Technical Details
All sound files are wave (.wav) files at 44.1kHz/16 bit. They are created in MATLAB (see scripts bellow) and mixed down in Cubase SX3. When presented to participants, their intensity levels were equalized using a dB-meter on monitoring headphones (Sennheiser HD 380 Pro; 54Ω, 8-27000Hz, THD<0.1%).
All files are 750, 1500, or 3000 ms long in duration, which is indicated by the file name ending _750, _1500, or _3000, respectively.

Musical Chords (Folder ‘Musical_Chords’)
Consonant stimulus (file name containing ‘cons_’): An A major chord composed by the notes A4, C5, and E5 that are played simultaneously. Each note consists of three harmonic frequencies (e.g., note A4 consists of the frequencies 440, 880, and 1320Hz; that is, the fundamental frequency and the first two harmonics).
Dissonant stimulus (file name containing ‘diss_’): The consonant stimulus described above with two pitch-shifted versions of itself. The pitch-shifted versions being one tone above and a tritone below the original pitch. This is a manipulation adopted by Koelsch et al. (2006) on permanently dissonant musical excerpts (Figure 1).
[image:]
Figure 1. Power spectra of A major chord (top) and its permanently dissonant counterpart (bottom). The extra frequency components (dotted-lines) of the dissonant counterpart belong to the pitch-shifted versions of the original chord and form intervals that are highly dissonant creating beats.

Musical intervals (Folder ‘Musical_Intervals’)
The musical intervals (i.e., minor 2nd, perfect 5th, octave) consist of two complex tones with each complex tone consisting of three pure tones. All intervals have A4 (440Hz) as the root tone (i.e., the lower tone of the interval).
Minor 2nd (file name containing ‘m2_’): The musical interval of minor 2nd (fundamental frequency ratio 16:15). The ‘m2_’ files are the notes A4 and Bb4 played simultaneously.
Perfect 5th (file name containing ‘p5_’): The musical interval of perfect 5th (fundamental frequency ratio 3:2). The ‘p5_’ files are the notes A5 and E5 played simultaneously.
Octave (file name containing ‘oct_’): The musical interval of octave (fundamental frequency ratio 2:1). The ‘oct_’ files are the notes A4 and A5 played simultaneously.
Harmonic sequence (file name containing ‘h_’): The frequency components of the notes that constitute the musical intervals follow a harmonic sequence. Each complex tone contains the fundamental frequency (f), the second partial is the double of f, and the 3rd partial is the treble of f (see fig.2 for an example of the harmonic octave).
Inharmonic sequence (file name containing ‘i_’): The frequency components of the notes that constitute the musical intervals follow an inharmonic sequence. Each complex tone contains the f, the 2nd partial is f multiplied by 1.915, and the 3rd partial is f multiplied by 3.102 (see fig.2 for an example of the inharmonic octave).
[image:]
Figure 2. Power spectra of the musical interval of octave consisting of the complex tones A4 and A5 with harmonic (top) and inharmonic timbre (bottom). Dotted lines represent the frequency components that are not integer multiples of the fundamental frequency. The ratio of the fundamental frequencies that constitute the interval remains to be 2:1 in both cases.

References
Koelsch, S., Fritz, T., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250.

MATLAB scripts
A. Script for the creation of a major and a minor triad for a given timbre
function akkornto
% creates a major and a minor triad for a given timbre

Fs=44100; nbits=16;% frequency and bit rate of wav file

f1 = [1 2 3].*440;
p1 = [1 1 1];
d1 = 3;
t1 = linspace(1/Fs, d1, d1*Fs); % time
y1 = zeros(1,Fs*d1); % initialize sound data
for n=1:length(p1);
 y1 = y1 + p1(n)*cos(2*pi*f1(n)*t1); % sythesize waveform
end

y1 = .5*y1/max(y1);% normalize. Coefficient controls volume.
intervals = [6/5 5/4];
names = {'minor','Major'};
p2 = p1;
d2 = d1;
t2 = linspace(1/Fs, d2, d2*Fs);

for i = 1:numel(intervals)

 f2 = f1 .* intervals(i);
 y2 = zeros(1,Fs*d2);

 for n=1:length(p2);
 y2 = y2 + p2(n)*cos(2*pi*f2(n)*t2); % synthesize waveform
 end

 y2 = .5*y2/max(y2);% normalize. Coefficient controls volume.
	
p3=p1;
d3=d1;
t3 = linspace(1/Fs, d3, d3*Fs);
f3=f1.*3/2; %builds the perfect 5th of the triad
y3=zeros(1,Fs*d3);
y3=y3 + p3(n)*cos(2*pi*f3(n)*t3);

 y = y1 + y2 + y3;
 y = .5*y/max(y);

 wavwrite(y, Fs, nbits, names{i})
 plot(t1,y)
[bookmark: _GoBack]end
 B. Script for the creation of all musical intervals within the octave for a given timbre of three component frequencies
function diastimata % Creates all the musical intervals within the octave for a given timbre of three component frequencies
Fs=44100; nbits=16;% frequency and bit rate of wav file

f1 = [1 1.915 3.102] .* 440;
p1 = [1 1 1];
d1 = 2;
t1 = linspace(1/Fs, d1, d1*Fs); % time
y1 = zeros(1,Fs*d1); % initialize sound data
for n=1:length(p1);
 y1 = y1 + p1(n)*cos(2*pi*f1(n)*t1); % synthesize waveform
end

y1 = .5*y1/max(y1);% normalize. Coefficient controls volume.

intervals = [16/15 9/8 6/5 5/4 4/3 7/5 3/2 8/5 5/3 7/4 15/8 2];
names = {'m2nd','Ma2nd','m3','Ma3','p4','tritone','p5','m6','Ma6','m7','Ma7','octave'};
p3 = p1;
d3 = d1;
t3 = linspace(1/Fs, d3, d3*Fs);

for i = 1:numel(intervals)

 f3 = f1 .* intervals(i);
 y3 = zeros(1,Fs*d3);

 for n=1:length(p3);
 y3 = y3 + p3(n)*cos(2*pi*f3(n)*t3); % synthesize waveform
 end

 y3 = .5*y3/max(y3);% normalize. Coefficient controls volume.

 y = y1 + y3;
 y = .5*y/max(y);

 wavwrite(y, Fs, nbits, names{i})
end
image1.png

image2.PNG

