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Appendix A. Description of the fully size-structured model and parameter domains of 
ontogenetic asymmetry and ontogenetic symmetry. 

 A.1 Description of the fully size-structured population model 

Here we briefly describe the size-structured model that was used to generate the model results 
in figures 1, 3 and 4. For full details of the model specification and model analysis we refer to 
De Roos et al. (2013). The size-structured model assumes juveniles to be born at a fixed size, 
allocate their entire net production into somatic growth and mature at a fixed size. Adults are 
assumed to allocate their entire net production into reproduction. Changes in juvenile size 
distribution are hence a result of individual food-dependent growth, mortality, inflow of 
newborn individuals through reproduction and outflow of individuals through maturation. 

The mass-specific ingestion rates of resources by juveniles (߱௃) and adults (߱஺) are described by 

the functions: 

Juveniles and adults hence differ in their mass-specific intake rate via the constant q. If q > 1 
adult mass-specific intake is higher than that of juveniles whereas the reverse is the case for q < 
1.  We follow Yodzis and Innes (1992) in assuming that maintenance rates are directly 
proportional to body mass of individual consumers. The balance between assimilation through 
feeding and maintenance costs for juveniles and adults, the net production of biomass (ݒ௃, ݒ஺) 

respectively, will hence per unit of biomass equal: 

As we have assumed that the conversion efficiency into growth (for juveniles) and reproduction 
(adults) is the same and that maintenance requirements are directly proportional to body mass, 
the only factor that energetically differentiates juveniles and adults on a per unit of body mass is 
q. Juveniles will thereby have a higher net-production of biomass for q < 1, whereas adults will 
have a net-production of biomass for q > 1. Juveniles will by definition only use their net 
biomass production to grow in somatic mass. For simplicity we assume that adults use their net 
biomass production entirely to reproduce. 

Since the consumer population may exhibit cohort cycles involving temporary resource 
depression we have to consider the possibility that individuals starve. We handle this 
possibility by assuming that juvenile growth and adult reproduction equal zero when net 
production is negative. Individual juvenile growth rates in biomass, denoted by ݃ሺܴ,  ሻ, andݏ
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adult fecundity in terms of the number of newborns produced, denoted by ܾሺܴ,  ௠ሻ with smݏ
the size at maturation, are therefore both restricted to non-negative values and follow: 
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A.2. Note that the functions ߥ௃
ାሺܴሻ and ߥ஺

ାሺܴሻ are defined identical to ߥ௃ሺܴሻ and ߥ஺ሺܴሻ, 
respectively, but restricted to non-negative values. Also note that the multiplication with the 
ratio of adult size over birth size (sm/sb) takes care of converting the mass-specific 
reproduction rate in terms of biomass, ߥ஺

ାሺܴሻ, to the number of offspring produced, each of 
which requires an investment of biomass equal to sb. Juveniles and adults are assumed to be 

exposed to a background mortality equal to (2-p) and p, respectively. Furthermore, when 
food intake is insufficient to cover maintenance requirements, juveniles and adults suffer from 
additional starvation mortalities equal to െߥ௃ሺܴሻ and െߥ஺ሺܴሻ, respectively. The total death 

rate of juveniles (݀௃ሺܴሻ) and adults (݀஺ሺܴሻ), respectively, are hence given by: 
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Under non-starvation conditions juveniles and adults hence differ in mortality via the constant p 
with juveniles and adults experiencing a higher mortality if p < 1 and p > 1, respectively.  

To specify the model at the population level, we denote the size distribution of juveniles over 
the juvenile size range ݏ௕ ൑ ݏ ൑ ,ݐ௠ as ܿሺݏ  ሻ and the total number of adult consumer withݏ
body size ݏ ൌ  ௠ as C(t). The dynamics of the consumer-resource system can now beݏ
described by 4 population-level equations. The first one describes the change in the size 
distribution of juveniles (ܿሺݐ,  :ሻ) as a result of individual growth and mortalityݏ
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The second equation is a boundary condition for the partial differential equation above, which 
accounts for the increase in juvenile numbers as a result of reproduction of offspring: 

The third equation describes the dynamics of adult consumer number as a balance between 
the maturation of juvenile individuals into adults and adult mortality: 

The final equation describes the change in resource density as a result of resource production 
and foraging by consumers: 

We model the internal dynamics of the resource using semichemostat resource dynamics: 

where ܴ௠௔௫ is the resource density in the absence of consumers and  is the resource turn 
over rate. This choice for the resource dynamics ensures that its productivity is constant and 
hence independent of resource density itself, such that any increase in consumer biomass 
results exclusively from a more efficient use of available resources.  

For simulating the dynamics over time we used the Escalator Boxcar Train (EBT) method, 
which is a numerical method specifically designed to handle the numerical integration 
of the equations that occur in physiologically structured models (De Roos and Persson 2013). 
For computation of equilibrium densities, such as shown in Figure 1, however, the model can 
also be reformulated into a system of 3 differential equations, one describing the dynamics of the 
resource biomass R, one describing the dynamics of juvenile biomass J and one describing the 
dynamics of adult biomass A: 
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where ߛ ቀߥ௃
ାሺܴሻ, ௃݀ሺܴሻቁ is the mass-specific rate by which juvenile biomass matures into adult 

biomass. From this equation system it is also clear that adults invest their entire net-biomass 
production into reproduction. If we want the model to obey the underlying individual-level 
assumptions that juvenile energetics is proportional to body size and that juveniles mature on 
reaching a size threshold, it can be shown that the rate by which juveniles mature into adults 

ߛ ቀߥ௃
ାሺܴሻ, ௃݀ሺܴሻቁ should be defined as: 

(De Roos and Persson 2013) where z is the ratio of birth mass to mass at maturation. This 
expression shows that an increase in juvenile net-biomass production will have a positive effect 
on maturation rate while an increase in mortality will have a negative effect, and that an increase 
in z will have a positive effect.  

Under equilibrium conditions the system of 3 ordinary differential equations is fully identical to 
the fully size-structured presented before (De Roos et al. 2008). This reformulation of the model 
into ordinary differential equations significantly simplifies the analysis of the effects of food-
dependent reproduction, mortality and development on community structure as it circumvents 
the use of the mathematically much more challenging partial differential equations while 
nonetheless providing exactly the same answers. Under ontogenetic symmetry (q=1 and p=1) 
juvenile and adult ingestion become identical, ߱௃ሺܴሻ ൌ ߱஺ሺܴሻ ൌ ߱஼ሺܴሻ ൌ ஼ܪ஼ܴ/ሺܯ ൅ ܴሻ (cf. 

eq.(1) in the main text), just like the juvenile and adult net-biomass production rates, ߥ௃ሺܴሻ ൌ
஺ሺܴሻߥ ൌ ஼ሺܴሻߥ ൌ ஼߱஼ሺܴሻߪ െ ܶ (cf. eq.(2) in main text), and the juvenile and adult mortality 
rate, ݀௃ሺܴሻ ൌ ݀஺ሺܴሻ ൌ ݀஼. Under these conditions the above system of ordinary differential 

equations can be rewritten into a system of 2 ordinary differential equations (eqs. (3) in main 
text) for total resource and total consumer biomass, ܥ ൌ ܬ ൅  which is identical to the Yodzis , ܣ
and Innes (1992) model. 

A.2 Domains of ontogenetic asymmetry and ontogenetic symmetry 

Figure A1 shows the occurrence of overcompensation and cohort cycles as a function of 
ontogenetic asymmetry in net biomass production (q) and mortality (p, left panel) and the 
birth/maturation size ratio (ݖ ൌ ௕ݏ ⁄௠ݏ , right panel). Overall, both panels show that 
overcompensation in either juvenile or adult biomass occurs widely whereas the parameter 
domain with predictions resembling ontogenetic symmetry (i.e., no overcompensation) is very 
restricted. The domains with adult overcompensation and adult-driven cycles decrease when 
mortality is increasingly biased toward juveniles (p < 1), while the domains with juvenile 
overcompensation and without overcompensation increase. Varying the birth/maturation size (z) 
ratio has no effect on the occurrence of overcompensation. The domain of adult-driven cycles is 
largely unaffected by z, whereas juvenile-driven cycles disappear for ݖ ≳ 0.2 as a consequence 
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of the decreased time delay between birth and maturation with increased z (De Roos and Persson 
2013). 

  

 

FIG. A1. Parameter domains with overcompensation in juvenile (light grey region) and adult 
biomass (dark grey region) as well as juvenile-driven (diagonally hatched region) and adult-
driven cohort cycles (cross-diagonally hatched region) as a function of ontogenetic asymmetry in 
net biomass production (q) and ontogenetic asymmetry in mortality (p, left panel) and with 
ontogenetic symmetry in mortality (p=1.0, right panel) as a function of ontogenetic asymmetry in 
net biomass production and the body size ratio at birth and maturation (z). Thick black lines 
represent the consumer existence boundaries. Thin dashed lines reflect ontogenetic symmetry in 
net biomass production (q=1.0, left and right panels) and mortality (p=1.0, left panel only). z=0.1 

(left panel). Other parameters: sb=0.1, sm=1.0, HC=3.0, MC=1.0, TC=0.1, C=0.5, μ=0.015, ρ=0.1 
and 	ܴ௠௔௫ ൌ 100. 
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