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Appendix D. Flat-top model: Equilibrium diameter distribution.

Here we derive a formula for an equilibrium diameter
distribution. In the simulator with the PPA, let the light
level under a single layer of canopy be LU . This is simply the
species-specific transmissivity of a crown. Again, we ignore
the possibility that a second complete sub-canopy forms,
which would cause the shortest saplings to be shaded by
two complete layers, because this generally does not occur
for reasonable parameter values. The mathematics is more
cumbersome if understory plants can form a complete sec-
ond canopy, but the problem is still analytically tractable.

Using equations (7) and (19) let the growth rate in the
understory, GD, be:

(D-1) GD = GL

C3 LU

1+ C4 LU

,

and let the corresponding understory mortality be:

(D-2) µD = µU +m1em2 GD .

Also, let D∗ be the diameter corresponding to the critical
canopy height z∗:
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.

Finally, recall that seed production in the simulator occurs
at a constant rate, F , per unit of sunlit canopy area. As a
result, a constant density of F seedlings are produced by a
closed canopy per unit time. We may thus write the equilib-
rium equation for the von Foerster system (13) for the flat
top model as:
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dD

= −bN(D)
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, if D < D∗(D-4)
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µL

GL

, if D > D∗

where, to ensure conservation of individuals as they grow
across the discontinuity D∗:

(D-5) lim
D→D∗−0

GD
bN(D) = lim

D→D∗+0
GL
bN(D).

Taking the initial diameter of seedlings, D0 to be negligible,
we have a solution of (D-4-D-5):
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D, if D < bD∗(D-6)

bN(D) =
F

GL

e−
µD
GD
bD∗ e−

µL
GL
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Now what is the equilibrium value of bD∗? To answer
this question, it is again mathematically convenient to re-
cast the problem in terms of age cohorts. Then, equation
(15) that defines the threshold canopy size becomes:

(D-7) 1=

∫ ∞

0

Fe−
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bD∗ e−µLτα(bD∗ + GLτ)

2dτ.

The expression on the RHS is the crown area of canopy
trees at equilibrium. The variable of integration, τ, is the
number of years that a cohort has been in the canopy. At
equilibrium, a cohort that has spent τ years in the canopy
has diameter: bD∗ + GLτ, and crown area: α(bD∗ + GLτ)2. The
density in each age cohort at birth is simply F if the canopy
is closed, and, because bD∗

GD
is the amount of time that it takes

to grow in the understory to diameter bD∗, Fe−
µD
GD
bD∗ is the

equilibrium density of a cohort when it reaches the canopy,
and Fe−

µD
GD
bD∗ e−µLτ is the density of the cohort after τ years in

the overstory. Thus, the RHS of (D-7) is the sum over all
canopy tree cohorts of density times crown area.

Note that when bD∗ is zero, the RHS of equation (D-7)
is identical to the RHS of the invasion condition (22). It is
straightforward to use this fact to prove that bD∗ > 0 when-
ever a species can invade an empty habitat. This is not sur-
prising, because the model lacks density dependence until
the canopy closes.

After three integrations (the first two by parts) and mi-
nor rearrangement, (D-7) becomes:
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Then the equilibrium diameter distribution is given by (D-6-
D-8) (Fig. 16a). We can also derive the equilibrium height
distribution,
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and the equilibrium age distribution:
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bN(A) = Fe−µDA, if A< bA∗(D-10)

bN(A) = Fe−µD bA
∗
e−µL (A−bA∗), if A> bA∗.


