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SIMULATION STUDY

In this supplement we conduct a simulation study to evaluate the performance of the
proposed method for functional principal component analysis (FPCA) of generalized
quantiles. We run the simulation for independent as well as for autocorrelated
functional observations to demonstrate robustness to temporal dependence. We
follow the simulation setup of Guo et al. (2015) and Tran et al. (2014), who both
suggest alternative approaches for modeling independent functional tail event curves.

The data Yjy,j=1,..., T,k =1,..., N is simulated from the model
Vi = p(ty) + o fi(ty) + ozpfo(ty) + € (1)

where ¢; are equidistant sampling points in [0,1] with ¢, = /T, p(t) = 1 +
t + exp{—(t — 0.6)2/0.05} is the mean function, fi(t) = v/2sin(27t) and fo(t) =
V2 cos(2nt) are the principal component functions and oy, and ayy are principal
component scores. The principal component scores are generated either (1) indepen-

dently from a N(0,36) and N(0,9) distribution, respectively or (2) from a VAR(1)



process with
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The error €, is generated from three different distributions as specified in Table
(1), where the first one is a light-tailed distribution, the second one is heavy-tailed
and the third one exhibits heteroscedasticity. The simulation is run 200 times with
two different setups of sample sizes: T = 100 data points per curve and N = 20
curves and 7" = 150 data points per curve and N = 50 curves. We evaluate the
estimates of the 7 = 0.05 and 7 = 0.95 expectile curves based on the mean squared

error (MSE). The MSE of the k-th T-expectile curve is computed as
1 « -
V8B = 7 3 {balty) = Tt} @)

where [, ;(t) denotes the theoretical expectile and l:k(t) denotes the estimated ex-
pectile. Summary statistics of the mean squared errors and the average run time
in seconds of the simulations are given in Table (1). The magnitude of the average
MSE does not differ substantially between the independent and the autocorrelated
case. This confirms that the quality of the proposed methodology is not sensitive
to temporal dependence between functional observations. The methodology per-
forms worst for the fat tailed distribution, but well handles heteroscedasticity. As
a benchmark, we apply the methods proposed by Guo et al. (2015) and Tran et al.
(2014) to the described simlation setup with independent functional observations.
Guo et al. (2015) propose an estimation algorithm that jointly estimates a collec-
tion of generalized quantile curves. Tran et al. (2014) develop an analogue of PCA
for generalized quantiles and propose three different estimation algorithms called
BottomUp (BUP), TopDown (TD) and PrincipalExpectile (PEC) algorithm. For a
detailed description of the algorithms we refer to their work. The simulation results

of the four benchmark methods are given in Table (2). It can be seen that in terms



of average MSE our methodology outperforms the benchmark methods for almost
all specifications. Only for the fat-tailed distribution in combination with the large
sample size (T" = 150, N = 50) the method proposed by Guo et al. (2015) performs

slightly better.

T =100,N =20 T =150, N =50
(1) (2) (1) (2)
7 =0.05
e ~ N(0,0.5) Mean 0.0433 0.0407 0.0259 0.0234
SD 0.0285 0.0281 0.0177 0.0168
AT 3.3900 3.7200 9.8000 10.3200
e~ t(5) Mean 0.2447 0.2242 0.1480 0.1401
SD 0.2508 0.2407 0.1644 0.1571
AT 3.7100 4.6600 11.6200 12.0700
e~ N(0, u(t)0.5) Mean 0.0521 0.0518 0.0499 0.0501
SD 0.0379 0.0354 0.0385 0.0393
AT 3.2600 3.7700 9.8700 12.2000
7=0.95
e ~ N(0,0.5) Mean 0.0448 0.0400 0.0254 0.0233
SD 0.0295 0.0271 0.0174 0.0170
AT 3.4400 3.7200 10.1300 11.0100
e~ t(5) Mean 0.2444 0.2290 0.1465 0.1428
SD 0.2565 0.2396 0.1590 0.1729
AT 3.7500 4.2300 10.3700 12.2500
e ~ N(0, 4(t)0.5) Mean 0.0564 0.0518 0.0416 0.0500
SD 0.0381 0.0340 0.0286 0.0389
AT 3.5100 3.8200 10.2100 11.8000

Table 1: Mean and standard deviation (SD) of MSE and average run time in seconds
(AT) based on 200 simulation runs for independent PC scores (1) and autocorrelated
PC scores (2).



"SpoT1euW YIRWDU(q
JUSIDOYIP INOJ YIM S9I00S ) Juepuadopul I0] SUNI UOIIR[NWIS ()¢ UO Paseq SN JO ((IS) UOIIRIAGD PIRpUR]S pUR UBI[N :Z O[qR],

€010°0 L8000 L19Z°0 L02€0 8L€0°0 ¥2G0'T 6VET T 06691 as

Gz91°0 IVET 0 L¥ZE0 6.80°0 90820 e1LE0 PIGL0 09250 ued]y (G017 0)N ~ 2

G610°0 Ge80°0 001¥°0 ¥62£°0 €690°0 Ge1T'0 9660 66991 as

61810 S0¥F°0 866S°0 88600 G8LE0 €%9.°0 LE9T'T YIS0 e\ (¢)p~ 3

GF00°0 ¢700°0 9G61°0 8620 L6100 621070 eF1Z0 €LES'T as

62,00 L0L0°0 91€2°0 09200 ereT 0 L9GT0 €e8¢°0 €6LY 0 eI\ (G0°0)N~ 3
G6'0 =L

76000 GL00°0 76820 9L£€°0 LE€0°0 7200 11270 0TZL'T as

Y0210 9¢eT 0 PzE 0 €z60°0 26T 0 89620 92.69°0 80€£S°0 wedN  (S°0(1)70)N ~ 2

96100 11600 7902°0 PHTE 0 7990°0 GLCT0 €08s°0 6667 1 as

IST 0 6LEF0 0860 €660°0 GeLe0 zr8L 0 LLGT'T eIcH 0 wed\ (¢)p~ 3

L¥00°0 6£00°0 LSST0 LEIT0 951070 1210°0 1L£2°0 T062°C as

62,00 70L0°0 06220 67,00 eIeT0 99GT°0 126€°0 00850 uesdy (G00N~ 3
GO0 =+

0Ad aL dng onx) 0Ad aL dnd onx)

0S = N ‘0ST = .L 0¢ = N ‘00T = .L




References

Guo, M., Zhou, L., Hardle, W. K., and Huang, J. Z. (2015), “Functional Data
Analysis of Generalized Regression Quantiles,” Statistics and Computing, 25, 189—
202.

Tran, N. M., Osipenko, M., and Hardle, W. K. (2014), “Principal Component Anal-
ysis in an Asymmetric Norm,” Humboldt University Berlin, CRC 649 Discussion

Paper.



	BIBLIOGRAPHY



