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Appendix C. Field methods and analyses of the butterfly surveys of the 

Aargau Biodiversity Monitoring Program. 

FIELD METHODS 

In the canton of Aargau in northern Switzerland, butterflies were surveyed on 519 study 

plots (the same plots were used in the bird surveys, see Appendix B). At each study plot, the 

butterflies were surveyed using standardized transect counts (Pollard et al. 1995); the length 

of the transects was 250 m, and butterflies were recorded within 5 meters on one side of the 

transect line on the way forth and on the other side on the way back. Each examined transect 

was visited 11 times between April 21 and September 21, thus the entire flight periods of 

most butterfly species were covered. For a more detailed description of the butterfly surveys 

and the collection of land-use information for the transects, see Altermatt (2012). 

MODEL DESCRIPTION

From 1998 to 2010 totally 519 study plots were sampled every five years during 11 visits 

for the presence of a butterfly species, resulting in 1'337 observed occupancy histories. For 

instance, an observed occupancy history 0,0,0,1,1,0,0,0,0,0,0 indicates that on the respective 

plot and during the respective year, the butterfly species was observed only during the fourth 

and fifth of totally 11 visits. The data matrix y[o,j] contains the o=1,...,1'337 observed 

occupancy histories of the j=1,...,11 visits, the vector year[o] contains the year when the 

observed occupancy history o was sampled, vector site[o] contains the id of the study plot, 

the vector land_use [o] contains the land-use type (1= residential area, 2=forests, 

3=agriculture, 4=mixed land-use) of study plot site[o], and the matrix DATE[o,j] contains the 

date (i.e. the number of days after 31 March) when the jth visit was conducted to study plot 

site[o]. 
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We define the true occupancy state x[o] of the observed occupancy histories o=1,...,1'337 

such that x[o]=0 if the plot of the observed occupancy history o is never occupied during the 

entire season, and x[o]=1 otherwise. We assume that the true occupancy state x[o] is a 

Bernoulli random variable with site-occupancy 𝜓! as its parameter 

𝑥 𝑜 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜓!  

The study plots are assumed to become occupied at different dates within the season. This 

arrival process is described with an overdispersed Poisson distribution with average arrival 

date ϕ and a standard deviation σ. If z[o] is defined as the first arrival date of a butterfly 

species then 

𝑧 𝑜 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜇!     𝑤𝑖𝑡ℎ  𝜇!~𝑁𝑜𝑟𝑚𝑎𝑙 𝜙! ,𝜎

Further, we assume that the species depart from the study plots at different dates within the 

season. Like the arrival process, we describe the departure process with an overdispersed 

Poisson distribution with average departure date λ and a standard deviation ξ. If d[o] is 

defined as the departure date of a species then 

𝑑 𝑜 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜔!     𝑤𝑖𝑡ℎ  𝜔!~𝑁𝑜𝑟𝑚𝑎𝑙 𝜆! , 𝜉  

If we define p as the probability that the species present at a study plot is observed, the 

observed occupancy history y[o,j] (i.e. the data) is given as 

𝑦 𝑜, 𝑗 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑥 𝑜 ∗ 𝑝! ∗ 𝐼 𝑜, 𝑗

with  𝐼 𝑜, 𝑗 = 1  when  𝑧 𝑜 ≤ 𝐷𝐴𝑇𝐸 𝑜, 𝑗   𝑎𝑛𝑑  𝑑 𝑜 > 𝐷𝐴𝑇𝐸 𝑜, 𝑗
0  when  𝑧 𝑜 > 𝐷𝐴𝑇𝐸 𝑜, 𝑗     𝑜𝑟    𝑑 𝑜 ≤ 𝐷𝐴𝑇𝐸 𝑜, 𝑗       

Thus, the entire model is described by the four parameters that are specific for an occupancy 

history, site-occupancy 𝜓!, detection probability 𝑝!, average arrival 𝜙! and average departure 

𝜆!, by the standard deviation σ of arrival dates of species at the different study plots, and by 

the standard deviation ξ of departure dates of species at the different study plots. We then 

modeled the four parameters as 

𝑙𝑜𝑔𝑖𝑡 𝜓! = 𝛼!"#$[!] + 𝑎!,!"#$_!"#[!] + 𝑎!,!"#$_!"#[!]𝑦𝑒𝑎𝑟[𝑜] 
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where 𝛼!"#$[!] is the random site effect, 𝑎!,!"#$_!"#[!] the land-use type specific intercept and 

𝑎!,!"#$_!"#[!] the land-use type specific temporal trend of the site-occupancy 𝜓!, 

𝑙𝑜𝑔𝑖𝑡 𝑝! = 𝑏!,! + 𝑏!,!𝑦𝑒𝑎𝑟[𝑜] 

where 𝑏!,! is the intercept specific for a visit and 𝑏!,! the temporal trend of the detection 

probability 𝑝! specific for a visit, and 

𝜙! = 𝑐!,! + 𝑏!,!𝑦𝑒𝑎𝑟[𝑜] 

where 𝑐!,!"#$_!"#[!] is the intercept specific for a land-use type and 𝑐!,!"#$_!"#[!] the temporal 

trend of the average arrival 𝜙! specific for a land-use type, 

𝜆! = 𝑑!,! + 𝑑!,!𝑦𝑒𝑎𝑟[𝑜] 

where 𝑑!,!"#$_!"#[!] is the intercept specific for a land-use type and 𝑑!,!"#$_!"#[!] the temporal 

trend of the average departure 𝜆! specific for a land-use type. 

In Fig. C1, the entire model is given in the BUGS language (Link et al. 2002). 
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model { 
### Define priors 
  # Site-occupancy 
  for(u in 1:4) { 
    a[1,u] ~ dnorm(0, 0.01) 
    a[2,u] ~ dnorm(0, 0.01) 
  } 
  sigma.alpha ~ dgamma(1,1) 
  tau.alpha <- 1/(sigma.alpha * sigma.alpha) 
  for(i in 1:nsites) { 
    alpha[i] ~ dnorm(0, tau.alpha) 
  } 
  for(o in 1:nobs) { 
    mu.psi[o] <- a[1,land_use[o]]+a[2,land_use[o]]*year[o]+alpha[site[o]] 
    mu1.psi[o] <- min(10, max(-10, mu.psi[o])) 

 logit(psi[o]) <- mu1.psi[o] 
  } 
 # Detection probability 

  mu.b1 ~ dnorm(0, 0.01) 
  sigma.b1 ~ dgamma(1,1) 
  tau.b1 <- 1/(sigma.b1 * sigma.b1) 
  mu.b2 ~ dnorm(0, 0.01) 
  sigma.b2 ~ dgamma(1,1) 
 tau.b2 <- 1/(sigma.b2 * sigma.b2) 
 for (j in 1:J) { 
   b[1,j] ~ dnorm(mu.b1, tau.b1) 

    b[2,j] ~ dnorm(mu.b2, tau.b2) 
  } 
  for(t in 1:nyears) { 

  for(j in 1:J) { 
    tp[t,j] <- b[1,j] + b[2,j]*(t-11) 
    lp[t,j] <- max(-10, min(10, tp[t,j])) 
    logit(p[t,j]) <- lp[t,j] 
  } 

  } 
  # Arrival date 
  mu.c1 ~ dnorm(90, 0.001) 
  sigma.c1 ~ dgamma(1,1) 
  tau.c1 <- 1/(sigma.c1 * sigma.c1) 
  mu.c2 ~ dnorm(0, 0.01) 
  sigma.c2 ~ dgamma(1,1) 
  tau.c2 <- 1/(sigma.c2 * sigma.c2) 
  sigma.over ~ dgamma(1,1) 
  tau.over <- 1/(sigma.over * sigma.over) 
  for(u in 1:4) { 
    c[1,u] ~ dnorm(mu.c1, tau.c1) 
    c[2,u] ~ dnorm(mu.c2, tau.c2) 
  } 
  for(o in 1:nobs) { 
    eps[o] ~ dnorm(0, tau.over) 
    mu.phi[o] <- c[1,land_use[o]] + c[2,land_use[o]]*year[o] + eps[o] 
    mu1.phi[o] <- min(200, max(30, mu.phi[o])) 
    z[o] ~ dpois(mu1.phi[o]) 
  } 
  # Departure date 
  mu.d1 ~ dnorm(120, 0.001) 
  xi ~ dgamma(1,1) 
  tau.d1 <- 1/(sigma.d1 * sigma.d1) 
  mu.d2 ~ dnorm(0, 0.01) 
  sigma.d2 ~ dgamma(1,1) 
  tau.d2 <- 1/(sigma.d2 * sigma.d2) 
  sigma.d.over ~ dgamma(1,1) 
  tau.d.over <- 1/(sigma.d.over * sigma.d.over) 
  for(u in 1:4) { 
    d[1,u] ~ dnorm(mu.d1, tau.d1) 
    d[2,u] ~ dnorm(mu.d2, tau.d2) 
  } 
  for(o in 1:nobs) { 

d.eps[o] ~ dnorm(0, xi)
    mu.lambda[o] <- d[1,land_use[o]] + d[2,land_use[o]]*year[o] + d.eps[o] 
    mu1.lambda[o] <- min(500, max(0, mu.lambda[o])) 
    d[o] ~ dpois(mu1.lambda[o]) 
  } 
  ### Arrival and dparture model 
  for(o in 1:nobs) { 
    x[o] ~ dbern(psi[o]) 
    for(j in 1:J) { 

mu[o,j] <- x[o]*p[year_index[o],j]*step(DATE[o,j]-z[o])*step(d[o]-DATE[o,j]) 
mu1[o,j] <- min(0.99, max(0.01, mu[o,j])) 
y[o,j] ~ dbern(mu1[o,j]) 

    } 
  } 

} 

Fig. C1. The model in BUGS-language 
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BAYESIAN ANALYSES 

For Bayesian analysis, we used MCMC methods conducted using OpenBugs 3.2.1 

(Thomas et al. 2006) and executed in R using the R add-on library R2OpenBUGS (Sturtz et 

al. 2005). We used vague priors for all parameters (see Fig. C1 for exact specification of the 

priors), and posteriors were based on two parallel chains with 30'000 iterations each, 

discarding the first 20'000 values and thinning the remainder by using every 10th value. We 

assessed convergence using the Gelman–Rubin diagnostic (Brooks and Gelman 1998). We 

used the means of the simulated values of the posterior distributions as point estimates of the 

parameters and the 2.5% and 97.5% quantiles as estimates of the credible intervals. We speak 

of a "clear" effect (which, in a frequentist terminology, may be similar to a significant effect) 

if zero was not included in the 95% Bayesian credible interval of an estimate, or of a "clear" 

difference between two land-use categories if the point estimate for the first land-use category 

was not within the credible-interval of the estimate for the second land-use category (Amrhein 

et al. 2012). 

RESULTS ON SITY-OCCUPANCY AND DETECTION PROBABILITY 

In the canton of Aargau, the Ringlet (Aphantopus hyperantus) mainly occurred in forest, 

agriculture and mixed land-use plots, while the Marbled White (Melanargia galathea) almost 

exclusively occurred in agricultural plots (Fig. C2a). Between 1998 and 2010, there was a 

clear positive trend in site-occupancy of Ringlets in forest habitats, while the species tended 

to decrease in the other habitats. In agricultural land, where most Marbled Whites were 

detected, the number of occupied plots clearly increased over the study period (Fig. C2b). For 

both species, there was considerable variation in detection probability over the season and 

also in the temporal trend over the study period (Fig. C3). The results on the estimated arrival 

times are given in the main body of the manuscript. 
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Fig. C2. Site-occupancies in 2005 (a), and temporal trends (1998-2010) of site-occupancies (b) for the 
summer flying butterflies Ringlet (Aphantopus hyperantus) and Marbled White (Melanargia galathea) in 
residential areas (l), forests (▲), agriculture (n) and mixed land-use plots (w) as estimated from the model. 
Given are means and 95% credible intervals of the posterior distributions. 

Fig. C3. Detection probabilities in 2005 (a), and temporal trends (1998-2010) of detection probabilities (b) for 
the summer flying butterflies Ringlet (Aphantopus hyperantus) and Marbled White (Melanargia galathea) 
during the 11 visits to the study plots. Given are means and 95% credible intervals of the posterior distributions. 
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