
Appendix A - Likelihood calculations
In this appendix we show further details of the methods. We discuss:

• How a Gompertz (linear, Gaussian) state-space model for the multiple observation data
can be factored into a state-space model for the estimated mean at each time and a piece
for the independent sampling variance and site effects, if any. This simplifies likelihood
calculations for the full ML method.

• How, based on this factorization, means and standard errors for population estimates can be
plugged into the state-space model as an approximation, yielding the pseudo ML method.

• How, when site effects are treated as fixed effects in a linear model for the multiple sur-
veys, their maximum likelihood estimates can be taken directly from the linear model and
plugged into the Kalman Filter. This simplifies optimization of the likelihood for full ML
by providing site effect values easily.

• Why the pseudo ML method can work in more general settings where the raw data are not
normally distributed. This is used for the real-data example, where a negative binomial
log-linear model is used to analyze the replicated data, yielding means and standard errors
that are plugged in to the state-space model.

Factorization of the state-space model
The full likelihood for the model defined by (1) and (2) may be written as

L(a, c, τ,b, σ1:T , ω|y1:T ) =

∫
p(y1:T |x1:T , η1:T )p(x1:T )p(η1:T )dη1:Tdx1:T

=

∫ { T∏
t=1

∫
p(yt|xt, ηt)p(ηt)dηt

}
p(x1:T )dx1:T

(A.1)

In this equation, p(x1:T ) is the probability density of the state dynamics, from equation (1), and
p(yt|xt, ηt) is the probability density of the observations at time t from equation (2). When the
data are fully independent, ηt is not needed. When the data are only partially independent, ηt is
the shared sampling error for all data in year t, and must be integrated over as a random effect.
The site effects, b, are treated here as fixed effects with a sum-to-zero constraint (contrast):∑

i bi = 0. We have written σ1:T to allow the possibility of time-dependent sampling variance,
but if sampling variance is constant this could be replaced by σ.

The first step is to write the normal distribution equation for yt|xt, ηt ∼ N(1(xt+ηt)+b, σ2
t IK)

and factor it into parts for ȳt, the estimated mean, and the rest. If site effects are not needed, the
rest depends only on S(yt), the sample standard deviations of yt. Otherwise, the rest depends on
the sample standard deviations of yt−b, S(yt−b). The sample mean and standard deviation are
sufficient statistics for independent normal variables, meaning that they contain all information
in the data needed for the likelihood. (If site effects are needed, one way to simplify the equations
would be to redefine yt as having b subtracted, giving yt|xt, ηt ∼ N(1(xt+ηt), σ

2
t IK). However,

we do not do it that way in order to keep the equations as explicit as possible.) These sufficient
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statistics may be used to decompose the densities p(yt|xt, ηt) as follows:

p(yt|xt, ηt) =
1

(2πσ2
t )K/2

exp
(
− 1

2σ2
t

∑
i

(yit − xt − ηt − bi − ȳt + ȳt)
2
)

=
1

(2πσ2
t )K/2

exp
(
− 1

2σ2
t

∑
i

(yit − bi − ȳt)2
)

exp
(
− K

2σ2
t

(ȳt − xt − ηt)2
)

=

{
1√

K(2πσ2
t )(K−1)/2

exp
(
− K − 1

2σ2
t

S(yt − b)2
)}
·{

1√
2πσ2

t /K
exp

(
− K

2σ2
t

(ȳt − xt − ηt)2
)}

= L1(σt,b|yt) · p(ȳt|xt, ηt)
(A.2)

The factor L1(σt,b|yt) is defined as the contents of the first curly-braces. The second curly
braces give p(ȳt|xt, ηt), the normal probability density of ȳt, with mean xt + ηt and variance
σ2
t /K.
Since L1(σt,b|yt) does not depend on xt or ηt, it may be moved outside of the integral in

(A.1), yielding

L(a, c, τ,b, σ1:T , ω|yt) =

{
T∏
t=1

L1(σt,b|yt)

}∫ { T∏
t=1

∫
p(ȳt|xt, ηt)p(ηt)dηt

}
p(x1:T )dx1:T

=

{
T∏
t=1

L1(σt,b|yt)

}∫
p(ȳ1:T |x1:T )p(x1:T )dx1:T .

=

{
T∏
t=1

L1(σt,b|yt)

}
L2(a, c, τ, σ1:T , ω|ȳ1:T ).

(A.3)

Here the factor L2 = p(ȳ1:T ) is simply a state-space model for the mean observation at each
time. If ηt is not needed (i.e. the sampling is fully independent), then the state-space calculation
L2 uses σ2

t /K as observation error variance for time t. If ηt is needed then the total observation
error variance is ω2 +σ2

t /K. This is the format that simplifies likelihood calculations for the full
ML method, since the state-space calculation needs only univariate observations.

In cases beyond those studied here, e.g. when the population model is non-stationary the
likelihood factor L2 could be replaced by a REML version to potentially improve inferences
(Staples et al. 2004).

Plugging in means and standard errors from a linear model for the repli-
cated data
In equation (A.3), the product of the L1 terms is proportional to the normal distribution likelihood
one would have from a linear model for the observations yit with fixed effects for year and site.
This has a total exponent of

∑
t

∑
i(yit − bi − ȳt)2. Thus, this is just the likelihood for a linear

model, yit = µt + bi + εit, where µt are year effects, bi are site effects subject to
∑

i bi = 0, and
εit ∼ N(0, σ2) are residuals.

The estimated year effects from this linear model will simply be ȳt. The standard error of ȳt
will be an estimate of σt/

√
K, which is used in L2. If sampling variance is assumed constant
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across years, σ, then the standard error for all ȳt’s will be an estimate of σ/K. Thus, when the
full raw data are not available but means and standard errors are available, it makes sense to plug
them into L2 and drop the L1 factors. This is an approximation because L2 does contain σt,
and hence the time-series aspect does have information about sampling variance, but experience
indicates the information from replicates is often much stronger and hence should be retained.
When ηt is used to allow additional variation, then ω2 must be estimated from maximizing L2.
In effect this amounts to estimating observation variance for the state-space model of the means
(L2), subject to the constraint that it is at least as large as the plug-in estimate of σ2/K.

Note that the limitation in going further with using plug-in estimates is that we typically lack
information on uncertainty in the standard errors themselves. Typically analysis of survey data
reports a mean abundance index, its uncertainty in the form of a standard error, and no more.
Hence, we have not assumed that any more information will be available. In order to more fully
combine information from the multiple observations and the time-series aspect of the problem,
one needs more information, which typically would mean access to the full replicated data and
an appropriate likelihood model for it.

Easy estimation of site effects under full ML
The factor L2 = p(ȳ1:T ) does not depend on b since by definition b̄ = 0. Thus, based on
the above description of the L1 terms as the likelihood for a linear model with year and site
effects, the maximum likelihood (or, equivalently, least squares, in this case) estimates of bi can
be obtained from this linear model and kept constant for maximizing the other parameters. This
simplifies the optimization step of the full ML, since there are many site effect parameters.

If residual observation error is homogeneous (σt = σ for all t) and L2 does not depend on
b, the maximum likelihood estimate of b is easy to write down. It is independent of the other
parameters and, for component i, is given by 1/T

∑
t yit−1/(TK)

∑
i,t yit. If the residual obser-

vation error variance is not homogeneous, the maximum likelihood estimate of b for given σt is
given by (

∑
t(1/σ

2
t ))−1

∑
t yit/σ

2
t −

∑
t(K/(σ

2
t ))−1

∑
i yit/σ

2
t . Substituting b for this estimate

in the likelihood (A.3) one may avoid numerical maximization over b also in this case.
If replicates from some sites are missing in some years, L2 will depend on b because then

ȳt|xt ∼ N(xt + b̄t, σ
2
t /(K −Mt) + ω2

t ) where b̄t is the mean of the site effects over the sites that
were observed in year t and Mt is the number of sites for which observations are missing in year
t. The factors L1 will change only in that K will be replaced by K −Mt.

The pseudo ML approach for general population estimates
The above work was based on linear models with normally distributed errors. However, the
pseudo ML method does not require that the raw data are normally distributed, but rather that
the population estimates are. In general, population estimates may come from a capture-mark-
recapture model, a distance sampling model, or a generalized linear model for count data, for
example. For many such procedures, population estimates will be at least approximately normal
for large sample sizes even if the raw data are not. This is, for instance, the case with most
procedures based on maximum likelihood estimation, such as the negative binomial regression
of Breeding Bird Survey data in the main paper. Apart from normality, a second assumption
of the pseudo ML method is that deviations between true and estimated population sizes are
independent across years. This may not hold exactly for non-normal models or for unbalanced
designs, especially if nuisance parameters that are shared across time are included. However, if
the design is reasonably well balanced, dependence across time will presumably not be a major
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issue. Considering these points we suggest that the pseudo ML method may provide a good
approximation to full analyses in many cases in practice.
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