the system in closed loop when
white noise is introduced in the feedback loop by the measurement of both system outputs and
scheduling variables is illustrated in Figs. 8 and 9. [Reviewer 1 - Remark 4] As expected, as both
implementations are based on a pseudo-derivation scheme employing the transfer function s/(τs+
1), a small value of the parameter τ will induce noise amplification, which may significantly degrade
the performance of the closed-loop system for both strategies. Thus, an arbitrary small value of the
filtering parameter τ is not appropriate for practical applications. However, in accordance with the
conclusions of the above analysis, a larger value of the pseudo-derivative parameter also degrades
the performance of the closed-loop system for the velocity-based implementation Cvel (see Fig. 8).
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Figure 7. Comparison of the closed-loop to a series of step commands in acceleration - τ = 0.02

Conversely, the enhanced velocity-based implementation Cvel+ allows much higher values of the
filtering parameter τ . Consequently, it results in an improved closed-loop performance, even in the
presence of noise in the feedback loop (see Fig. 9).
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Figure 8. Closed-loop response for the velocity-based implementation Cvel in the presence of white noise in the feedback loop

5. Conclusion

This paper introduced an enhanced velocity-based algorithm for safe implementation of gain-
scheduled controllers. Based on a parameter dependent set of LTI controllers that are designed
to ensure the stability and performance of the linear closed-loop system for any frozen operating
point, the proposed gain-scheduled controller implementation preserves both internal stability and
input-output properties of the linearized closed-loop system. Furthermore, this implementation is
relatively simple, with a gain-scheduled controller presenting an architecture similar to that of the
original controller. The efficiency of the proposed approach has been demonstrated on the imple-
mentation of a pitch-axis missile autopilot. The simulation results confirmed the performance of
the control system using the proposed new approach predicted by theoretical analysis.
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Figure 9. Closed-loop response for the enhanced velocity-based implementation Cvel+ in the presence of white noise in the

feedback loop
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