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Abstract.  The concept of quantum information is introduced 
as both normed superposition of two orthogonal subspaces of 
the separable complex Hilbert space and invariance of 
Hamilton and Lagrange representation of any mechanical 
system. The base is the isomorphism of the standard 
introduction and the representation of a qubit to a 3D unit ball,  
in which two points are chosen. 
The separable complex Hilbert space is considered as the free 
variable of quantum information and any point in it (a wave 
function describing a state of a quantum system) as its value as 
the bound variable.  
A qubit is equivalent to the generalization of ‘bit’ from the set 
of two equally probable alternatives to an infinite set of 
alternatives. Then, that Hilbert space is considered as a 
generalization of Peano arithmetic where any unit is 
substituted by a qubit and thus the set of natural number is 
mappable within any qubit as the complex internal structure of 
the unit or a different state of it. Thus, any mathematical 
structure being reducible to set theory is representable as a set 
of wave functions and a subspace of the separable complex 
Hilbert space, and it can be identified as the category of all 
categories for any functor represents an operator transforming 
a set (or subspace) of the separable complex Hilbert space into 
another. Thus, category theory is isomorphic to the Hilbert-
space representation of set theory & Peano arithmetic as 
above. 
Given any value of quantum information, i.e. a point in the 
separable complex Hilbert space, it always admits two equally 
acceptable interpretations: the one is physical, the other is 

mathematical. The former is a wave function as the exhausted 
description of a certain state of a certain quantum system. The 
latter chooses a certain mathematical structure among a 
certain category. Thus there is no way to be distinguished a 
mathematical structure from a physical state for both are 
described exhaustedly as a value of quantum information. This 
statement in turn can be utilized to be defined quantum 
information by the identity of any mathematical structure to a 
physical state, and also vice versa. Further, that definition is 
equivalent to both standard definition as the normed 
superposition and invariance of Hamilton and Lagrange 
interpretation of mechanical motion introduced in the 
beginning of the paper. 
Then, the concept of information symmetry can be involved as 
the symmetry between three elements or two pairs of elements: 
Lagrange representation and each counterpart of the pair of 
Hamilton representation. The sense and meaning of 
information symmetry may be visualized by a single (quantum) 
bit and its interpretation as both (privileged) reference frame 
and the symmetries 𝑈𝑈(1), 𝑆𝑆𝑈𝑈(2), and 𝑆𝑆𝑈𝑈(3) of the Standard 
model.  
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1 INTRODUCTION
The history of quantum information and entanglement can be 
started since Neumann’s Mathematische Grundlagen der 
Quantenmechanik (1932) [1], which (1) described 
mathematically rigorously the mathematical apparatus of 
quantum mechanics based on the separable complex Hilbert 
space, and (2) deduced the theorems about the absence of 
hidden variables in quantum mechanics on the same base. The 
latter implies the phenomena of entanglement in a sense1. 
Indeed, the separability of the interacting quantum subsystems 
means the availability of hidden variables, and consequently 
their absence according to Neumann’s theorem implies 
entanglement as the corresponding inseparability.  

                                                 
1 That sense is: the hidden variables in question cannot be local, so if 
they exist, they should be nonlocal, and this is equivalent to 
entanglement.  

The explicit formulation of the entanglement problem 
should refer to 1935’s two papers: 

Einstein, Podolsky, and Rosen’s Can Quantum-Mechanical 
Description of Physical Reality Be Considered Complete?  
deduced the phenomena of entanglement from 
the mathematical apparatus of quantum mechanics, but 
considering them as reductio ad absurdum for  
the completeness of quantum mechanics to its incompleteness 
because of postulating the “elements of reality” as separable 
from each other. [3] 

Schrödinger’s Die gegenwärtige Situation in der 
Quantenmechanik also forecast the phenomena of 
entanglement calling them “verschränkten Zustände” [9]. 
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However, it unlike the former paper admitted their existence in 
reality. 

The next main stage should be connected with Bell’s   
On the Einstein Podolsky Rosen Paradox (1964), which 
demonstrated that the case of entanglement can be 
experimentally distinguished from that of its absence 
formulating a sufficient (but not necessary) condition of 
existence: the so-called violation of Bell’s inequalities.  
It consists in the option for the correlations between two 
quantities in quantum mechanics to exceed the upper limit of 
correlation admissible in classical mechanics 2. That excess  
would confirm entanglement experimentally if a corresponding 
experiment is realized.   

Kochen and Specker’s paper The Problem of Hidden 
Variables in Quantum Mechanics (1968) [15] generalized 
Neumann’s theorem about the absence of hidden variables in 
quantum mechanics as to commuting quantities as well. They 
elucidated that the absence of hidden variables and therefore 
entanglement are due to wave-particle duality and to the 
invariance of the discrete and continuous (smooth) motion in 
the final analysis. Furthermore, the absence of hidden variables  
implies completeness and thus the phenomena of entanglement 
just for the Einstein – Podolsky – Rosen argument interpreted, 
however, as a confirmation rather than as reductio ad 
absurdum. The invariance of the discrete and continuous in turn 
implies the equivalence of the standard and non-standard 
interpretation (in the sense of Robinson’s analysis [32]) and the 
axiom of choice, at last.  

Information (and quantum information particularly) needs  
fundamentally the concept of choice for both are quantities of 
choice measured in the units of elementary choice, 
correspondingly bits and qubits. Summarizing, the Kochen – 
Specker theorem is what founds information as the real and 
universal substance in quantum mechanics. 

The Bell’s inequalities were modified into a way more 
convenient for experimental tests in [11], [12] and soon the 
results of corresponding experiments were reported [13], [14], 
[15]. A huge series of experiments has been realized since then 
including also essential modifications or complements [16], 
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].   

All of them have corroborated the existence of entanglement  
[30], [31]. A new both fundamental and applied area of 
research have thrived since the 90ies of 20th century including: 
quantum computer, quantum communication, and quantum 
cryptography. 

The special attention should be paid to the so-called 
backdoors (or loopholes) problem. The mass of experiments 
confirming entanglement are indirectly and statistically 
admitting in principle alternative explanations without 
entanglement, namely “backdoors”. If a certain backdoor is 
more or less probable as to a single experiment, that kind of 
explanation seems to be extremely improbable as to all corpus 
of those experiments. However, the reliable statistical methods 

                                                 
2 The explanation of that kind of “super-correlations” in quantum 
mechanics can be ground still on the introduction of complex physical 
quantities unlike classical mechanics and physics where all quantities 
are real. Then reinterpreting the latter, “classical” case in terms of 
quantum mechanics, one can say that all quantities in classical 
mechanics and physics are postulated as independent (or “orthogonal”) 
of each other and thus separable just according to Einstein, Podolsky, 
and Rosen’s definition of “element of reality”. [3] The “super-

to be unified different experiments as correlative to each other 
for their joint trustworthiness to be estimated are not yet 
elaborated. 

Furthermore, all loopholes are maybe impossible to be 
prevented in principle [29]. For example, the conceptual base 
of quantum mechanics might exclude that ultimate removing 
any loophole for the fundamental uncertainty. [30] 

Entanglement implies a new paradigm not only in quantum 
mechanics and physics, but also in chemistry, biology, theory 
of information, astronomy, cosmology, mathematics and logic, 
and maybe etc. It has furthermore direct reflections in 
metaphysics and all branches of philosophy and even in 
theology. Thus, it implies a fundamental turn in human 
knowledge.  

The proofs for that should be more than convincing for the 
reorganization and restructuring of all human cognition would 
take much time, efforts, and resources. Furthermore, they 
would need even the alternation of generations for the change 
of viewpoints would be often impossible for the individuals. 
The thousands of present investigations would turn out to be 
outdated and even meaningless. For example, even maybe the 
biggest contemporary scientific project, GAC – CERN would 
turn out to be outdated needing fundamental reinterpretation. 

As a result, entanglement and the corresponding theory of 
quantum information continue not to be officially recognized, 
particularly not confirmed by any Nobel prize though not 
refuted. They are the one alternative of the most fundamental 
scientific dilemma nowadays. Meanwhile, the scientific 
research continues in the old track though the scientific 
research in the new one increases. So, the state of affairs in 
science as to quantum information can be called ambiguous. 

 
A qubit is usually defined as the normed superposition of 

two subspaces of the separable complex Hilbert space (HS) 
utilized in quantum mechanics.  If one considers two successive 
“axes” of the as those two subspaces of HS, HS as well as any 
element or subset of it can be represent as a set of qubits. 

Furthermore, one can accept two axes of one and same 
number belonging correspondingly to the two identical dual 
spaces of HS as those two subspaces able to constitute a qubit. 
They could not be simultaneously measured, but their 
superposition before measurement is postulated in the base of 
quantum mechanics. 

At last, one can combine the latter and former interpretation 
of a qubit into a meta-structure isomorphic to a bit and 
consisting of a qubit before measurement and still two different 
qubits (generally, different as to each other as each to the 
former one).  

Further, one can consider three kinds of symmetries: (1) that 
of each separate qubit; (2) that of each pair of qubits; (3) that of 
all three qubits and demonstrate that they correspond or even 
coincide with 𝑈𝑈(1), 𝑆𝑆𝑈𝑈(2), and 𝑆𝑆𝑈𝑈(3) accordingly. If one 
postulates their identity with the same symmetries of the same 

correlations” in quantum mechanics are possible for the relative 
rotation of two quantities after they have been complex in general. The 
necessity of being complex in turn reflects that the quantities in 
quantum mechanics are probability distributions and more exactly, 
their characteristic functions. Then, their non-orthogonality (i.e. the 
availability of an arbitrary rotation between them) can be interpreted as 
the partial overlap of their probability distributions therefore sharing 
certain and ones and the same states as possible for each of them.     
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name in the Standard model, a privileged triple of qubits can be 
determined thus and interpreted relevantly. That triple of 
symmetries in the general case, in which that of the Standard 
model is a particular case, can be call ‘information symmetry’ 
or ‘quantum information symmetry’. 

Meaning the usual interpretation of the two dual spaces of 
HS in quantum mechanics as conjugate quantities as well as the 
isomorphic representation of a qubit as a unit 3D ball with two 
points in it chosen according to a certain rule, one can identify 
the former qubit as the “coherent” (or “before measurement”) 
equivalent of Lagrange representation of a point of the 
configurational space of the (quantum) mechanical system. 
Then, the latter pair of qubits would correspond to the Hamilton 
equivalent of the same. 

Further, vice versa as well: one can double (or triple in a 
sense) any point of the configurational space of any (quantum) 
mechanical system, being furthermore well-ordered to a series 
in advance by the axiom of choice, to the qubit HS. Then, a 
general mathematical structure unifying classical and quantum 
mechanics will be obtained, after which classical and quantum 
mechanics will be not more than two equally acceptable 
interpretations of that structure: classical mechanics sees it in 
the way where any triple of qubits is given actually and 
simultaneously, and quantum mechanics correspondingly as 
complementary to each other, i.e. only one (though each) qubit 
can be given actually. Those two interpretations are different 
interpretations of information and its fundamental unit, a bit, in 
the final analysis: classical mechanics considers information as 
a set of alternatives not needing the axiom of choice, quantum 
mechanics as a choice between the same alternatives (including 
their set as an additional alternative). 

Independently of the way of interpretation, the mathematical 
structure is one and the same, though. That general structure is 
crucial to the unification of special & general relativity and 
quantum mechanics for the former shares the viewpoint of 
classical mechanics. 

Then, the collection of all qubits representing whether any 
(quantum) mechanical system or all of them would be unified 
in a common or general space following either the approach of 
classical mechanics or that of quantum one. The former will 
result in a deformed but smooth space-time space such as the 
pseudo-Riemannian one of general relativity, and the latter in a 
“straight” but discrete space such as HS of quantum mechanics . 

Meaning the general structure of HS represented by qubits, 
one can demonstrate not too difficultly that pseudo-
Riemannian space and HS are isomorphic interpretations of 
that qubit HS, and thus general relativity and quantum 
mechanics are two expressions of one and the same “state of 
affairs”.  

Meaning Skolem’s concept of non-proper interpretation of 
any set after the axiom of choice [38] or Robinson’s of 
nonstandard interpretation (or “nonstandard analysis”) after the 
slightly weaker lemma of ultrafilters [32], one can call the 
expression of general relativity proper or standard, and that of 
quantum mechanics non-proper or nonstandard. At last, one 
can interpret physically those mathematical conditions, under 

                                                 
3 Any infinite set can be represented as a probabilistic distribution of 
all finite sets to be chosen as the correspondence of the infinite set at 
issue in accordance with Skolem’s relativity of ‘set’ [38]. Then, 
 a “wave function”, i.e. an element of HS can be unambiguously 

which the one passes into the other as well those for the reverse 
transformation. 

The approach to generalization once unified special & 
general relativity and quantum mechanics can be continued to 
arithmetic and set theory, and further to set theory and category 
theory. Here is how:  

The qubit HS can be considered as a generalization of Peano 
arithmetic where any unit is substituted by a qubit or vice versa: 
one can reduce the qubit HS to Peano arithmetic if the radius of 
the unit 3D balls equivalent to qubits decrease to zero and they 
degenerate into points. 

Further, one should distinguish all natural numbers  
according to Peano arithmetic and the set of all natural numbers 
according to set theory: 

All natural numbers are finite according to the following 
simple consideration in Peano arithmetic. The number “1” is 
finite. Adding 1 to any finite number, one finite number again 
is their sum. Consequently, all natural numbers are finite 
according to the axiom of induction. 

However, the set of all natural numbers is infinite according 
to the following in set theory. The axiom of induction is not 
available in it. For example, the axiom of infinity in ZFC uses 
a scheme isomorphic to the axiom of induction, however for 
justifying the opposite postulate: the postulate of infinite set. 
This implies that the set of all natural numbers according to set 
theory is infinite. In fact, any formal contradiction between 
Peano arithmetic and set theory does not appear since the axiom 
of induction is not available in the latter just as the concept of 
set (and thus that of infinite set) is absent in the former. 

 Nevertheless, the option of explicit contradiction between 
them exists anyway for the axiom of induction and the axiom 
of infinity share one and the same formal scheme though 
interpreted in two opposite and eventually contradicting ways 
That option is what is realized in Gödel’s incompleteness 
theorems (1931) [39], namely: 

If one “arithmetizes” set theory e.g. as Gödel did by the so 
called Gödel number attachable unambiguously to any 
statement in set theory, this implies for the above latent 
contradiction between set theory and Peano arithmetic to be 
demonstrated explicitly: 

Indeed, the arithmetized set theory is incomplete, for the 
infinity sets do not admit to be “arithmetized” by natural 
numbers being finite according to Peano arithmetic. If anyway 
one complements Peano arithmetic with “infinity” for the 
arithmetized set theory to be complete, an explicit contradictory 
will appear: that between the finiteness of all natural numbers 
and the newly “infinity” as to Peano arithmetic for its 
unification with set theory.  

One might suggest that set theory and Peano arithmetic 
should not be unified even implicitly, as Gödel did. However, 
their unification might be at the same time rather fruitful for the 
elucidation of the concept of infinity as dual: both “finite” in 
Peano arithmetic and properly “infinite” in set theory. 

 Particularly, Hilbert’s program [40-41] for the foundation 
of mathematics should be restored, e.g. by interpreting “ɛ-
symbol” as a probabilistic relation between finiteness and 
infinity therefore transferring a bridge3 also between HS and 

juxtaposed to that probability distribution as its characteristic function. 
An isomorphic equivalent of entanglement can be furthermore 
introduced as to two or more infinite sets sharing certain finite sets as 
common in their corresponding probability distribution. That 
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the pair of set theory and Peano arithmetic, necessary for the 
complete self-foundation of mathematics.  

Then, the above consideration of HS as a generalization of 
Peano arithmetic can be complemented by it also as an 
equivalent of set theory at the same time. 

Indeed, utilizing the axiom of choice, any set may be one-
to-one mapped as a subset of all natural numbers. If that 
mapping is random, the set mapped is infinite, and there exist a 
certain non-trivial probability distribution over all finite sets 
(i.e. the subsets of all natural numbers) featuring it 
unambiguously. The characteristic function of that probability 
distribution will be a “wave function”, i.e. an element of HS. 

Thus, the nth qubit and its value can be considered as linked 
to the probability for the certain infinite set at issue to be 
mapped into the nth finite set.   

Any qubit implies three dimensions. They may be 
interpreted as corresponding to the dimension of finiteness, the 
dimension of infinity, and the dimension of gap between them. 
The values of any of those dimensions are finite. All the three 
are independent of each other unlike the case of finiteness. 

If one degenerates all sets to natural numbers and thus set 
theory to Peano arithmetic, all wave functions degenerate 
correspondingly to natural numbers. Then particularly all 
infinite sets turn out to be indistinguishable from each other and 
contradictory for all natural numbers are finite. 

The completeness of mathematics cannot be proved as to a 
single Peano arithmetic as the so-called second Gödel 
incompleteness theorem demonstrates and that proof is 
constructive in a sense. The completeness can be proved non-
constructively as to two independent Peano arithmetics or to 
one single but two dimensional Peano arithmetic meaning 
implicitly the gap between them as the Gödel completeness 
theorems demonstrate. That proof is necessarily non-
constructive for it includes implicitly the gap in question.  

At last, the completeness of mathematics can be proved even 
constructively if the gap itself is meant as a third and certain 
dimension as in a qubit or as in HS. Properly, the theorems 
about the absence of hidden variables in quantum mechanics  
are those or equivalent to those proofs about the completeness 
of mathematics. 

One can approach the problem of completeness of 
mathematics on the base of HS otherwise: 

Any “axis” of HS is interpretable as the probability for a 
certain numerical value to happen, i.e. be observed, measured 
or ascribed. Then the finite transition between two axes 4 will 
correspond to a quantitative change within a certain quantity 
and therefore a certain quality, and the transfinite transition two 
a qualitative change, i.e. between two different qualities. 

Given the intension (ideal definition) of any mathematical 
structure, it may be described as a finite subspace of HS, and 
its infinite complement to HS as its extension. Thus, any 
category may be associated to that subspace (or equivalently, 
to its complement). Any functor would be representable as an 
operator in HS. Those functors corresponding to self-adjoint  
operators would be functors within one and the same category, 
i.e. transforming one representative of it into some another 
changing only the probability for one or other property 
                                                 
“entanglement” cannot introduced as to two or more finite sets or an 
infinite set and finite sets.   
4 This means that the difference between the ordinals of those axes is 
finite. 

(corresponding to a certain axis) to be ascribed to the 
transformed structure. Given the classical logic of predicates, 
only two values of probability are allowed: either “0” or “1”. 
This means that some properties will be excluded (“1” ⤑ “0”), 
and others added (“0” ⤑ “1”), and some conserved (“1” ⤑ “1”). 

In other words, the self-adjoint operators can represent all 
operators in HS ones the above two-value logic is granted just 
as the “classical” quantum mechanics does. 

After that has been the case (for mathematics is usually 
representable exhaustedly by means only of classical logic), the 
space of all functors turns out to be the dual space of all 
categories and therefore that pair will be isomorphic to the pair 
of the two (identical) dual spaces of HS. A new dimension of 
the mathematical completeness is outlined: two-valuedness or 
binarity. The excluded middle tends to completeness, but 
maybe to contradictoriness, too, if additional conventions be 
not involved. 

Thus HS unifies both directions for the foundation of 
mathematics: category theory and set theory & Peano 
arithmetic. Even it is able to visualize their unity in a simple 
and convincing one as two different viewpoints to HS: as 
subspaces and their transformations, and as elements and their 
transformations 

The main conclusion is that the theory of information 
generalized to that of quantum information is able to unify and 
therefor found very extended domains of modern knowledge 
and contemporary cognition including those of mathematics  
and physics for it is able to unify the metaphysics of both ideal 
and material. 
 
     The paper is organized as follows: 

 Section 2, Quantum mechanics in terms of quantum 
information considers how quantum mechanics can 
be reinterpreted as an information theory 

 Section 3, Summary addressing future work offers a 
few main directions for future work 

 
 

2. QUANTUM MECHANICS IN TERMS OF 
QUANTUM INFORMATION  
The set of all complex numbers, 𝑪𝑪 is granted. Then the 
corresponding set of all subset of 𝑪𝑪 is the separable complex 
Hilbert space ℋ.  

There is one common and often met identification of ℋ with 
the set ℍ of all ordinals of ℋ, which rests on the identification 
of any set with its ordinal. However, if any ordinal is identified 
as a certain natural number, and all natural numbers in Peano 
arithmetic are finite5, ℋ and ℍ should not be equated, for ℋ 
includes actually infinite subsets 6 of 2𝑪𝑪. Here “actually infinite 
subset” means ‘set infinite in the sense of set theory”. 

Furthermore, ℋ is identified as the set Η of all well-ordered 
sets which elements are elements of some set of 2𝑪𝑪, i.e. in other 
words, the elements of 2𝑪𝑪 considered as classes of equivalency 

5 This is a property implied by the axiom of induction. 
6 Here “actually infinite subset” means ‘set infinite in the sense of set 
theory”. 
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in ordering are differed in ordering within any class of that 
ordering. 

Those distinctions can be illustrated by the two basic 
interpretations of ℋ: (1) as the vectors of n-dimensional 
complex generalization of the usual 3D real Euclidean space, 
isomorphic to Η, and (2) as the squarely integrable functions, 
isomorphic to ℋ. The latter adds to the former unitarity (unitary 
invariance), which is usually interpreted as energy conservation 
in their application in quantum mechanics. Back seen, energy  
conservation is a physical equivalent of both (3) equivalence 
after ordering and (4) actual infinity, i.e. to (5) the concept of 
ordinal number in set theory.  

On the contrary, once one does not involves energy  
conservation, e.g. generalizing it to energy-momentum 
conservation as in the theory of general relativity or that of 
entanglement, Η rather than ℋ is what should be used unlike 
quantum mechanics based on ℋ, and actual infinity avoided or 
at least precisely thought before utilizing. 

Furthermore, (6) the relation between ℋ and 𝑯𝑯 can be 
interpreted as the 3D Euclidean space under (7) the additional 
condition of cyclicality (reversibility) of  𝑯𝑯 conventionally 
identifying the first “infinite” element with the “first” element  
of any (trans)finite well-ordering. Indeed, the axiom of 
induction in Peano arithmetic does not admit infinite natural 
numbers 7. If one needs to reconcile both finite and transfinite 
induction to each other, the above condition is sufficient. 

It should be chosen for Poincaré’s conjecture [34] proved by 
G. Perelman [35-37]. If that condition misses, the topological 
structure is equivalent to any of both almost disjunctive 
domains 8 of Minkowski’s space of special relativity 9 rather 
than to a 4D Euclidean ball. The two domains of Minkowski 
space ℳ can be interpreted as two opposite, “causal directions” 
resulting in both reversibility of the 3D Euclidean space and 
topological structure of the above 4D ball.   

The relation between ℋ and 𝑯𝑯 generates any of the two 
areas of ℳas follows. Both unitarity of ℋ and non-unitarity of 
𝑯𝑯 for any ordinal 𝑛𝑛 and any well-ordering of length 𝑛𝑛 are 
isomorphic to a 3D Euclidean sphere10 with the radius 𝑟𝑟(𝑛𝑛). 
All those spheres represent the area at issue. 

That construction can be interpreted physically as well.  
Energy (E) conservation as unitarity represents the class of 
equivalence of any ordinal 𝑛𝑛. If the concept of physical force 
(F) is introduced as any reordering, i.e. the relation between any 
two elements of the above class, it can be reconciled with 
energy conservation (unitarity) by the quantity of distance (x) 
in units of elementary permutations for the reordering so 
that 𝐹𝐹. 𝑥𝑥 =  𝐸𝐸. 

Back seen, both (6) and (7) implies Poincaré’s conjecture 
and thus offer another way of its proof. 

One can discuss the case where ℋ is identified with 𝑯𝑯 and 
what it implies. Then (8) the axiom of induction in Peano 
arithmetic should be replaced by transfinite induction 
correspondingly to (4) above, and (9) the statistical ensemble 
of well-orderings (as after measurement in quantum 
mechanics) should be equated to the set of the same elements 

                                                 
7 1 is finite. The successor of any finite natural number is finite. 
Consequently, all natural numbers are finite for the axiom of induction. 
8 They are almost disjunctive as share the light cone. 

(as the coherent state before measurement in quantum 
mechanics) for (3) above. 

In fact, that is the real case in quantum mechanics for 
unitarity as energy conservation is presupposed. Then (8) 
implies the theorems of absence of hidden variables in quantum 
mechanics [1], [2], i.e. a kind of mathematical completeness 
interpretable as the completeness of quantum mechanics vs. 
Einstein, Podolsky, and Rosen’s hypothesis of the 
incompleteness of quantum mechanics [3]: 

The (8) and (9) together imply the axiom of choice. Indeed, 
the coherent state (the unordered set of elements) excludes any 
well-ordering for the impossibility of hidden variables implied 
by (8). However, it can be anyway well-ordered for (9). This 
forces the well-ordering principle (“theorem”) to be involved, 
which in turn to the axiom of choice.  

Furthermore, ℋ can be represented as all sets of qubits.  
A qubit is defined in quantum mechanics and information as 

the (10) normed superposition of two orthogonal11 subspaces 
of ℋ: 

𝑄𝑄 ≝ 𝛼𝛼⎹0⟩ +  𝛽𝛽⎹1⟩ 
⎹0⟩, ⎹1⟩ are the two orthogonal subspaces of ℋ. 
 𝛼𝛼 , 𝛽𝛽 ∈ 𝑪𝑪: |𝛼𝛼|2 + |𝛽𝛽|2 = 1. 
Then, (11) Q is isomorphic to a unit 3D Euclidean ball, in 

which two points in two orthogonal great circles ate chosen so 
that the one of them (the corresponding to the coefficient 𝛽𝛽) is 
on the surface of the ball.  

That interpretation is obvious mathematically. It makes 
sense physically and philosophically for the above 
consideration of space as the relation of ℋ and 𝑯𝑯.  

Now, it can be slightly reformulated and reinterpreted as the 
joint representability of ℋ and 𝑯𝑯, and thus their unifiablity in 
terms of quantum information.  

Particularly, any theory of quantum information, including 
quantum mechanics as far as it is so representable, admits the 
coincidence of model and reality: right a fact implied by the 
impossibility of hidden variables in quantum mechanics for any 
hidden variable would mean a mismatch of model and reality. 

𝑯𝑯 can be interpreted as an equivalent series of qubits for any 
two successive axes of 𝑯𝑯 are two orthogonal subspaces of ℋ: 

�𝐶𝐶𝑗𝑗� ∈ 𝑯𝑯; then (12) any successive pair �𝐶𝐶𝑗𝑗 , 𝐶𝐶𝑗𝑗+1� = 𝑄𝑄𝑗𝑗+1; 
  𝑄𝑄𝑗𝑗+1 ∈ 𝑸𝑸 under the following conditions: 

(13) 𝛼𝛼𝑗𝑗+1 = 𝐶𝐶𝑗𝑗

�(𝐶𝐶𝑗𝑗)2+(𝐶𝐶𝑗𝑗+1)2
;  𝛽𝛽𝑗𝑗+1 = 𝐶𝐶𝑗𝑗+1

�(𝐶𝐶𝑗𝑗)2+(𝐶𝐶𝑗𝑗+1)2
; 

(14) 𝛼𝛼1 = 0;  𝛽𝛽1 = 𝐶𝐶1
|𝐶𝐶1| ; 

(15) If both 𝐶𝐶𝑗𝑗, 𝐶𝐶𝑗𝑗+1 = 0, 𝛼𝛼𝑗𝑗+1 = 0,  𝛽𝛽𝑗𝑗+1 = 1. 
(14) and (15) are conventional, chosen rather arbitrarily only 

to be conserved a one-to-one mapping between 𝑯𝑯 and 𝑸𝑸. 
𝑸𝑸 is intendedly constructed to be ambivalent to unitarity for 

any qubit is internally unitary, but the series of those is not. 
Furthermore, one can define n-bit where a qubit is 2-bit 
therefore transforming unitarily any non-unitary n-series of 
complex numbers. The essence of that construction is the 
double conservation between the two pairs: “within – out of” 
and “unitarity – nonunitarity”.  

9 Indeed, special relativity is a causal theory, which excludes the 
reverse causality implied by cyclicality. 
10 This means the surface of a 3D Euclidean ball. 
11 Any two disjunctive subspaces of ℋ are orthogonal to each other. 
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That conservation is physical and informational, in fact. The 
simultaneous choice between many alternatives being unitary 
and thus physically interpretable is equated to a series of 
elementary or at least more elementary choices. Then, the 
visible as physical inside will look like the chemical outside 
and vice versa. If a wholeness such as the universe is defined 
to contain internally its externality, this can be modeled anyway 
consistently equating the non-unitary “chemical” and unitary 
“physical” representations in the framework of a relevant 
physical and informational conservation.    

ℋ can be furthermore interpreted as all possible pairs of 
characteristic functions of independent probability 
distributions and thus, of all changes of probability 
distributions of the state of a system, e.g. a quantum system.  

Practically all probability distributions and their 
characteristic functions of the states of real systems are 
continuous and even smooth as usual. The neighboring values  
of probability implies the neighborhood of the states. Thus the 
smoothness of probability distribution implies a well-ordering 
and by the meditation of it, a kind of causality: the probability 
of the current state cannot be changed jump-like. 

This is an expression of a deep mathematical dependence (or 
invariance) of the continuous (smooth) and discrete. The 
probability distribution can mediate between them as follows: 

ℋ can be defined as the sets of the ordinals of  𝑯𝑯 where a 
representative among any subset of the permutations (well-
orderings) of 𝑛𝑛 elements is chosen according a certain and thus 
constructive rule. That rule in the case in question is to be 
chosen that permutation (well-ordering), the probability 
distribution of which is smooth. Particularly, the homotopy of 
𝑯𝑯 can identified with, and thus defined as that mapping of 𝑯𝑯 
into ℋ conserving the number of elements, i.e. the 
dimensionality 𝑛𝑛 of the vector between 𝑯𝑯 and ℋ.  If  𝑯𝑯 is 
interpreted as the set of types on 𝑪𝑪, this implies both “axiom of 
univalence” [4] and an (iso)morphism between the category of 
all categories and the pair of ℋ and  𝑯𝑯. 

That consideration makes obvious the equivalence of the 
continuous (smooth) and discrete as one and the same well-
ordering chosen as an ordinal among all well-orderings  
(permutations) of the same elements and it by itself 
accordingly. In other words, the continuous (smooth) seems to 
be class of equivalence of the elements of a set (including finite 
as a generalization of continuity as to finite sets). 

Furthermore, the same consideration can ground (3) and (9) 
above, i.e. the way, in which a coherent state before 
measurement is equivalent of the statistical ensemble of 
measured states in quantum mechanics. The same property can 
be called “invariance to choice” including the invariance to the 
axiom of choice particularly. 

This means that the pure possibility, e.g. that of pure 
existence in mathematics, also interpretable as subjective 
probability should be equated to the objective probability of the 
corresponding statistical ensemble once unitarity (energy  
conservation) has already equated ℋ and  𝑯𝑯.  

Indeed, the set or its ordinal can be attributed to the elements 
of ℋ and the statistical mix of all elements of 𝑯𝑯 corresponding 
to a given element of ℋ. Any measurement ascribes randomly 
a certain element of the corresponding subset of 𝑯𝑯 to any given 
element of ℋ. Thus measurement is not unitary, e.g. a collapse 
of wave function. 

Then, ℋ and  𝑯𝑯 can be interpreted as two identical but 
complementary dual spaces of the separable complex Hilbert 
space. Initarity means right their identity, and the non-unitarity 
of measurement representing a random choice means their 
complementarity. 

That “invariance to choice” can ground both so-called Born 
probabilistic [5] and Everett (& Wheeler) “many-worlds” 
interpretations of quantum mechanics [6], [7], [8]. The former 
means the probability for a state to be measured or a “world” to 
take place, and the former complement that consideration by 
the fact that all elements constituting the statistical ensemble 
can be consistently accepted as actually existing. 

One can emphasize that the Born interpretation ascribes a 
physical meaning of the one component (namely the square of 
the module as probability) of any element of the field of 
complex numbers underlying both ℋ and  𝑯𝑯. After that, the 
physical meaning of the other component, the phase is even 
much more interesting. It should correspond to initarity, and 
then, it seems to be redundant, i.e. the field of real numbers 
would be sufficient, on the one hand, but furthermore, to time, 
well-ordering, and choice implied by it. In other words, just the 
phase is what is both physical and mathematical “carrier” and 
“atom” of the invariance of choice featuring the separable 
complex Hilbert space. 
 

3. DIRECTIONS ADDRESING FUTURE 
WORK 
Those are: 
(1) Hamilton and Lagrange interpretations unified in quantum 
information should explain how the concept of (quantum) bit 
unifies both ways for mechanic to be interpreted.  
(2) Information as the quantity of choice(s) discusses why 
information is the quantity of choices in the final analysis. 
(3) HS as a generalization of Peano arithmetic deduces how 
the separable complex Hilbert space can be seen as a 
generalization of Peano arithmetic and the conclusion about the 
foundation of mathematics. 
(4) Models of set and category theory in HS elucidates how HS 
can unify set theory and category theory. 
(5) Identifying physics and mathematics as interpretations of 
quantum information reveals why a state in quantum mechanics  
and a mathematical structure in mathematics are isomorphic to 
each other as two equally admissible interpretations of quantum 
information 
(6) Information symmetry introduces the concept of 
information symmetry on the base of the equivalence of 
Hamilton and Lagrange interpretations  
(7) Information symmetry visualised by impressing examples 
exemplifies it by the symmetries of three qubits and their 
interpretation as a privileged reference frame 
(8) Metaphysical and philosophical interpretations would 
discuss (quantum) information as the general substance of all 
mental and material phenomena. 
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