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Appendix A. MCMC algorithm: conditional posteriors and convergence. 

The Gibbs sampler for our model is based on iterative sampling from the full conditional 

density for each parameter (Gelfand and Smith 1990, Gelman et al. 1995).  Here we 

summarize our method.    

Fecundity parameters 

Regression parameters can be directly sampled based on distributions derived from 

theory of linear models.  Parameters for fixed effects α conditionally depend on all tree 

fecundity schedules and on a bivariate normal prior,  
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The posterior conditional for the βi contains only the fecundity schedule for the ith 

tree,  
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The variance on hyperparameters has conditional posterior 
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Prior parameter values were c = [2, 0.5]T, 0.1,1000
21

== aa vv , and aτ = bτ = 0.01. 

Seed production from the ith tree conditionally depends on the likelihood for all seed 

traps in all years (because there is dispersal and autocorrelation) and on its’ own 

fecundity schedule.  For the ith tree we have the full posterior conditional 
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We use a Metropolis step based on the proposal density ( )iiT yN
i

Σ1.0, .  Thus, we propose 

a full time series for each tree, and we accept or reject on the basis of the full series, not 

on specific years. 

Total variance σ2 was sampled directly from the posterior conditional 
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and Ri = σ−2ΣI .

Prior parameter values were aσ = bσ = 0.01.   

For ρ we used the symmetric proposal density ( )hhUnif gg −− )()( , ρρ  and a 

Metropolis step, where ρ(g) is the current value of ρ, and ( )[ ]05.0,12.0min )( gh ρ−=  to 

sample from the conditional posterior 
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Unless near –1 or 1, the proposal density has width 0.1.  Near either limit, it narrows.  

Because correlations are always bounded away from limits, the algorithm does not bog 
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down there.  As with σ2, the covariance matrix is assembled as basis for evaluating the 

conditional posterior. 

Dispersal parameter 

The dispersal parameter conditionally depends on all of the seed trap data, 
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We used a Metropolis-Hastings step with a gamma proposal density.  Gamma 

distributions Gam(a,b) have mean a/b.  Prior parameter values were au = 1 and bu = 0.01. 

Tree-status parameters 

Conditional posteriors for tree status parameters contain both full likelihoods, because 

statuses qi directly influence all seed traps through expected seed rain (Eqs. 13 and 14).  

For aθ, the conditional is 
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with that for bθ having the appropriate prior.  For both aθ prior parameter values were a0 

= 0.2 and b0 = 0.1, and bθ prior parameter values were a0 = 0.1 and b0 = 1.  For both we 

used Gamma proposals and Metropolis-Hastings.  Likewise, the female fraction full 

conditional is 
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Recognition error was 
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The weighting parameter k was introduced as a means for manipulating the 

contribution of the two data sets.  A range of values was explored.  We ultimately used k 

= 1, i.e., both data sets weighted strictly in terms of their representation in the data sets. 

Convergence 

Despite the high dimensionality of the model, Markov chains converged for all but a few 

species.  We were not satisfied that convergence was reached for several species having 

few seeds; these species were not analyzed further (see Results in text).  To initialize seed 

production rates yit, plot-by-plot maximum likelihood (ML) estimates of α0 were obtained 

for each year under the simplifying assumption of θ = 1, and α0 = 0.5.  These estimates 

were used to initialize fecundity for each tree.  A burn-in of 2000 to 20,000 iterations was 

sufficient for all species included in this analysis, with steps to convergence depending in 

large part on number of trees.  Parameters that could be sampled directly converged to 

values near the target distribution rapidly, with some slow drift as the stickier yit’s 

converged more slowly. 
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Fig. A1. Markov-chain Monte Carlo (MCMC) output for 20 parallel chains after discarding 20,000 burn-in 

iterations.  Parameters are scaled to familiar or consistent units.  Gelman and Rubin’s (1992) potential scale 

reduction values are in parentheses at right.  Posterior densities in the original scales are provided in the 

text figures.  The four terms of log fecundity are shown in the upper panel, where the diameter used to scale 

α1 is di1 = 1.46 (or 28.6 cm), the diameter of the example tree in Fig. A2.  Thus, the intercept term (α0) 

dominates, followed by process variability (σ), diameter effect (α1dit), and individual effects (τ).  The 

middle panel shows the diameter at which the maturation schedule θ  = 0.5 (aθ/bθ) and the mean dispersal 

distance ( )2uU π≡ .  The lower panel shows the recognition error (v), female fraction (φ), and AR(1) 

parameter (ρ). 

An example from Acer rubrum demonstrates a “worst-case” scenario.  When there 

are many trees in a stand, there are many potential combinations of fecundity values that 

might “satisfy” the annual trap data, and there is more “overlap” in seed shadows, making 
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it difficult to resolve parameters.  Moreover, when interannual variability is large, there 

can be years of low seed recovery for which identification of source trees is especially 

challenging.  A. rubrum is the most abundant species, and it is at highest density in stand 

C1 (720 trees/ha).   After 20,000 burn-in iterations on parallel chains, all population level 

parameters are well identified (Fig. A1).  Convergence occurred from multiple initial 

conditions, and potential scale reduction factors are at acceptable values (Gelman and 

Rubin 1992).  

 

Fig. A2. Twenty parallel MCMC chains for an example Acer rubrum tree on plot C1 corresponding to 

those in Fig. A1.  Numbers of seeds collected for each year are indicated in the upper left of each panel.  

Potential scale-reduction factors and smoothed posterior densities are at right.  For years of low seed 

recovery (< 100 seeds), estimated fecundities are low (< 104 seeds) and not well identified. 
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An example of fecundity estimates for a tree from plot C1 show how parameters are 

well identified for years with adequate seed recovery (say, more than 100 seeds), when 

trees produce more than 1000 seeds (1994, 1995, 1997, 2000, and 2002 in Fig. A2).  In 

years of low seed recovery, fecundity estimates are low, and poorly identified on the log 

scale plots of Fig. A2 (1992, 1993, 1996, 1998, 1999, 2001).  The years of low fecundity 

estimates do not contribute substantially to overall fecundity, as is evident from the linear 

scale on the lower panel of Fig. A3.  As this is an example of the most challenging 

species on the most challenging plot, most simulations converged much more rapidly. 

 

Fig. A3. Annual estimates of fecundity from the example tree in Fig. A2 with 95% CIs.  Poorly resolved 

estimates come from years of especially low fecundity. 

 

Extraction of species effects 
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The extraction of species effects is summarized here.  From the Gibbs output for a 

data set containing all trees of a genus, we extracted the chain of βi and yi estimates for 

each individual of a given species p.  For the ith tree, the estimate of the full (fixed plus 

random) effect at Gibbs step g is .  The fixed effect for species p is the mean 

of random effects taken over all individuals of that species, 
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Fecundity schedules yi were simply extracted from trees belonging to species p.  
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