
Appendix 

In A, we provide the details for assessing the persistence of a population with an 

integrodifference model and we discuss the effect of the harvesting function on population 

persistence. In B, we provide the details for assessing population persistence with separable 

dispersal kernels. In C and D, we derive expressions for the critical harvesting rate and rate of 

environmental shift for Gaussian and sinuosoidal dispersal kernels. In E, we derive approximate 

expressions for these critical rates. In F, we parameterize our model for black rockfish (Sebastes 

melanops) in the California Current and demonstrate that results for parameters are qualitatively 

similar to results presented in the main text. In G, we provide details on differences between 

small and large MPA simulations. 

A) Determining stability 

Let nt(x) be the number of adults at position x at time t, let k(x) be a dispersal kernel describing 

the probability of a larva traveling a distance x. Let f(n) be the recruitment function describing 

the number of offspring that settle and survive in juvenile population of size n, let R0 be the 

intrinsic growth rate of the population, and let g(n) be the harvesting function describing the 

number of adults harvested from a population of size n. In the absence of harvesting, the 

integrodifference model describing the population over time is given by 
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as described in (Zhou and Kot 2011). With the addition of harvesting, the model becomes 
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In evaluating persistence, we apply the methods of Zhou and Kot (2011) to the new model, 

Equation 2. A traveling pulse is a solution such that population size relative to location within 

the patch (rather than absolute position) is constant over time, i.e., 

     * *
t tn x n x ct n x    

where tx x ct   gives position relative to the patch. 

The integrodifference Eq. 2 gives us an expression for n*: 
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As long as f(0) = 0, there is a trivial solution to this problem where  * 0n x   for all x , i.e., 

there is a trivial traveling pulse with no adults in it. If the trivial traveling pulse is unstable, even 

very small populations will persist or grow and avoid crashing back to the trivial pulse. To 

evaluate the stability of a traveling pulse, we introduce a small perturbation to the traveling pulse 

 *n x  and see if this perturbation grows or shrinks over time: 
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by linearizing around the traveling pulse 
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if  * 0n x   and f(0) = 0. 

If we assume    t
t x u x ct    for some   and  : / 2, / 2u L L  , then the 

perturbation grows in time if and only if λ > 1. Using Eq. 4, we can rewrite  1t x  , 
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define the integral operator, 
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Then the perturbation to the traveling pulse will satisfy 
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λ and u are thus an eigenvalue and eigenfunction of the functional operator Ψf. The trivial 

traveling pulse is unstable when the dominant eigenvalue of Ψf  is greater than 1. 



The biomass in the equilibrium traveling wave depends on the specific functional forms of the 

harvesting function g(n) and the recruitment function f(n). However, the persistence of the 

population only depends on R0, g’(0) and f’(0). In this paper, we only considered a proportional 

harvesting function, i.e. the amount of adults harvested obeyed g(n) = (1−h)n. For this function, 

g’(0) = 1 − h. For the recruitment function we considered,  f’(0) = 1. 

B) Separable dispersal kernels 

It is not immediately obvious that the operator Ψ will have any eigenfunctions. However, 

Jentzsch’s theorem guarantees that there is an eigenfunction u, provided that the kernel k satisfies 

some properties (Zhou and Kot 2011). Finding the eigenfunctions and eigenvalues is in general a 

hard problem to solve. It becomes easier if the kernel k is separable, i.e., there are functions an, bn 
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for any k 
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where 
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Finding the eigenvalues of Eq. 5 then reduces to finding the eigenvalues of the matrix comprised 

of entires , 1( )nk n kA 
 . 

To find the equilibrium biomass, we rewrite Eq. 3 using the separable kernel as in (Latore et al. 

1998): 
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Eq 7. allows us to find the mn numerically and we then find the total equilibrium biomass by 

integrating n*(x) over space. 

C) Gaussian dispersal kernel 

The Gaussian dispersal kernel is given by 
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As a first approximation to k we ignore all but the 0th terms for an and bn so that Eq. 6 becomes 
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where erf is the error function. The critical rate of environmental shift c* and the critical 

harvesting rate h* are those values of c and h, respectively, that make λ = 1. 

D) Sinusoidal dispersal kernel 

The sinusoidal dispersal kernel is given by 
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where L is the length of the patch and we assume ,
2 2

L c L
w w

 
   . 
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If we solve for λ,we find 
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Zhou and Kot (2011) solve for the critical speed, c*, at which the population will be driven 

extinct: 
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In our model, we can additionally solve for the critical harvesting rate, h* at which the population 

will be driven extinct: 
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E) Approximate critical harvesting proportions 

We will use the following Taylor series to make approximations of the critical harvesting 

proportions under the two dispersal kernels: 
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For the Gaussian kernel we found 
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  (A.8) 

Using the Taylor series and the fact that 
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  where σ2 is the variance of the exponential 

kernel, 
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For the sinusoidal kernel we found 
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Using the Taylor series and the fact that 
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In the case of both kernels, the critical harvesting proportion can be approximated by a function 

that looks like 
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where p(L) is a decreasing function of the length of the viable patch L. 

F) California Current black rockfish parameterization 

We parameterize our model for black rockfish (Sebastes melanops) in the California Current, 

with MPAs of spacing and width qualitatively similar to those in the Marine Life Projection Act 

(MLPA), and with a maximum climate velocity equal to that observed empirically. The 

parameters and references are provided in Table A1. 



Our results with this parameterization are qualitatively similar to the results presented in the 

main text. In particular, we find the same negative relationship between critical harvesting rate h* 

and the climate velocity c (Fig. A1) and an essentially additive interaction between the effects of 

the two stressors on biomass (Fig. A2). Additionally, our black rockfish parameterization has the 

same counterintuitive result that MPAs from which effort is displaced (rather than eliminated) 

can be worse than no MPA at all (compare Fig. A4A and A4D). 

G) Protected area fluctuations 

After the simulations come to equilibrium, the fluctuations in total biomass per generation 

fluctuate more in reserves that are larger and spaced farther apart than simulations in which the 

reserves that are smaller and more closely spaced (Fig. A3). The large reserves have a slightly 

larger average population, however large reserves here can induce fluctuations of biomass even 

in deterministic simulations. Thus we expect if reproduction was stochastic, large reserves 

spaced far apart would be more likely to result in extinction of the population than more closely 

spaced, smaller reserves. We find the same effect regardless of whether or not effort remains 

constant or is removed from the system. 

TABLE A1. Rockfish parameters. 

Parameter Value Source 
d 73 km  White et al. (2010) 
R0 2.86 White et al. (2010), equivalent to 1/(CRT) 
h 0–100%  
L 1000 km Froese (2014) 
c 0–200 km/decade Burrows et al. (2011) 
Generation time 7 yr Love (2011) 
MPA width 20 km  Gaines et al. (2010) 
Space between MPAs 76 km Gaines et al. (2010) 
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FIG. A1. The line indicates the critical harvesting rate as a function of climate velocity on the x-

axis. These results are from an approximated Gaussian dispersal kernel parameterized for black 

rockfish. 



 

FIG. A2. (A) The equilibrium biomass of a black rockfish population as a function of the climate 

velocity on the x-axis and the harvesting rate on the y-axis. (B) Interaction between the two 

stressors as a function of climate velocity and harvesting rate. The heat map indicates the 

interaction measure S, as defined in Eq. 10, i.e., the loss in biomass in the doubly stressed 

population in excess of the sum of the losses caused by each stressor individually. S of zero 

indicates additive interaction of the stressors. The excess loss is small in comparison to the total 

biomass. These results are from an approximated Gaussian dispersal kernel parameterized for 

black rockfish. 



 

FIG. A3. Fluctuations in biomass caused by MPAs. We show biomass as a function of the 

number of generations for both many small and few large reserves and both removed harvesting 

pressure and constant harvesting pressure (i.e., reallocation). The fluctuations in biomass with 

many small reserves are small enough that the biomass appears nearly constant. While the 

biomass has a larger maximum with few large reserves, the fluctuations are much greater in 

magnitude. These results are from simulations with a Laplacian dispersal kernel with c = 0.1 and 

h = 0.02. 



 

FIG. A4. The equilibrium biomass of the population as a function of the climate velocity on the x-

axis and the harvesting rate on the y-axis under alternative management strategies. (A) The 

equilibrium biomass for simulations with constant harvest rates. (B) Equilibrium biomass for 

simulations with threshold management. For threshold management, we set a threshold density 

below which no fishing is allowed. The threshold ranges between zero (no fishing allowed) and 

one (all fish taken), with intermediate density thresholds determined as fractions of the maximum 

population density observed at a given time step before harvesting. We show this on the y-axis. 

(C) Equilibrium biomass for simulations with protected areas where harvesting pressure outside 

reserves is unchanged (i.e., harvest effort inside reserves is eliminated). (D) Equilibrium biomass 



for simulations with protected areas in which harvesting pressure is reallocated outside reserves. 

These results are from simulations with a Laplacian dispersal kernel parameterized for black 

rockfish. 

 

 


