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I. BACKGROUND AND MOTIVATIONS

The attention toward energy efficiency issues of both smartphones and data centers have driven the research community in
spending a lot of effort in the construction of new methods able to extract the energy profiles of devices, as well as providing
guidelines to help developers in writing green source code. This section describes on the one hand the tools proposed in
recent years to measure energy consumption, and on the other hand the empirical studies conducted in the context of software
maintenance and evolution.

A. Measuring the Energy Profile of Hardware Devices

Broadly speaking, the methodologies proposed to measure the energy consumption of devices can be categorized in (i)
hardware-based, (ii) power models-based, and (iii) software-based.

The first class refers to approaches that require a specific hardware toolkit to perform the measurements. While such
methodologies are quite popular in other research communities, such as high performance analysis [1] or large scale integration
systems [2], in the context of software enginering these solutions have been only partially explored.

Flinn and Satyanarayanan [3] proposed a tool named POWERSCOPE. It is based on the adoption of a digital multimeter
connected to a computer, which is used to monitor the energy variations – recorded by the multimeter – of processes that are
running on a laptop. Hindle et al. devised GREENMINER [4], an hardware mining testbed based on a Arduino board with an
INA219 chip [5]. Besides the extraction of the energy consumption of mobile devices, GREENMINER also provides a web
application1 for (i) automating the testing of applications running on a device, and (ii) analyzing the results. Finally, other
researchers exploited the MONSOON power monitor [6] to measure energy consumption of APIs of Android apps [7].

The need of meeting specialized hardware requirements encouraged researchers in finding alternative ways to approximate
the energy consumption. A proxy measure can be computed by constructing power models, which are based on the definition of
specific functions able to estimate the energy consumed by a device during its activities. Bourdon et al. [8] defined POWERAPI,
an approach where the energy estimation is based on analytical models that characterize the consumption of various hardware
components (e.g., CPU). Noureddine et al. [9] introduced JALEN, a Java agent which uses statistical sampling for the energy
estimations. The model proposed by Pathak et al. [10] [11] is based on system calls, and it was implemented in EPROF, an
energy counterpart of gprof, the gnu profiler tool, for profiling application energy drain. V-EDGE [12] considers the battery
voltage dynamics for generating a power model. It neither needs of external power meters nor relies on the battery current
sensing capability. On the same line, Balasubramanian et al. [13] defined an energy consumption model, named TAILENDER,
to estimate to what extent moduls such as 3G and GSM contribute to the battery drain of mobile apps. Ding et al. [14]
proposed SEMO, a monitoring tool powered by an energy model based on the usage of the battery and its temperature.
Zhang et al. [15] proposed a model-based solution with POWERBOOTER and POWERTUTOR. POWERBOOTER is a technique
for automated power model construction that relies on battery voltage sensors and knowledge of battery discharge behavior.
It does not require external power meters. POWERTUTOR use the model provided by POWERBOOTER for generating online
power estimation. Lastly, it is worth mentioning the Microsoft JOULEMETER tool2, which uses energy models specific for each
hardware configuration.

Finally, software-based approaches exclusively use system’s functionalities to estimate the power consumption, without
constructing any specific model. In this category falls PTOP, the approach proposed by Do et al. [16]. PTOP takes into account
CPU frequency, hard disk and memory consumption as sources of information to estimate the joules consumed by a process. A
fine-grained estimation of energy consumption at code level is instead provided by ELENS [17], which relies on a combination
of program analysis and energy modeling. Furthermore it produces a visual feedback to the developer that can understand the
application behavior with respect to energy consumption.

1http://softwareprocess.es/static/GreenMining.html
2http://tinyurl.com/jkvo9qa
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Looking at the differences between the approaches discussed above and the technique proposed in this paper, it is important
to note that PETRA (i) does not require any additional hardware equipment and therefore any strong experience in the set up
of the test bed, (ii) provides an estimation of the energy consumption at method-level rather than at process-level, and (iii)
is based on reliable tools coming from the Android Toolkit and does not exploit energy models that need to be calibrated.
Moreover, most of the approaches proposed in literature (including the software-based techniques) are not publicly available.

B. Green Mining: An Overview of the Empirical Studies

In recent years an ever increasing number of empirical studies aimed at understanding the reasons behind energy leaks in
the source code have been carried out. On the one hand, researchers have investigated the possibility to predict the energy
consumption of mobile devices relying on empirical data, paving the way for new prediction models able to alert developers
of the presence of energy bugs [18], [19]. On the other hand, approaches for the detection of portion of source code affected
by energy leaks have been proposed by Zhang et al. [20] and by Gupta et al. [21] who exploited the use of dynamic analysis,
but also by Li et al. [22] that proposed a technique for detecting specific lines of code affected by an energy bug.

Hindle [23] conducted a case study aimed at investigating to what extent changes made by developers across software versions
affect the energy consumption. The results of the study indicated that (i) software change can effect the power consumption
and (ii) there seems to exist a relationship between software metrics and power consumption.

Other researchers focused their attention in studying the relationship between the practices adopted by programmers during
the development of a project and the energy consumption. Sahin et al. [24] studied the impact of code obfuscation on energy
consumption, finding that the magnitudes of such impacts are unlikely to impact end users. The same authors also reported an
analysis of the role of design patterns [25], finding the existence of some patterns (e.g., the Decorator pattern) which negatively
influence the energy efficiency of a software project. Similar results have been found by Noureddine and Rajan [26].

Hasan et al. [27] analyzed the impact of the data structures used by the developers, and specifically the influence of different
Java Collections type. Results of their study showed that the application of the wrong type of data structure can increase the
energy consumption by up to 300%. Other factors studied in the past and having a negative impact on energy efficiency are
(i) the different sorting algorithms exploited [28], (ii) the use of lock-free data structures [29], (iii) the colors used in the GUI
of software projects [30], (iv) the API usage of Android apps [7], and (v) the different refactorings applied to simplify the
source code [31], [32].

Most of the studies mentioned above relied on hardware-based tools (e.g., MONSOON). The final goal of the approach
proposed in this paper is to provide to researchers and practitioners an easier way to approximate the energy consumption of
the methods of a mobile app without hardware requirements: this can possibly help the community in conducting even more
studies aimed at understanding and solving energy-related issues.

II. PETRA: A POWER ESTIMATION TOOL FOR ANDROID APPLICATIONS

This section presents PETRA a (Power Estimation Tool for Android), a novel software-based approach to measure the
power consumption of mobile apps. Figure 1 depicts the process followed by our approach to estimate the energy consumption
at a method-level granularity.

Fig. 1: PETrA Architecture

The proposed approach is composed by three main blocks: (i) app preprocessing, (ii) energy profile computation, and (iii)
output produced. In the following we detail each part independently.
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App Preprocessing. The first input needed by our approach is the app to profile. Specifically, the input is characterized by an
executable version of the app in the form of an apk file. In the preprocessing phase, PETRA installs the apk on a mobile
phone able to run it (e.g., a smartphone having an arbitrary version of the Android operating system). It is worth noting that
the app to profile must enables the debuggable option, otherwise the instrumentation of the app, needed to profile it, would
have not possible.

Energy Profile Computation. The second input of our approach consists of a set of test cases able to exercise the app under
consideration. These test cases can be automated using existing tools (e.g., MONKEYRUNNER or MONKEY) either manual
operations performed by the software engineer. Once the test cases are ran, the core process behind PETRA starts.

Our approach is built on the top of the Project Volta Android tools, such as dmtracedump3, Batterystats4, and
Systrace5.

Specifically:
• dmtracedump provides an alternate way to show trace log files. The files generated by dmtracedump are easy to

parse and allows the developers to establish precisely, at microseconds granularity, when a method call has been invoked
and when it returned. PETRA relies on this component in order to store the execution traces of the app under analysis.
For each method call dmtracedump provides the entry and the exit time. The final output is a list of the executed
method calls during the run.

• BatteryStats is an open source tool of the Android framework able to collect battery data from the device under
evaluation. In particular, it is able to show which processes are consuming battery energy and which task should be
modified in order to improve battery life. It is executable via command line. The data collected can be analyzed as log file
or can be converted in an HTML visualization that can be viewed in a browser using Battery Historian4. PETrA
uses the Batterystats log in order to retrieve the active smartphone components and their status in a specific time
window. Furthermore, it can provides the information about the device voltage. Given this information is then possible to
calculate the energy consumed by the smartphone during a time window.

• Systrace is a tool that can be used to analyze application performances. It captures and display the execution times of
the active processes of a smartphone, combining data from the Android kernel, i.e., the CPU scheduler, disk activity, and
application threads. The data can be viewed as an HTML report that shows the overview of the processes in a given
time window. In PETRA, the informations provided by Systrace are used for capturing the frequency of the CPU in
a given time window. This information completes the one provided by Batterystats improving the estimations.

After gathering the information related to the active components with their status, the CPU frequencies and the method
call invocations, the power profile file is loaded. The power profile values define the current consumption for a
component along with an approximation of the battery drain caused by each component over time. Every smartphone has its
own power profile. Often power profile information are publicly available or can be mined directly from the device, considering
that each device manufacturer must provide this information6.

Given the previous data it is possible to compute for every method call invocation the energy consumed. First of all, given
a method call invocation and its termination we can calculate the time frame in which a frequency variation happened. For
each time frame, we know for each smartphone components its state and related consumption. Indeed we can calculate the
current intensity.

I =
∑
∀c∈C

Ic,s (1)

Let C be the set of smartphone components, Ic,s is the current intensity of the component c with the state s. For example
92.6 is the number of milliAmpere consumed by a Nexus 4 when the cpu frequency is fixed to 384Mhz.

After calculating the current intensity, it is possible to calculate the energy consumed in a time frame, as indicated in eq. 2.

J = I ∗ V ∗ T (2)

where J is the consumed energy in Joule, I is the current intensity in Ampere, V is the device voltage in Volt and T is the
length of the time frame in seconds.

Finally, the energy consumed by a method call can be calculated summing the energy consumed in each time frame in
which the method call was active.
Produced Output. The final output provided by PETRA is a csv file, containing the energy estimation for each method call.
In details, it provides the signature of each executed method call, along with the consumption in Joule and the execution time
in seconds.

3https://developer.android.com/studio/profile/traceview.html
4 https://developer.android.com/studio/profile/battery-historian.html
5https://developer.android.com/studio/profile/systrace-commandline.html
6https://source.android.com/devices/tech/power/
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Listing 1: PETrA workflow
1 computeEnergyConsumption(apk, appName, nRuns){
2 installApp(apk);
3 for (run=0; run<nRuns; run++) {
4 clearAppCache(appName);
5 resetBatteryStats();
6 startProfiler();
7 exerciseApp(appName);
8 stopProfiler();
9 collectData();

10 loadPowerProfile();
11 for each method call in trace file {
12 computeCallEnergyConsumption();
13 }
14 saveResults();
15 stopApp(appName);
16 }
17 uninstallApp(apk)
18 }

By default PETRA uses Monkey for exercising the apps, but other exercisers could be used. For example for evaluating
PETRA we used Monkeyrunner.

It is worth to note that PETrA relies on the Android Activity Manager7, so the apk must be enabled for debugging.
Furthermore, in order to provide better estimation, PETrA exercises the app multiple times (in our experiments nRuns is fixed
to 10). It is worth to note that to avoid the bias due to multiple runs, at each run the app cache is cleaned and Batterystats
is resetted.

III. EVALUATING THE ESTIMATIONS PROVIDED BY PETRA

TABLE I: The mobile apps considered in our evaluation

# Name ID Version # of APIs
1 Battery HD ch.smalltech.battery.free 1.16 4.504
2 Write Now Notepad com.aerodroid.writenow 1.1.5 16.755
3 AndRecorder Free com.andrconstruction.andrecord 3 129
4 Antivirus Free com.antivirus varies 422
5 Better Browser com.browser.sogood.ui 2.3 19.483
6 AudioPlayer com.bytemystery.audioplayer 1.2 2.733
7 1̈0,000 Quotes DB (FREE!)¨ com.hmobile.quotesmegacollection 3.0.4 11.067
8 Android Music Player com.jrtstudio.music 4.0.4b3 13.823
9 Android Antivirus com.lab4apps.antivirus 2.0.1 12
10 Livo Recorder Lite com.mp1.livolite 3.0.7.a 1
11 Simple Weather com.netthreads.android.weather 1.1.3 13.143
12 SimpleNews com.prss.simplenews 1.4 138
13 25000 Best Quotes com.puissantapps.quotesapp.free 1.0.7 1
14 Classical Music Radio Lite com.rslclasslite 1.0.3 8.953
15 news com.segvic.news 1.0.0 737
16 Droid Notepad com.williamkingdom.droidnotepad 1.11 1.637
17 Inspiring Quotes com.xstudio.inspiringquotes 1.2 12
18 Battery Info com.zgame.batteryinfo 1.6 6.233
19 Anime Radio Online free.animeradioonline.gutisoft 1.06 8848
20 Wifi Radar girsas.wifiradar 1.06 185.189
21 Battery Info Always jp.dip.sys1.android.battery 1.2.0 185
22 Meridian Media Player Revolute org.iii.romulus.meridian 2.4.5 13.871
23 Better Notepad org.strive.notes 0.0.5 18.317

The goal of the study is to analyze the accuracy of PETrA in providing energy consumption estimations of mobile apps at
method-level granularity with the purpose of investigating whether the proposed approach can be used to replace hardware-based
solutions. More specifically, the study aims at addressing the following research question:

• RQ1: What is the accuracy of the estimations provided by PETrA?

A. Context Selection and Oracle Extraction

The context of the study consists of a set of 23 Android apps from Google Play Store of different categories and
having different scope. Table I reports for each app (i) its name and its Google Play Store identifier, (ii) the specific

7https://developer.android.com/studio/command-line/shell.html
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version taken into account, and (iii) the number of APIs used. The choice of using these apps is not random, but rather guided
by the need of having a set of applications for which an oracle reporting the actual consumption of source code methods
is publicly available. Indeed, to answer our research question we needed to quantify the actual energy consumption of the
methods of an app. However, since we had not available any hardware-based tool to perform effective measurements, we had
to look for alternative solutions.

Some datasets available provide data about the energy consumption of software changes [33] or system calls [34]. These
datasets are not suitable for our scope since they do not provide detailed measures for source code methods. For this reason we
used the dataset provided by Linares-Vasquez et al. [7], which reports the actual power consumption of the methods belonging
to the APIs used by 55 mobile apps. The authors computed the measurements relying on the MONSOON toolkit [6]. Note that
the dataset also contains the test data needed to exercise the app in the same manner as done by Linares-Vasquez et al. [7]
(more details on the measurement process later in this section). As a consequence of this choice, we had to limit the focus of
our analysis to the methods belonging to an API.

B. Test Environment Setup and Energy Profiles Extraction

Fig. 2: Test environment

Figure 2 shows our test environment. Being PETRA a software-based approach it requires a simple test environment
composed only by a smartphone and a PC. Despite this, when performing measurements of the energy consumption, having
a well-isolated test environment is needed to avoid biases. To this aim, we carefully followed the guidelines coming from
previous work in the field [4], [7], [17], [35]. The subsequent subsections detail each design choice.

Choice of the Smartphone. Table II reports the characteristics of the phone used in the experiment. Specifically, we selected
a factory re-setted LG Nexus 4 having Android 5.1.1 Lollipop as operating system, and equipped with 1.5 GHz quad-core
Snapdragon S4 Pro processor with 2 GB of RAM, and having a 2100 mAh, 3.8V battery. The choice is guided by the need of
having the same smartphone used in the paper by Linares-Vasquez et al. [7] in order to conduct a fair evaluation. Moreover, it
is worth noting that this particular hardware allow to be connected via a data cable, namely a cable where the USB charging
can be disabled8. Thus, during the experiment no energy is transferred over the cable, allowing more stable measurements.

Isolating the execution of an app. To isolate the behavior of an application being executed on the smartphone, we adopted a
number of precautions. In particular, we firstly disabled all the unnecessary apps and processes (e.g., Google Services) running
on the phone to avoid race conditions. Then, we avoided asynchronous events, such as incoming messages or calls by removing
the sim card from the phone. Finally, we held the phone steady to avoid energy measurements by sensors and WiFi signal
changes.

Extraction of the Energy Profiles of APIs. To extract the energy profiles of the apps in our dataset, we firstly modi-
fied the settings of such apps in order to enable the debug mode. To this aim, for each app we manually added in the
AndroidManifest.xml file the option android:debuggable="true". Then, we re-generated the apk file, i.e., the
executable version of the app, using the ANDROID STUDIO IDE [36].

Once having a debuggable and exacutable version of the apps, we ran PETRA over them. As explained in Section II, our
approach receives as input a set of test cases for exercising the app under consideration and measuring the energy consumption

8http://android.stackexchange.com/questions/54902/disable-usb-charging
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TABLE II: Characteristics of the smartphone used in our study

Component Specification
Name LG Nexus 4
Screen 4.7” diagonal

1280x768 pixel resolution (320 ppi)
WXGA IPS
Corning Gorilla Glass 2

Size 133.9 x 68.7 x 9.1mm
Weight 139g
Cameras 8 MP (main)

1.3 MP (front)
Memory 16GB

2GB RAM
CPU Qualcomm Snapdragon S4 Pro 1.5GHz
Sensors Microphone

Accelerometer
Compass
Ambient light
Barometer
Gyroscope
GPS

Network Unlocked GSM/UMTS/HSPA+
GSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)
3G (850, 900, 1700, 1900, 2100 MHz)
HSPA+ 42

Wireless Wi-Fi (802.11 a/b/g/n)
NFC (Android Beam)
Bluetooth

Battery 2,100 mAh non-removable battery
OS Android 5.1.1 (Lollipop)

at method-level granularity. In the context of this experiment, we exercised the apps in our dataset by using exactly the same
Monkeyrunner9 test cases used by Linares-Vasquez et al. [7]. This was needed to conduct a fair evaluation between the
energy profiles extracted using our approach and the oracle provided using the MONSOON toolkit [6].

The output of this step consisted of a set of files reporting the execution traces of each app, accompanied by the information
on the energy consumed by each method during that execution. It is important to note that in this stage we collected the
information for all the methods belonging to an application. However, to compare the energy profiles extracted by PETRA
with the ones extracted using MONSOON [6], we needed to select only the methods belonging to an API. To this aim, we
selected from the final output produced by PETRA only the Android public methods, removing also the calls to other Java
APIs. This means that those methods were considered when estimating the energy consumption of the public methods, but not
included in our study.

Moreover, to be more confident about the energy profiles built by PETRA, we repeated the measurements 10 times. Each
run costs around five minutes since, as reported by Choudhary et al. [37], this is the time needed by Monkey to achieve code
coverage convergence. The results achieved after 10 runs (i.e., the joules consumed by the methods in each run) have been
aggregated using the mean operator. Therefore, the final output consisted of a unique value representing the average energy
consumed by the methods belonging to an API exercised during the test execution.

C. Data Analysis and Metrics

Once we extracted the energy profiles using PETrA, we answered RQ1 by comparing the energy profiles computed using
PETrA with the oracle provided by Vasquez et al. in their empirical study [7]. To evaluate to what extent the energy consumption
provided by our approach is close to the actual values, we used a set of metrics widely used in the area of cost estimation
[38] [39]. Specifically, we used the Mean Magnitude Relative Error (MMRE) [38] defined as follow:

MMRE =
1

N

n∑
i=1

MREi (3)

where n is the number of energy estimations computed by PETRA on each app, and MRE indicates the Magnitude Relative
Error [38] and has values in the range defined by the following formula:

MREi =
|yi − ŷi|

yi
(4)

where yi is the actual energy value e ŷi is the energy estimation provided by PETrA for the method i.

9https://developer.android.com/studio/test/monkeyrunner/



7

Besides estimating the mean error in the estimations provided by our approach, we also computed the PRED(x) metric,
namely the Relative Error Deviation Within x% [40]. This measure gives an indication of how many estimation errors of our
approach are within x% of the actual values provided by the oracle. In particular, PRED(x) is defined as the average fraction
of the MREs off by no more than x as defined by Jorgensen [41].

PRED(x) =
1

n

n∑
i=1

{
1 if MREi ≤ x
0 otherwise

(5)

In the field of cost estimation, the parameter x is usually set to 25, i.e., the estimated cost is within the 25% of the actual
cost of a project [39]. However, in our context an estimation error of 25% could be very large. For instance, a variation of
25% is very large when estimating the energy consumed by a data structure used in the source code [27]. For this reason, an
analysis done in this way would have been too coarse-grained. Thus, we verified whether PETrA can achieve a lower estimation
error, by setting x=5; 10; 20; 25, 30; 50. In this way, we were able to control how the estimation errors of our approach were
distributed.

Obviously, the estimation errors in PRED(5) are also included in PRED(10), the estimation errors in PRED(10) in
PRED(20) and so on. This means that the distribution over the different PRED(x) measures is cumulative. For instance, if
PRED(5) is equal to 0.40 and PRED(0.10) is 0.42, 2% of the estimation errors are between 0.05 and 0.10.

Finally, we performed a fine-grained analysis aimed at understanding the types of errors achieved by PETRA during the
energy profile estimations. To this aim, we (i) measured the ratio of over/under estimations provided by our approach, and (ii)
provided practical explanations of the motivations behind the estimation errors.

IV. ANALYSIS OF THE RESULTS

In this section we describe the results achieved to answer our research question.

TABLE III: MMRE, PRED(x), over estimations, and under estimations computed for the apps under evalutation

# MMRE PRED(0.05) PRED(0.10) PRED(0.20) PRED(0.25) PRED(0.30) PRED(0.50) over estimations under estimations
1 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
2 0.01 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.01
3 < 0.01 0.92 0.92 0.92 0.92 0.92 0.94 0.92 0.08
4 < 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
5 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
6 < 0.01 0.89 0.91 0.94 0.96 0.97 0.99 0.87 0.13
7 < 0.01 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.01
8 < 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.01
9 < 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
10 < 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
11 < 0.01 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.02
12 < 0.01 0.32 0.32 0.38 0.38 0.38 0.43 0.28 0.72
13 < 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
14 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
15 < 0.01 0.11 0.13 0.17 0.17 0.30 0.56 0.11 0.89
16 < 0.01 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.01
17 < 0.01 0.92 0.92 0.92 0.92 1.00 1.00 0.92 0.08
18 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
19 0.01 0.98 0.98 0.99 0.99 0.99 1.00 0.98 0.02
20 0.03 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.05
21 < 0.01 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.04
22 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
23 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 < 0.01
Overall < 0.01 0.91 0.92 0.92 0.92 0.93 0.95 0.91 0.09

Table III shows the MMRE achieved comparing the estimations provided by PETrA with those achieved by Linares et al. in
their empirical study [7] using an hardware-based solution relying on Monsoon [6]. In all the considered applications PETrA
provides an energy estimations within 0.05. In particular on 14 out 23 apps the estimations overall error is less than 0.01.
Looking at PRED(x), we can see that overall 91% of the estimations is within a 5% of error, while 95% is within the 50%
of error. It is worth to note that PETrA rarely underestimates the energy consumption. Indeed less than 9% of the energy
values is underestimated.

V. THREATS TO VALIDITY

The main threats related to the relationship between theory and observation (construct validity) are due to imprecisions in
the measurements we performed.

As briefly explained in Section IV, we empirically evaluated the accuracy of the approach on 23 mobile apps comparing
the power estimation of the tool with the oracle provided by Linares-Vasquez et al. [7]. The validation revealed that in 91%
of the cases the estimations of our tool are within the 5% of the actual values. Therefore, we believe that the data provided by
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the tool are close enough to the actual energy consumption. Moreover, we aggregated the results given by PETrA in 10 runs
using the mean operator, that may affect the results of the study. In order to be more confident about our findings, we repeated
the experiment by aggregating the energy consumption using the sum, i.e., the final output was a unique value representing
the sum of the energy consumption of the methods exercised during the 10 runs.

Threats related to the relationship between the treatment and the outcome (conclusion validity) are represented by the analysis
methods exploited in our study. We discuss our results by presenting descriptive statistics and using proper statistical tests in
order to assess the significance of our findings.

Finally, regarding the generalization of our findings (external validity) we considered 23 apps of different category. However,
further studies aiming at replicating our work on larger datasets are desirable and part of our future agenda.
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