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NMR-based Metabolomic Analysis 
Here we briefly summarize the previously published description of our methods 13.  Serum samples were filtered through 3-kDa cut-off centrifuge filter units (Amicon Micoron YM-3; Sigma-Aldrich, St. Louis, MO) to remove blood proteins.  Specifically, an aliquot of 350 µL of each serum sample was transferred to the filter device and centrifuged at 10,000 rpm for 20 minutes to remove macromolecules such as protein and lipoproteins. An appropriate volume of a 50-mmoL NaH2PO4 buffer (pH 7) solution was added to any sample that had a volume <300 L to attain a final volume of 300 L. For these samples we adjusted metabolite concentrations to correct for any buffer addition. Subsequently, 35 L of D2O and 15 L of buffer solution (11.667 mmoL disodium-2, 2-dimethyl-2-silceptentane-5-sulphonate, 730 mmoL imidazole and 0.47% NaN3 in H2O) was added to the sample.
	A total of 350 L of sample was transferred to a micro cell NMR tube (Shigemi, Inc., Allison Park, PA). 1H-NMR spectra were collected on a 500-MHz Inova (Varian Inc, Palo Alto, CA) spectrometer with a 5-mm HCN Z-gradient PFG room-temperature probe. The singlet produced by the disodium-2,2-dimethyel-2-silcepentane-5-sulphonate methyl groups was used as  an internal chemical shift standard (0 ppm) and also used as a reference for metabolite quantification. The 1H-NMR spectra were analyzed using the Chenomx NMR Suite Professional Software package (Version 7.6:Chenomx Inc. Edmonton, Alberta, Canada). We were able to perform quantitative and qualitative metabolite analysis of the observed NMR spectrum, with each sample typically yielding 45-50 metabolite concentrations. Each spectrum was evaluated by at least 2 NMR spectroscopists to minimize errors.

Statistics

The statistical methods used were as previously described by us and others. Log scaling was performed to normalize the metabolite concentration data.  Principal component analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were performed to identify distinct metabolite patterns 15. PCA is an unsupervised classification technique for transforming a complex collection of data points such that the important properties of the sample can be more simply displayed along the X- and Y-axes. Two discrete clusters on the PCA plot indicate that there are significant metabolite differences between the normal and control groups.
Partial Least Squares Discriminant Analysis (PLS-DA) is used to enhance the separation between the groups by changing and rotating the PCA components. To minimize the possibility that the observed separation on PLS-DA is due to chance, permutation testing was performed. This involved repeated (2000 times) data sampling, with different random labeling and the recalculation of each PLS-DA plot and its degree of group separation. A significant p-value indicates that the separation observed between groups is not due to chance. Variable Importance in Projection curves from the PLS-DA data were used to rank metabolites based on their importance in discriminating late-PE from control groups. The higher the value on the X-axis for a given metabolite the more important it is as a discriminator. The MetaboAnalyst (v3.0) computer program was used to perform all PCA and PLS-DA analyses 16-18. Custom programs written using the R statistical software package (http://www.r-project.org) and STATA 12.0 (Statacorp, Texas, USA; http://www.stata.com) were used to perform all other statistical analyses.
	Mean (SD) metabolite concentrations in late-onset preeclampsia vs. controls were compared using a two-tailed t-test. The Mann Whitney U test was used in comparing metabolite concentrations between groups that were not normally distributed. False Discovery Rate (FDR) p-values (q-values) were calculated to take into consideration the corrections needed for multiple comparisons.
  Logistic regression analysis was used to generate the optimal predictive models for late-PE prediction. Independent variables including fetal CRL measurements, uterine artery PI values, maternal age, parity, weight and ethnicity, smoking and medical disorders were considered in the predictive models. Three such models based on 1) metabolites only, 2) metabolites plus uterine artery Doppler and 3) metabolites, Doppler measurements and maternal demographic characteristics were eventually derived.  
Data were log-transformed as indicated, and metabolites with a p-value < 0.3 (using univariate analysis) were selected for model generation. A k-fold cross-validation (CV) technique was used to ensure that the logistic regression models were robust 19. In k-fold CV, the entire sample is randomly divided into k equal sized subsets. Of the k subsets, only one subset is used as the validation data for testing the model, and the remaining (k-1) subsets are used as training set to generate the model. CV was applied in both the variable selection process and the model performance comparison. 
To develop and test the predictive models, the combined dataset (previously published plus new patients) was randomly split into a discovery set (“training set”; 60% of the cohort) and a validation set (“test- set”; 40% of the cohort). Random stratification along with allocation of patients and controls was performed to minimize demographic differences and other potentially confounding variables between the two groups. The discovery (or training) group was used to develop the predictive algorithm (i.e. the logistic regression equation) and model optimization was achieved using cross-validation. The performance of each model over these rounds was then averaged. This results in predictive biomarker models that are both robust and optimal. The models were then tested on the independent validation group, which consisted of cases that had not been used in the generation of the original models.  
For the selection of predictor variables in the regression models, LASSO (Least Absolute Shrinkage and Selection Operator) 20 and stepwise variable selection were utilized for optimizing all the model components 21 via 10-fold cross-validation. The threshold used for inclusion of a metabolite or other clinical/phenotypic variables required that the particular variable be selected > 8 times of the 10 cross-validations. 
The three different logistic regression models based on metabolite subsets were developed with 10-fold cross-validation., Areas under the Receiver Operating Characteristic curve (AUROC or AUC) were calculated as previously described 19 to compare the performance of each model.  Sensitivity and specificity values were also calculated for each model. The performance of each model with different subsets was compared using the average of the 10-fold CV’s performance. Finally, the most parsimonious logistic regression models were developed with the selected metabolites using the entire discovery dataset.  


